Revisiting puzzles in lifetimes of singly charmed hadrons

BLAZENKA MELIC

Theoretical Physics Division

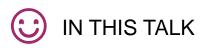
Rudjer Boskovic Institute, Zagreb

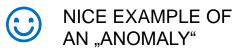
Lifetimes of singly charmed hadrons, in coll. with J. Gratrex and Ivan Nisandzic (RBI, Zagreb), 2204.11935 [hep-ph] to appear in JHEP

Alexander von Humboldt

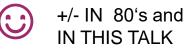
Stiftung/Foundation

FLASY 2022: 9th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology, June 27- July 1, 2022

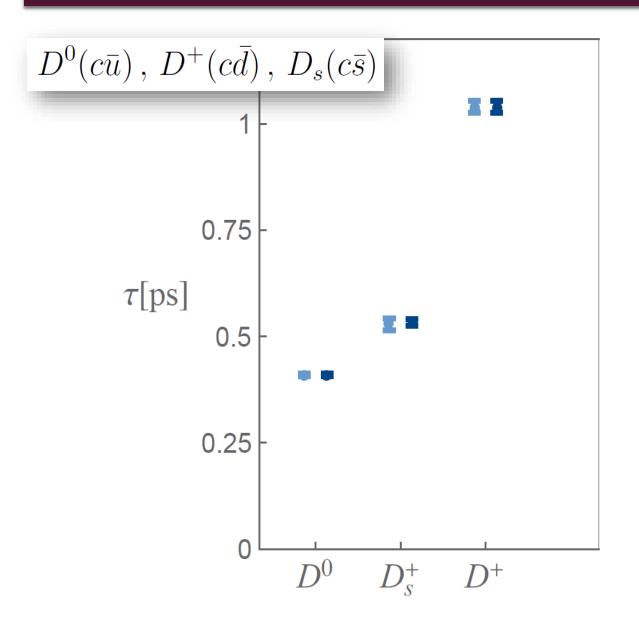

A BIT OF HISTORY First flavour anomalies were connected with lifetimes : $0^{2} 80^{2} - T(D^{+})/T(D_{0}) \sim 2.1$

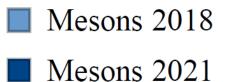

□ 85' - $T(D_s)/T(D_0) \sim 1.5$ (when D_s was called F \bigcirc)

90' - $T(\Lambda_b)/T(B) \sim 0.7-0.8$


□ 2000 – WA large \rightarrow influence on V_{ub} inclusive

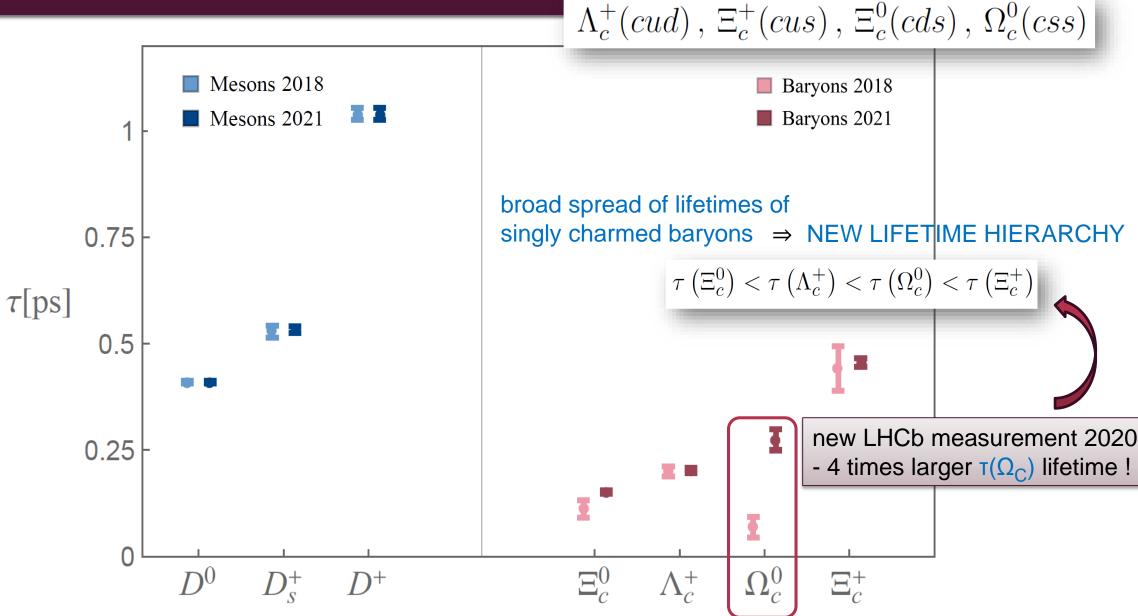
□ $2020 - \tau(\Omega_c) - 3-4$ times bigger then previously measured




/ nonperturbative?

IN 80's and IN THIS TALK

EXPERIMENTAL SITUATION


- practically unchanged lifitime pattern since 1980's

broad spread of lifetimes of singly charmed mesons

$$\frac{\tau(D^+)}{\tau(D^0)} = 2.54 \pm 0.02$$

$$\frac{\tau(D_s^+)}{\tau(D^0)} = 1.23 \pm 0.01$$

EXPERIMENTAL SITUATION

TOTAL DECAY WIDTH LIFETIMES

$$\frac{1}{\tau(H)} = \Gamma(H) = \frac{1}{2m_H} \langle H | \mathcal{T} | H \rangle$$

Shifman, Voloshim 85

$$\mathcal{T} = \operatorname{Im} \, i \int d^4x \, T \left[\mathcal{H}_{eff}(x) \mathcal{H}_{eff}(0) \right] \quad \text{forward-scattering amplitude}$$

$$\mathcal{H}_{eff}\,$$
 = weak effective hamiltonian for a heavy Q decay

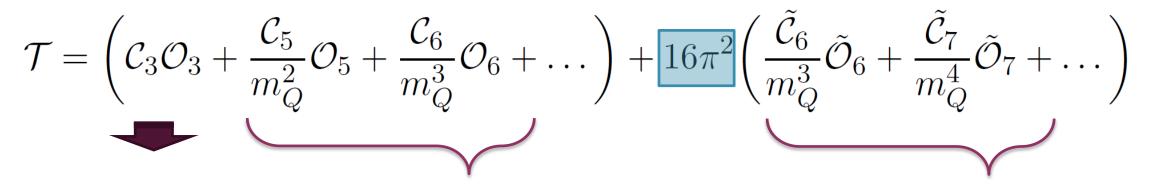
 $+\sum_{\substack{q=d,s\\\ell=e,\mu}} V_{cq} Q^{(q\ell)} \bigg],$

