

Unconventional axions and ALPs

Lisbon, June 27- July 1 2022

Belén Gavela Univ. Autónoma de Madrid and IFT

Is the Higgs the only (fundamental?) scalar in nature?

Or simply the first one discovered?

Is the Higgs the only (fundamental?) scalar in nature?

Or simply the first one discovered?

What about a singlet (pseudo) scalar?

Strong motivation from fundamental issues of the SM

Many small unexplained SM parameters

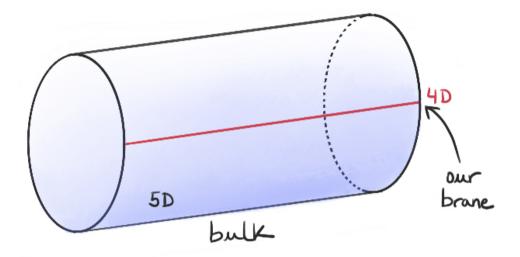
Hidden symmetries can explain small parameters

If spontaneously broken: Goldstone bosons a

-> derivative couplings to SM particles

(Pseudo)Goldstone Bosons appear in many BSM theories

* e.g. Extra-dim Kaluza-Klein: 5d gauge field compactified to 4d The Wilson line around the circle is a GB, which behaves as an axion in 4d

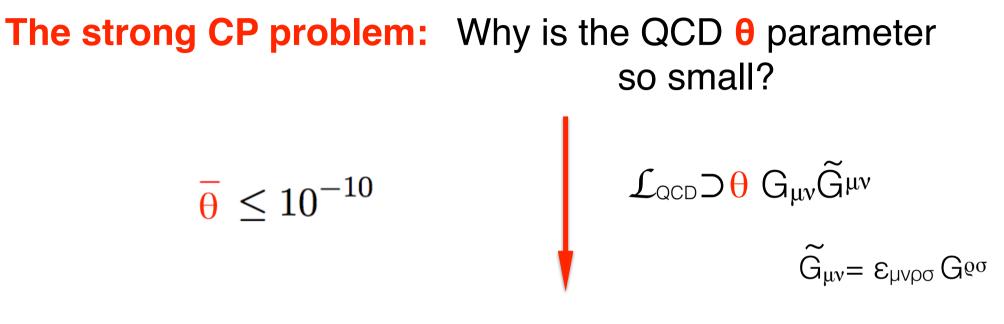


- * Majorons, for dynamical neutrino masses
- * From string models
- * The Higgs itself may be a pGB ! ("composite Higgs" models)
- * Axions *a* that solve the strong CP problem, and ALPs (axion-like particles)

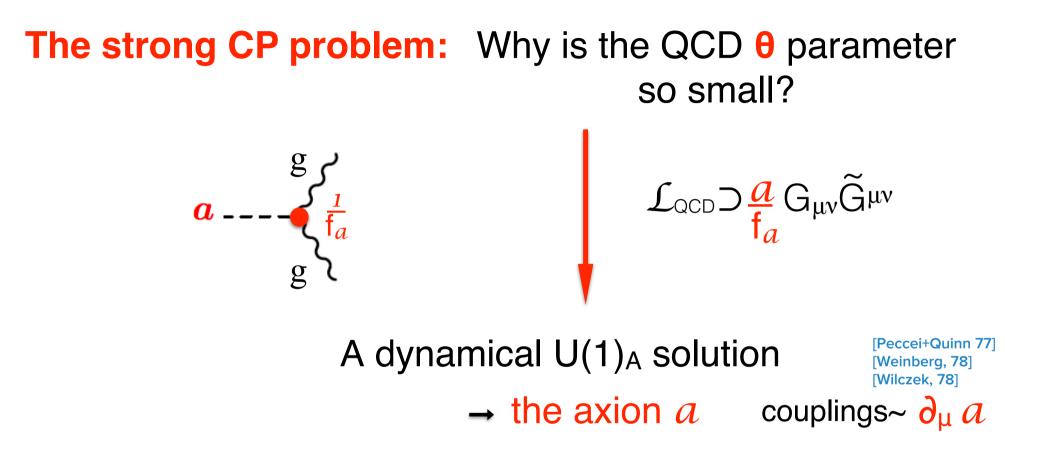
The strong CP problem: Why is the QCD θ parameter so small?

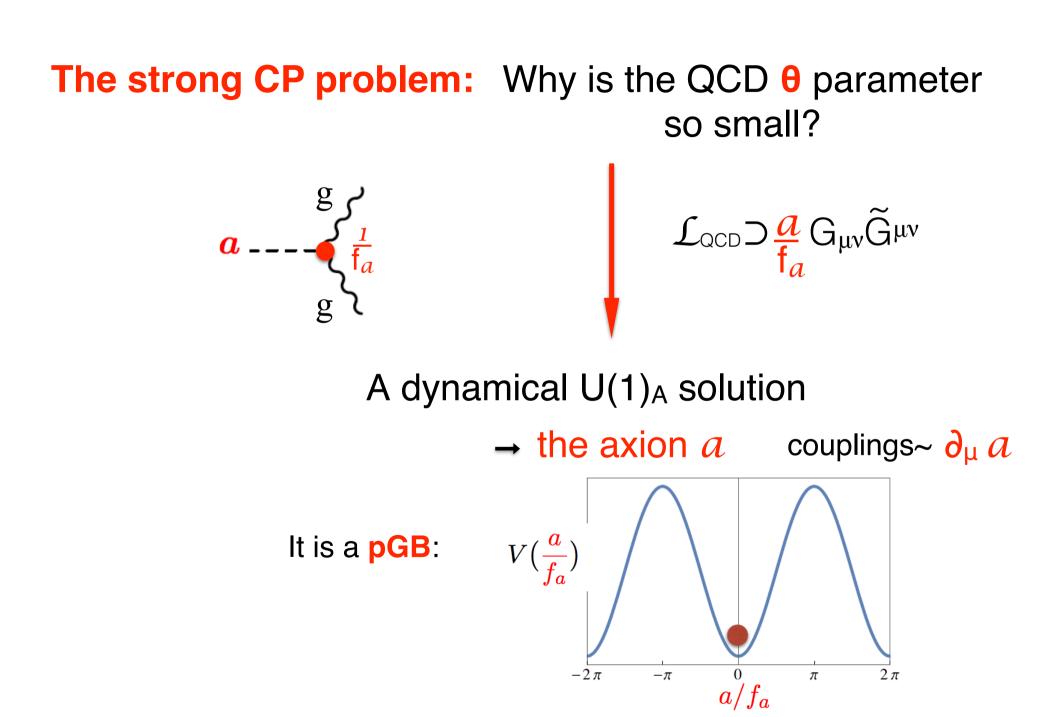
$$\mathcal{L}_{QCD} = G_{\mu\nu} G^{\mu\nu} + \Theta G_{\mu\nu} \widetilde{G}^{\mu\nu}$$