Buchalla, Buras, Lauternbacher 96

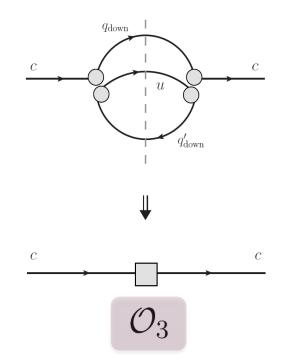
$$\mathcal{H} = \frac{G_F}{\sqrt{2}} \bigg[\sum_{q,q'=d,s} V_{cq} V_{uq'}^* \big(C_1(\mu) Q_1^{(qq')} + C_2(\mu) Q_2^{(qq')} \big) - V_{ub} V_{cb}^* \sum_{k=3}^6 C_k(\mu) Q_k \bigg]$$

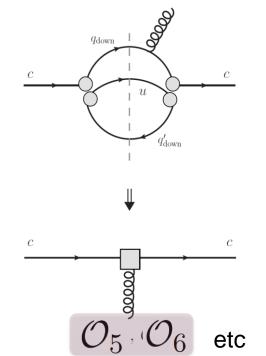
neglected for charm decays

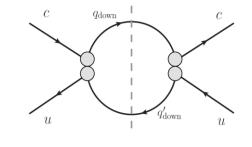
non-leptonic(NL) and semileptonic (SL) decays included

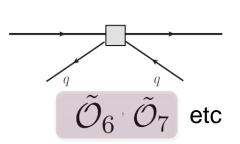

WEAK HAMILTONIAN DIM6 and DIM7 OPERATORS

 $Q_1^{(qq')} = (\bar{c}^i \gamma_\mu (1 - \gamma_5) q^j) (\bar{q}'^j \gamma^\mu (1 - \gamma_5) u^i),$ + color-octet operators + μ -running and mixing $Q_2^{(qq')} = (\bar{c}^i \gamma_\mu (1 - \gamma_5) q^i) (\bar{q}'^j \gamma^\mu (1 - \gamma_5) u^j),$ Dim 6 operators: $Q_{\rm SL}^{(q\ell)} = (\bar{c}\gamma_{\mu}(1-\gamma_5)q)(\bar{\ell}\gamma^{\mu}(1-\gamma_5)\nu_{\ell}),$ $P_1^q = m_q(\bar{c}_i(1-\gamma_5)q_i)(\bar{q}_i(1-\gamma_5)c_i),$ $P_2^q = \frac{1}{m_{\mathcal{O}}} (\bar{c}_i \overleftarrow{D}_{\rho} \gamma_{\mu} (1 - \gamma_5) D^{\rho} q_i) (\bar{q}_j \gamma^{\mu} (1 - \gamma_5) c_j) ,$ $P_3^q = \frac{1}{m_O} (\bar{c}_i \overleftarrow{D}_{\rho} (1 - \gamma_5) D^{\rho} q_i) (\bar{q}_j (1 + \gamma_5) c_j) ,$ + color-octet operators Dim 7 operators: $S_1^q = m_q(\bar{c}_i(1-\gamma_5)t_{ij}^a q_j)(\bar{q}_k(1-\gamma_5)t_{kl}^a c_l),$ $S_{2}^{q} = \frac{1}{m_{O}} (\bar{c}_{i} \overleftarrow{D}_{\rho} \gamma_{\mu} (1 - \gamma_{5}) t_{ij}^{a} D^{\rho} q_{j}) (\bar{q}_{k} \gamma^{\mu} (1 - \gamma_{5}) t_{kl}^{a} c_{l}) ,$


$$S_3^q = \frac{1}{m_Q} (\bar{c}_i \overset{\leftarrow}{D}_{\rho} (1 - \gamma_5) t^a_{ij} D^{\rho} q_j) (\bar{q}_k (1 + \gamma_5) t^a_{kl} c_l) \,.$$


+ non-local operators - reabsorbed into dim6 matrix elements


HEAVY QUARK EXPANSION (HQE) – systematic expansion in Λ_{QCD}/m_Q and α_S



LEADING NON-SPECTATOR CONTRIBUTION NON-LEADING NON-SPECTATOR CONTRIBUTION - in 90-ies HQE FOUR-QUARK SPECTATOR CONTRIBUTIONS

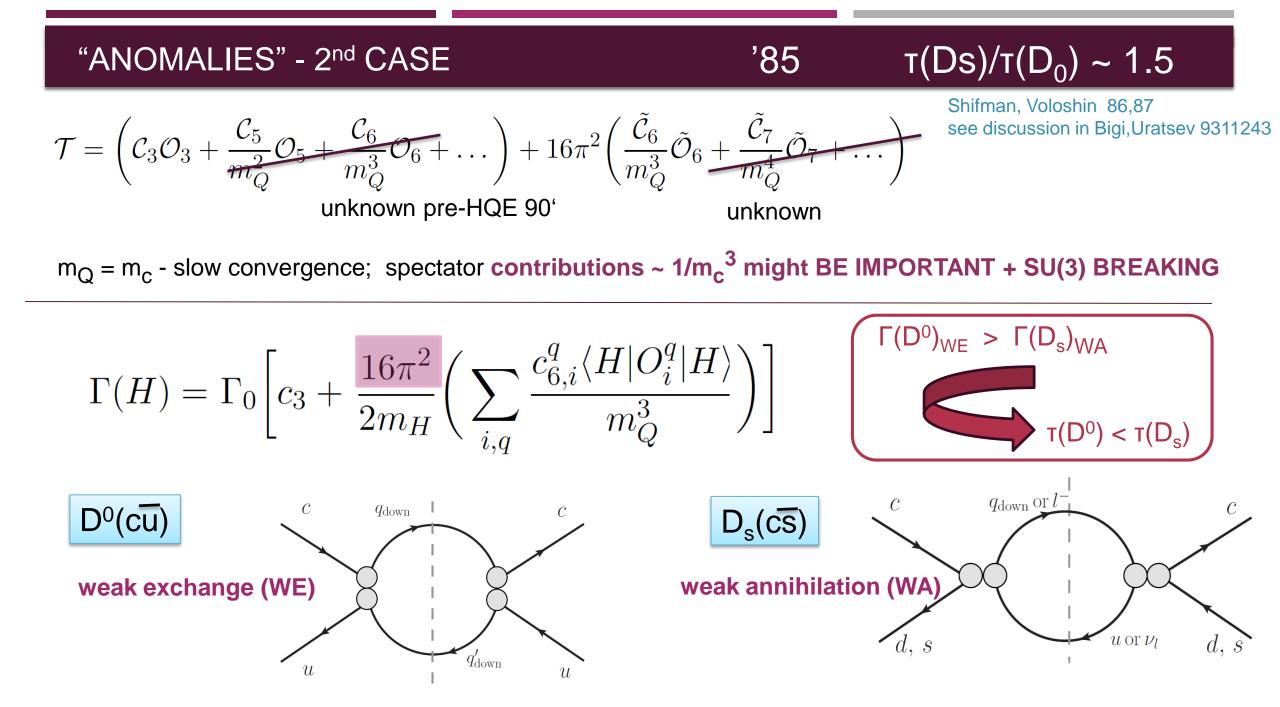
$$\mathcal{T} = \left(\mathcal{C}_3\mathcal{O}_3 + \frac{\mathcal{C}_5}{m_Q^2}\mathcal{O}_5 + \frac{\mathcal{C}_6}{m_Q^3}\mathcal{O}_6 + \dots\right) + 16\pi^2 \left(\frac{\tilde{\mathcal{C}}_6}{m_Q^3}\tilde{\mathcal{O}}_6 + \frac{\tilde{\mathcal{C}}_7}{m_Q^4}\tilde{\mathcal{O}}_7 + \dots\right)$$

$$\mathcal{C}_{i} = \mathcal{C}_{i}^{(0)}(\mu, \mu_{0}) + \mathcal{C}_{i}^{(1)}(\mu, \mu_{0})\alpha_{s}(\mu) + \mathcal{C}_{i}^{(2)}(\mu, \mu_{0})\alpha_{s}(\mu)^{2} + \dots,$$

MATRIX ELEMENS OF DIFFERENT OPERATORS ARE NEEDED

universal leading contribution to all hadrons (up to mass corrections in c_3) ~ m_Q^5


$$\begin{split} \Gamma(H) &= \Gamma_0 \left[c_3 + \frac{c_\pi \mu_\pi^2 + c_G \mu_G^2}{m_Q^2} + \frac{c_\rho \rho_D^3}{m_Q^3} + \cdots \right. \\ &+ \frac{16\pi^2}{2m_H} \left(\sum_{i,q} \frac{c_{6,i}^q \langle H | O_i^q | H \rangle}{m_Q^3} + \sum_i \frac{c_{7,i}^q \langle H | P_i^q | H \rangle}{m_Q^4} + \cdots \right) \right] \end{split}$$


 $\Gamma_0 = \frac{G_F^2 m_Q^5}{M_Q}$

A BRIEF LOOK AT 1980s & 1990s "ANOMALIES"

"ANOMALIES" - 1nd CASE '80 $T(D^+)/T(D^0) \sim 2.1$ $\mathcal{T} = \left(\mathcal{C}_3\mathcal{O}_3 + \frac{\mathcal{C}_5}{m_Q^2}\mathcal{O}_5 + \frac{\mathcal{C}_6}{m_Q^3}\mathcal{O}_6 + \dots\right) + 16\pi^2 \left(\frac{\tilde{\mathcal{C}}_6}{m_Q^3}\tilde{\mathcal{O}}_6 + \frac{\tilde{\mathcal{C}}_7}{m_Q^4}\tilde{\mathcal{O}}_7 + \dots\right) \qquad \text{Guberina, Nussinov, Peccei, Ruckl 79}$ unknown pre-HQE 90' unknown

m_Q = m_c - slow convergence; spectator contributions ~ 1/m_c³ might BE IMPORTANT - BUT WHY THERE WOULD BE SUCH DIFFERENCE IN D-MESON LIFETIMES?

"ANOMALIES" - 3st CASE

EXPERIMENT :

Year	Exp	Decay	$ au(\Lambda_b)\left[ps ight]$	$\tau(\Lambda_b)/\tau(B_d)$
2003	HFAG	average	1.212 ± 0.052	0.798 ± 0.034
1998	OPAL	$\Lambda_c l$	1.29 ± 0.25	$0.85 \pm 0.16 *$
1998	ALEPH	$\Lambda_c l$	1.21 ± 0.11	$0.80 \pm 0.07 *$
1995	ALEPH	$\Lambda_c l$	1.02 ± 0.24	$0.67 \pm 0.16 *$
1992	ALEPH	$\Lambda_c l$	1.12 ± 0.37	$0.74 \pm 0.24 *$

THEORY:

$$\Gamma(H) = \Gamma_0 \left[c_3 + \frac{c_\pi \mu_\pi^2 + c_G \mu_G^2}{m_Q^2} + \frac{16\pi^2}{2m_H} \left(\sum_{i,q} \frac{c_{6,i}^q \langle H|O_i^q|H\rangle}{m_Q^3} \right) \right] \qquad \frac{16\pi^2/m_c^3 \sim 50}{16\pi^2/m_b^3 \sim 2}$$

 $m_Q = m_b$ - fast convergence; spectator contributions ~ $1/m_b^3$ highly suppressed > CONCLUSION: $T(\Lambda_b)/T(B)$ CANNOT DEVIATE MUCH FROM 1

'90-'00 $T(\Lambda_b)/T(B) \sim 0.7-0.8$

thanks to A. Lenz

THEORY:

Year	Author	$\tau(\Lambda_b)/\tau(B_d)$
2007	Tarantino	0.88 ± 0.05
2004	Petrov et al.	0.86 ± 0.05
2003	Tarantino	0.88 ± 0.05
2002	Rome	0.90 ± 0.05
2000	Körner, Melic	0.810.92
1999	Guberina, Melic, Stefanic >	> 0.90
1999	diPierro, Sachrajda, Michael	0.92 ± 0.02
1999	Huang, Liu, Zhu	0.83 ± 0.04
1996	Colangelo, deFazio	> 0.94
1996	Neubert,Sachrajda	" > 0.90"
1992	Bigi, Blok, Shifman, Uraltsev, Vainshtein	> 0.850.90
x	only $1/m_b^2$	0.98

thanks to A. Lenz

Colour coding:

- Wilson coefficient
- Matrix element of dimension 6 operator
- Numerical update

Many theory paper appeared

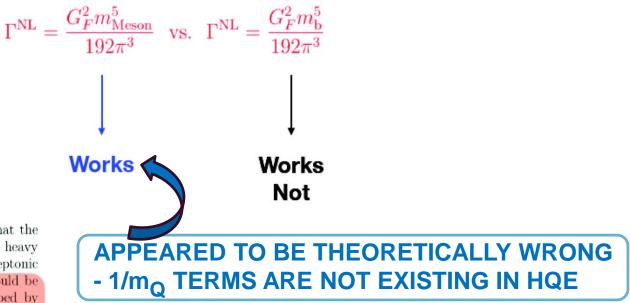
Some claiming HQE fails

Nature (or experimentalists) might be nasty

FAILURE OF LOCAL DUALITY IN INCLUSIVE NON-LEPTONIC HEAVY FLAVOUR DECAYS

G. Altarelli

Theoretical Physics Division, CERN, CH-1211 Geneva 23 and Dipartimento di Fisica, Terza Università di Roma, Roma


G. Martinelli, S. Petrarca and F. Rapuano

Dip. di Fisica dell'Università *La Sapienza* and INFN, Sez. di Roma I P.le A. Moro 2, 00185 Roma, Italy

ABSTRACT

We argue that there is strong experimental evidence in the data of *b*- and *c*-decays that the pattern of power suppressed corrections predicted by the short distance expansion, the heavy quark effective theory and the assumption of local duality is not correct for the non-leptonic inclusive widths. The data indicate instead the presence of 1/m corrections that should be absent in the above theoretical framework. These corrections can be simply described by replacing the heavy quark mass by the mass of the decaying hadron in the m^5 factor in front of all the non-leptonic widths.

Experiment in 1996 shows

thanks to A. Lenz

SOME OTHER THEORETICAL IDEAS: Grinstein et al

arXiv.org > hep-ph > arXiv:hep-ph/0304202v1

Search...

Help | Advance

High Energy Physics – Phenomenology

Explicit Quark-Hadron Duality Violations in B-Meson Decays

Benjamin Grinstein, Michael Savrov

(Submitted on 22 Apr 2003 (this version), latest version 29 Apr 2003 (v2))

We consider the weak decay of heavy mesons in QCD. We compute the inclusive hadronic decay rate in leading order in the large N_c expansion, with masses chosen to insure the final state mesons recoil slowly (the SV limit). We find, by explicit computation, violations to quark-hadron duality at order 1/M in the heavy mass expansion. The violation to duality is linear in the slope of the form factor for the associated semileptonic decay. Differences in slopes of form factors may help understand the puzzle of lifetimes of b-hadrons.

High Energy Physics – Phenomenology

Explicit Quark-Hadron Duality Violations in B-Meson Decays

Benjamin Grinstein, Michael Savrov

(Submitted on 22 Apr 2003 (v1), last revised 29 Apr 2003 (this version, v2))

Duality is not violated at order Delta/M once j=3/2 and j=1/2+ states are properly accounted for.

Comments: Paper withdrawn by authors, due to crucial omission of higher resonances

WITHDRAWN BY AUTHORS - NO DUALITY VIOLATION

thanks to A. Lenz

NEW EXPERIMENTAL MEASURMENTS

thanks to A. Lenz

Year	Exp	Decay	$ au(\Lambda_b)\left[ps ight]$	$\tau(\Lambda_b)/\tau(B_d)$	
2011	HFAG	average	1.425 ± 0.032	0.938 ± 0.022	4.1σ
2010	CDF	$J/\psi\Lambda$	1.537 ± 0.047	1.020 ± 0.031	to pro meas
2009	CDF	$\Lambda_c + \pi^-$	1.401 ± 0.058	0.922 ± 0.038	mou
2007	D0	$\Lambda_c \mu \nu X$	1.290 ± 0.150	$0.849 \pm 0.099 *$	
2007	D0	$J/\psi\Lambda$	1.218 ± 0.137	$0.802 \pm 0.090 *$	
2006	CDF	$J/\psi\Lambda$	1.593 ± 0.089	1.049 ± 0.059	
2004	D0	$J/\psi\Lambda$	1.22 ± 0.22	0.87 ± 0.17	

4.1σ difference to previous measurements !

excellent agreement with the theory:

 $\frac{\tau(\Lambda_b)}{1} = 0.935 \pm 0.054$

A. Lenz, 1405.3601

GOING BACK TO THE PRESENT DEVELOPMENTS

Semileptonic (SL) modes				
$\Gamma_3^{(3)}$	Fael, Schönwald, Steinhauser '20 * ; Czakon, Czarnecki, Dowling '21			
$\Gamma_3^{(2)}$	Czarnecki, Melnikov, v. Ritbergen, Pak, Dowling, Bonciani, Ferroglia, Biswas, Brucherseifer, Caola '97-'13			
$\left(\Gamma_{5}^{(1)}\right)$	Alberti, Gambino, Nandi, Mannel, Pivovarov, Rosenthal '13-'15			
$\Gamma_6^{(1)}$	Mannel, Pivovarov '19			
$\Gamma_7^{(0)}$	Dassinger, Mannel, Turczyk '06			
$\Gamma_8^{(0)}$	Mannel, Turczyk, Uraltsev '10			

 * see also talks by K. Schönwald and M. Fael

** Partial result

Maria Laura Piscopo (Siegen U.)

CKM 2021, 24 November 2021

Non-leptonic (NL) modes $\Gamma_3^{(2)}$ Czarnecki, Slusarcyk, Tkachov '05 ** Ho-Kim, Pham, Altarelli, Petrarca, Voloshin, Bagan, Ball, Braun, $\Gamma_3^{(1)}$ Gosdzinsky, Fiol, Lenz, Nierste, Ostermaier, Krinner, Rauh '84-'13 Bigi, Uraltsev, Vainshtein, $\Gamma_5^{(0)}$ Blok, Shifman '92 Lenz, MLP, Rusov, Mannel, $\Gamma_6^{(0)}$ Moreno, Pivovarov '20-'21 Beneke, Buchalla, Greub, Lenz, $\tilde{\Gamma}_6^{(1)}$ Nierste, Franco, Lubicz, Mescia, Tarantino, Rauh '02-'13 $\tilde{\Gamma}_7^{(0)}$ Gabbiani, Onishchenko, Petrov '03-'04

corrections taken into account – LO and existing NLO

CALCULATION OF MATRIX ELEMENTS

$$\begin{split} \mathcal{T} = & \left(\mathcal{C}_{3}\mathcal{O}_{3} + \frac{\mathcal{C}_{5}}{m_{Q}^{2}}\mathcal{O}_{5} + \frac{\mathcal{C}_{6}}{m_{Q}^{3}}\mathcal{O}_{6} + \ldots \right) + \left[6\pi^{2} \left(\frac{\tilde{\mathcal{C}}_{6}}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6} + \frac{\tilde{\mathcal{C}}_{7}}{m_{Q}^{4}} \tilde{\mathcal{O}}_{7} + \ldots \right) \right] \\ & \Gamma(H) = \frac{1}{2m_{H}} \langle H | \mathcal{T} | H \rangle \\ & \\ \hline \Gamma(H) = \Gamma_{0} \left[c_{3} + \frac{c_{\pi} \mu_{\pi}^{2} + c_{Q} \mu_{G}^{2}}{m_{Q}^{2}} + \frac{c_{\rho} \rho_{D}^{3}}{m_{Q}^{3}} + \ldots + \frac{16\pi^{2}}{2m_{H}} \left(\sum_{i,q} \frac{c_{6,i}^{q} (H | \mathcal{O}_{i}^{q} | H)}{m_{Q}^{3}} + \sum_{i} \frac{c_{7,i}^{q} \langle H | \mathcal{P}_{i}^{q} | H \rangle}{m_{Q}^{4}} \right) \\ & \mu_{\pi}^{2}(H) = \frac{-1}{2m_{H}} \langle H | \bar{c}_{v}(iD)^{2} c_{v} | H \rangle , \text{-kinetic parameter} \\ & \mu_{G}^{2}(H) = \frac{1}{2m_{H}} \langle H | \bar{c}_{v}^{1} \frac{1}{2} \sigma \cdot (g_{s}G) c_{v} | H \rangle , \text{-chromomagnetic parameter} \\ & \langle H | \mathcal{O}_{i}^{q} | H \rangle \\ & \rho_{D}^{3}(H) = \frac{1}{2m_{H}} \langle H | \bar{c}_{v}(iD_{\mu})(iv \cdot D)(iD^{\mu}) c_{v} | H \rangle \text{-Darwin term} \end{split}$$

CALCULATION OF NON-SPECTATOR MATRIX ELEMENTS

NON-SPECTATOR PART:

- mainly universal – up to $SU(3)_f$ breaking and differences in spins of hadrons

application of hadron mass formula:

$$m_H = m_c + \bar{\Lambda} + \frac{\mu_\pi^2(H)}{2m_c} - \frac{\mu_G^2(H)}{2m_c} + \mathcal{O}\left(\frac{1}{m_c^2}\right)$$
spin factor:

$$d_H = -2\left(S_H(S_H + 1) - S_h(S_h + 1) - S_l(S_l + 1)\right)$$

$$\mu_G^2(H) \equiv d_H \lambda_2 = d_H \frac{m_{H^*}^2 - m_H^2}{d_H - d_{H^*}}$$

H	D	D^*	$\Lambda_c^+,\Xi_c^+,\Xi_c^0$	Ω_c^0	Ω_c^{0*}
d_H	3	-1	0	4	-2

$$\mu_\pi^2 \quad \text{hqetsr} \quad \mu_\pi^2 \geq \mu_G^2$$

$$ho_D^3$$

 ι_G^2

applying EOM of $G_{\mu\nu}$ and relating to the dim6 operators

$$2m_H\rho_D^3 = g_s^2 \langle H| \left(-\frac{1}{8}O_1^q + \frac{1}{24}\tilde{O}_1^q + \frac{1}{4}O_2^q - \frac{1}{12}\tilde{O}_2^q \right) |H\rangle + \mathcal{O}(1/m_c) \qquad \rho_D^3(D_q) = \frac{g_s^2}{18}f_{D_q}^2 m_{D_q} + \mathcal{O}(1/m_c)$$

CALCULATION OF NON-SPECTATOR MATRIX ELEMENTS

NON-SPECTATOR PART:

	D^0	D^+	D_s^+	Λ_c^+	Ξ_c^+	Ξ_c^0	Ω_c^0
$\mu_G^2/{ m GeV}^2$	0.41(12)	0.41(12)	0.44(13)	0	0	0	0.26(8)
$\mu_{\pi}^2/\mathrm{GeV}^2$	0.45(14)	0.45(14)	0.48(14)	0.50(15)	0.55(17)	0.55(17)	0.55(17)
$ ho_D^3/{ m GeV^3}$	0.056(12)	0.056(22)	0.082(33)	0.04(1)	0.05(2)	0.06(2)	0.06(2)

+ 30% uncertainties

 ρ_D^3 much smaller parameter but with a surprisingly large Wilson coefficient c_ρ - sizable contribution

CALCULATION OF SPECTATOR (FOUR-QUARK) MATRIX ELEMENTS

SPECTATOR PART FOR MESONS:

- calculation of four-quark matrix elements

im 6:
$$\langle D_q | \mathcal{O}_i^q | D_q \rangle = F_{D_q}(\mu)^2 m_{D_q} B_i^q,$$

 $\langle D_q | \mathcal{O}_i^{q'} | D_q \rangle = F_{D_q}(\mu)^2 m_{D_q} \delta_i^{q'q}, \quad q \neq q'$
 $F_{D_q}(\mu)^2 \to f_{D_q}^2 m_{D_q} \left(1 + \frac{4}{3} \frac{\alpha_s(m_c)}{\pi} \right)$

HQET bag model parameters or lattice:

$$B^q_{1,2} \qquad \epsilon^q_{1,2} \equiv B^q_{3,4} \qquad \delta^{q'q}_i$$

Kirk, Lenz, Rauch, 1711.02100 King, Lenz, Rauch, 2112.03691 King et al, 2109.13219

Dim 7 :

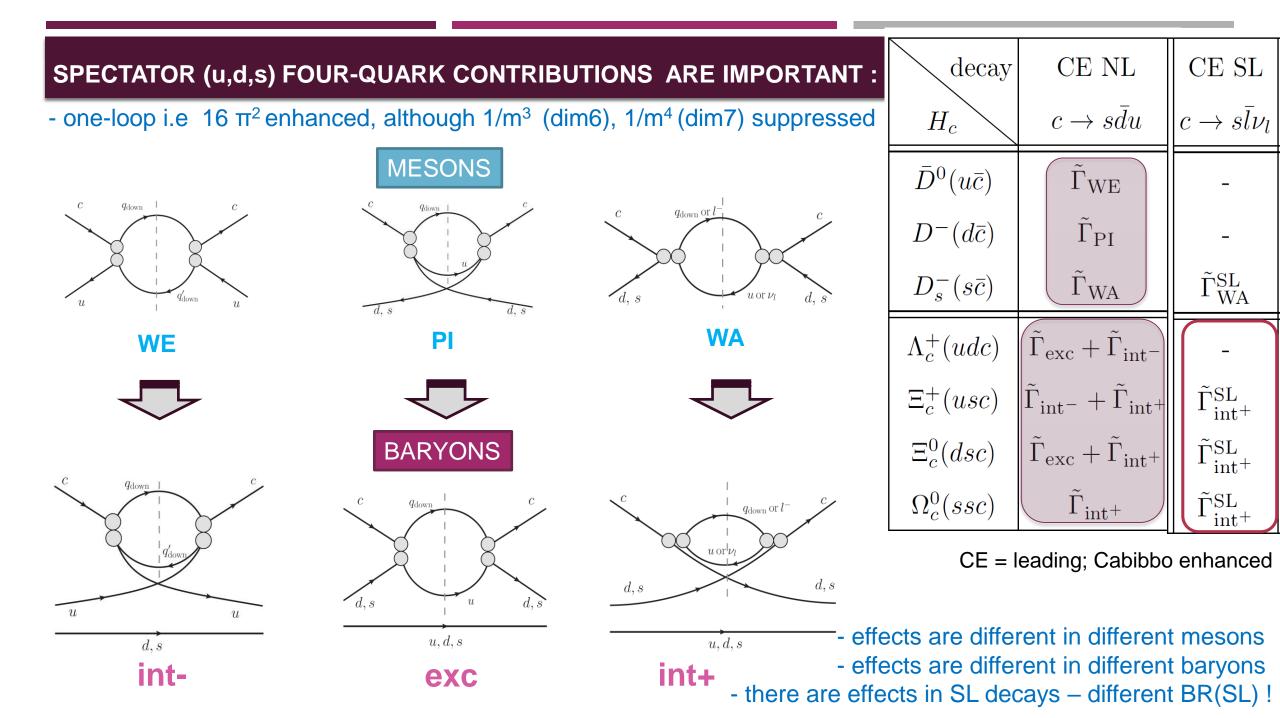
D

$$\begin{split} \langle D_q | \mathcal{P}_1^q | D_q \rangle &= -m_q F^2 m_{D_q} B_1^P, \\ \langle D_q | \mathcal{P}_2^q | D_q \rangle &= -\bar{\Lambda}_q F^2 m_{D_q} B_2^P, \\ \langle D_q | \mathcal{P}_2^q | D_q \rangle &= -\bar{\Lambda}_q F^2 m_{D_q} B_2^P, \\ \langle D_q | \mathcal{R}_1^q | D_q \rangle &= -F_{D_q}^2 m_{D_q} (\bar{\Lambda}_q - m_q) B_1^R, \\ \langle D_q | \mathcal{R}_2^q | D_q \rangle &= F_{D_q}^2 m_{D_q} (\bar{\Lambda}_q - m_q) B_2^R, \end{split} \qquad \begin{aligned} \text{Vacuum insertion approximation (VIA):} \\ B_i^{P,R} &= 1 \\ B_i^{P,R} &= 0 \\ \text{for color-octet op} \end{aligned}$$

CALCULATION OF SPECTATOR (FOUR-QUARK) MATRIX ELEMENTS

SPECTATOR PART FOR BARYONS :

- calculation of four-quark matrix elements


NR CONSTITUENT QUARK MODEL

$$\left(rac{\langle \mathcal{B}_c | O_i^q | \mathcal{B}_c \rangle}{2m_{\mathcal{B}_c}} \sim |\psi_{cq}^{\mathcal{B}_c}(0)|^2
ight)$$
 and

 $|\Psi(0)|_{ij}^2 \sim \delta^3(0)$

Rujula, Georgi, Glashow 1975
$$M_{H} = \sum_{i} m_{i}^{H} + \langle H_{\rm spin,H} \rangle \qquad H_{\rm spin,mesons} = \frac{32\pi\alpha_{s}}{9} \frac{(\vec{s}_{i} \cdot \vec{s}_{j})}{m_{i}^{M}m_{j}^{M}} \delta^{3}(\vec{r}_{ij})_{\rm M}$$
$$H_{\rm spin,baryons} = \sum_{i>j} \frac{16\pi\alpha_{s}}{9} \frac{(\vec{s}_{i} \cdot \vec{s}_{j})}{m_{i}^{B}m_{j}^{B}} \delta^{3}(\vec{r}_{ij})_{\rm B}$$
$$|\Psi_{cq}^{\Lambda_{c}^{+}}(0)|^{2} = \frac{4}{3} \frac{M_{\Sigma_{c}^{*}} - M_{\Sigma_{c}}}{M_{D^{*}} - M_{D}} |\Psi_{cq}^{Dq}(0)|^{2}$$

Dim 7 operators are expressed similarly, in terms on dim 6 operators as above

CHARM QUARK MASS

$$\begin{split} \Gamma_0 &= \frac{G_F^2 m_Q^5}{192\pi^3} \\ \text{POLE mass:} \\ m_c^{\text{pole}} &= \overline{m}_c(\overline{m}_c) \left[1 + \frac{4}{3} \frac{\alpha_s(\overline{m}_c)}{\pi} + 10.3 \left(\frac{\alpha_s(\overline{m}_c)}{\pi} \right)^2 + 116.5 \left(\frac{\alpha_s(\overline{m}_c)}{\pi} \right)^3 + \dots \right] \\ &= \overline{m}_c(\overline{m}_c) (1 + 0.16 + 0.15 + 0.21 + \dots) \text{ IR renormalon } - \\ &\quad \text{divergent series starting from the third-loop...} \end{split}$$

renormalon-free mass definitions:

$$m_c^X(\mu_f) = m_c^{\text{pole}} - \delta m_c^X(\mu_f)$$

= $\overline{m}_c(\overline{m}_c) + \overline{m}_c(\overline{m}_c) \sum_{n=1}^{\infty} \left[c_n(\mu, \overline{m}_c(\overline{m}_c)) - \frac{\mu_f}{\overline{m}_c(\overline{m}_c)} s_n^X(\mu/\mu_f) \right] \alpha_s^n(\mu)$

- subtraction of IR renomalons
- rearrangement of α_S expansion relevant for α_S -corrections in c_3 and c_6 terms

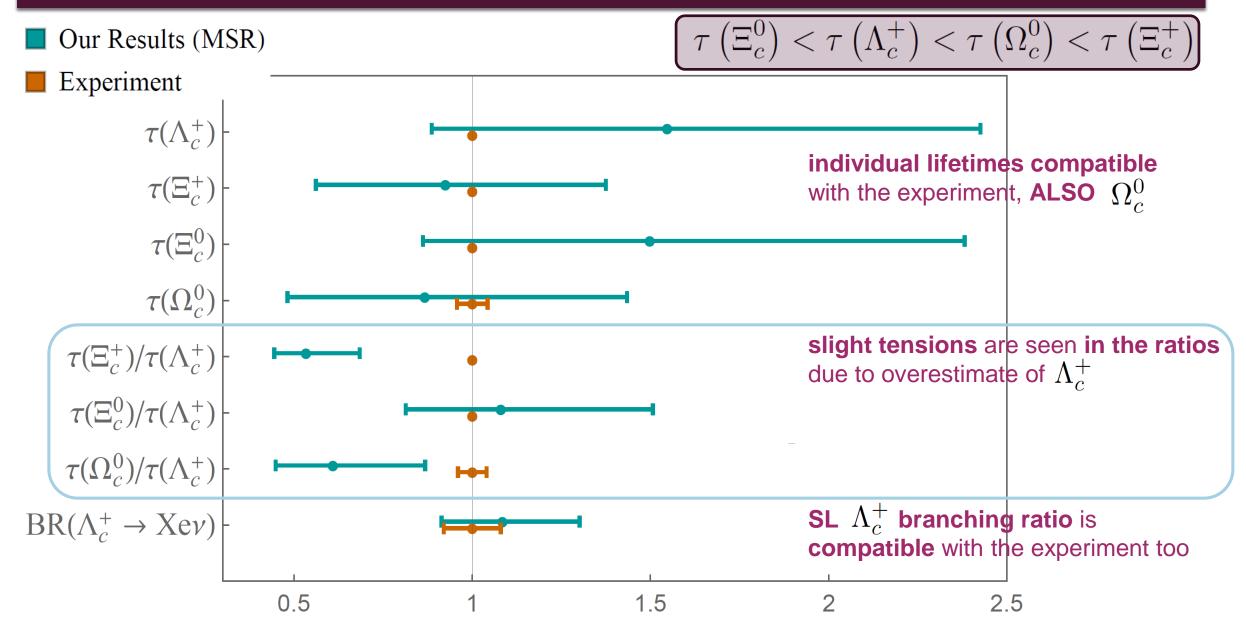
CHARM QUARK MASS

$\boxed{\overline{m}_c(\overline{m}_c) = 1.28 { m GeV}}$	1-loop	2-loop	3-loop	4-loop
m_c^{pole}	1.49	1.68	1.95	2.43
$m_c^{\rm kin}$	1.36	1.39	1.40	_
m_c^{MSR}	1.33	1.35	1.36	1.36

we provide results for all mass schemes... no large differences in the final results – rearrangments among $1/m_c$ and α_s -expansion !

RESULTS FOR BARYONS

Lifetime ratios for \mathcal{B}_c :


$$\frac{\tau(\mathcal{B}_c)}{\tau(\Lambda_c^+)} \equiv \frac{1}{1 + (\Gamma^{\text{th}}(\mathcal{B}_c) - \Gamma^{\text{th}}(\Lambda_c^+))\tau^{\exp}(\Lambda_c^+)}$$

- some uncertainties cancel/subtract in the ratios

Inclusive SL branching ratios (e only) for \mathcal{B}_c :

$$BR(\mathcal{B}_c \to Xe\nu) \equiv \Gamma(\mathcal{B}_c \to Xe\nu) \tau^{\exp}(\mathcal{B}_c)$$

RESULTS FOR BARYONS

RESULTS FOR BARYONS - SL BRs

MSR mass scheme:

$$\begin{array}{ll} BR(\Lambda_c^+ \to Xe\nu)/\% & 4.28^{+0.47+0.39}_{-0.37-0.30} \\ BR(\Xi_c^+ \to Xe\nu)/\% & 14.95^{+2.66+1.59}_{-2.45-1.50} \\ BR(\Xi_c^0 \to Xe\nu)/\% & 5.06^{+0.91+0.54}_{-0.84-0.51} \\ BR(\Omega_c^0 \to Xe\nu)/\% & 11.19^{+3.01+1.94}_{-2.89-2.09} \end{array}$$

SL decays are important to assess the validity of HQE in charm in baryons - experimental measurements of $BR_{SL}(\Xi_c^+)$, $BR_{SL}(\Xi_c^0)$ and $BR_{SL}(\Omega_c^0)$ are needed

RESULTS FOR MESONS

Lifetime ratios :

$$\frac{\tau(D_{(s)}^+)}{\tau(D^0)} = 1 + \left(\Gamma^{\rm th}(D^0) - \Gamma^{\rm th}(D_{(s)}^+)\right) \tau^{\rm exp}(D_{(s)}^+)$$

- some uncertainties cancel/subtract in the ratios

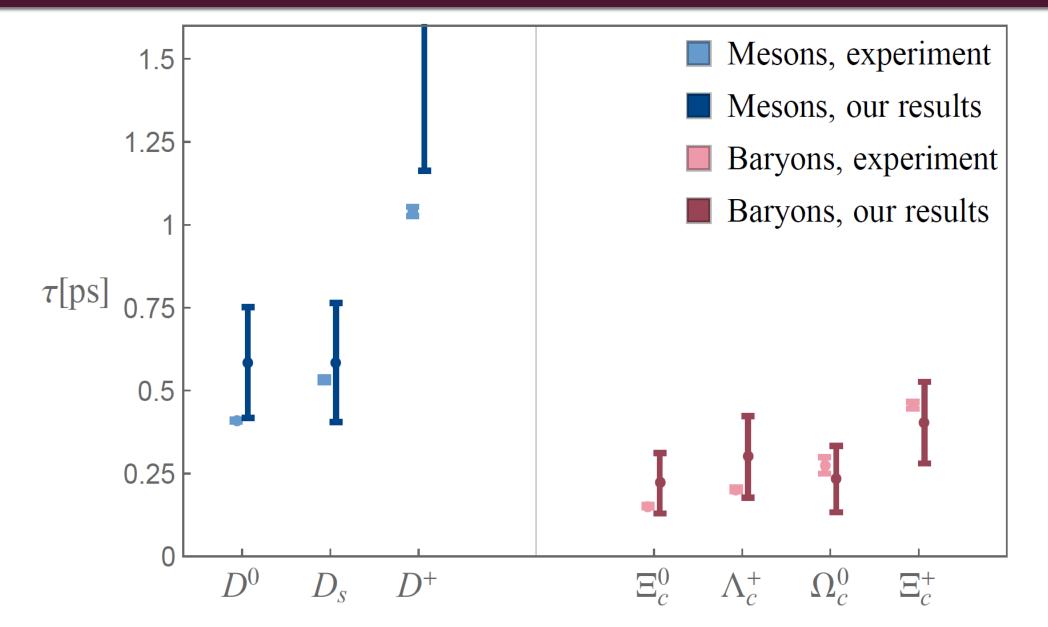
Inclusive SL branching ratios (*e* only):

$$BR^{(e)}(D) = \Gamma^{(e)}(D)\tau^{\exp}(D)$$

$$\frac{\Gamma^{(e)}(D^+_{(s)})}{\Gamma^{(e)}(D^0)} = 1 + (\Gamma^{(e)\,\text{th}}(D^+_{(s)}) - \Gamma^{(e)\,\text{th}}(D^0)) \left(\frac{\tau(D^0)}{BR^{(e)}(D^0)}\right)^{\exp}$$

Observable	MSR	Experiment	
$\Gamma(D^0)$	$1.68^{+0.38+0.53}_{-0.43-0.44}$	2.44 ± 0.01	
$\Gamma(D^+)$	$-0.13\substack{+0.71+0.13\\-0.64-0.11}$	0.96 ± 0.01	
$\tilde{\Gamma}(D_s^+)$	$1.67^{+0.46+0.55}_{-0.56-0.46}$	1.88 ± 0.02	
$\tau(D^+)/\tau(D^0)$	$2.89^{+0.66+0.42}_{-0.78-0.35}$	2.54 ± 0.02	
$\tilde{\tau}(D_s^+)/\tau(D^0)$	$1.00\substack{+0.23+0.01\\-0.21-0.01}$	1.30 ± 0.01	

full agreement with King et al, 2109.13219


Observable	MSR	Experiment	
$BR^{(e)}(D^0)[\%]$	$5.86^{+1.80+0.48}_{-2.07-0.41}$	6.49 ± 0.16	
$BR^{(e)}(D^+)[\%]$	$14.90^{+4.67+1.22}_{-5.37-1.06}$	16.07 ± 0.30	
$BR^{(e)}(D_{s}^{+})[\%]$	$7.67^{+2.67+0.65}_{-3.10-0.56}$	6.30 ± 0.16	
$\Gamma^{(e)}(D^+)/\Gamma^{(e)}(D^0)$	$1.00\substack{+0.02+0.00\\-0.01-0.00}$	0.977 ± 0.031	
$\Gamma^{(e)}(D^+_s)/\Gamma^{(e)}(D^0)$	$1.06^{+0.26+0.01}_{-0.29-0.01}$	0.790 ± 0.026	

results are largely compatible with the experiment

* difficulties with $\tau(D^+)$ – Pauli intereference term can drive $\tau(D^+)$ large and even negative!

* slight tension with $\tau(D_s)/\tau(D^0)$ – theoretically closer to unity

CONCLUSIONS

CONCLUSIONS

- up-to-date results for lifetimes of weakly decaying hadrons with a single charm quark, with most complete set of contributions provided
- results compatible with experiment, albeit with large uncertainties, and favoring recent LHCb result for $\tau(\Omega_c^0)$ lifetime (4× old measurement)
- difficulty in predicting T (D⁺) only marginally compatible huge negative Pauli interference contribution
- predictions for unmeasured BR_{SL}(H) are important for complete assessment
- conclusions above are largely independent of the charm mass scheme

OUTLOOK

- \Box extending available contributions in 1/m_c and α_s series
- Iarge uncertainties mean theory cannot compete with experiment more control of hadronic parameters needed :
 - lattice determination of $\langle \tilde{\mathcal{O}}_6 \rangle$ planned (U Siegen)
 - higher α_s corrections planned (KIT) NLO of 4q-dim7, NNLO of NL-dim3 etc..
 - exp. (BESIII, Belle II...) determination of kinetic, chromomagnetic and Darwin parameter from SL decays? too sensitive to four-quark oper. "leakage"?
- □ question of applicability of heavy quark approach to charm remains open $\Rightarrow \alpha_s(m_c) = 0.33, \Lambda_{QCD}/m_c = 0.30$ too large? (vs $\alpha_s(m_b) = 0.22, \Lambda_{QCD}/m_b = 0.10$)
- theoretical improvements: revisiting formulation of HQE in charm mass? testing quark-hadron duality violation?

THANK YOU

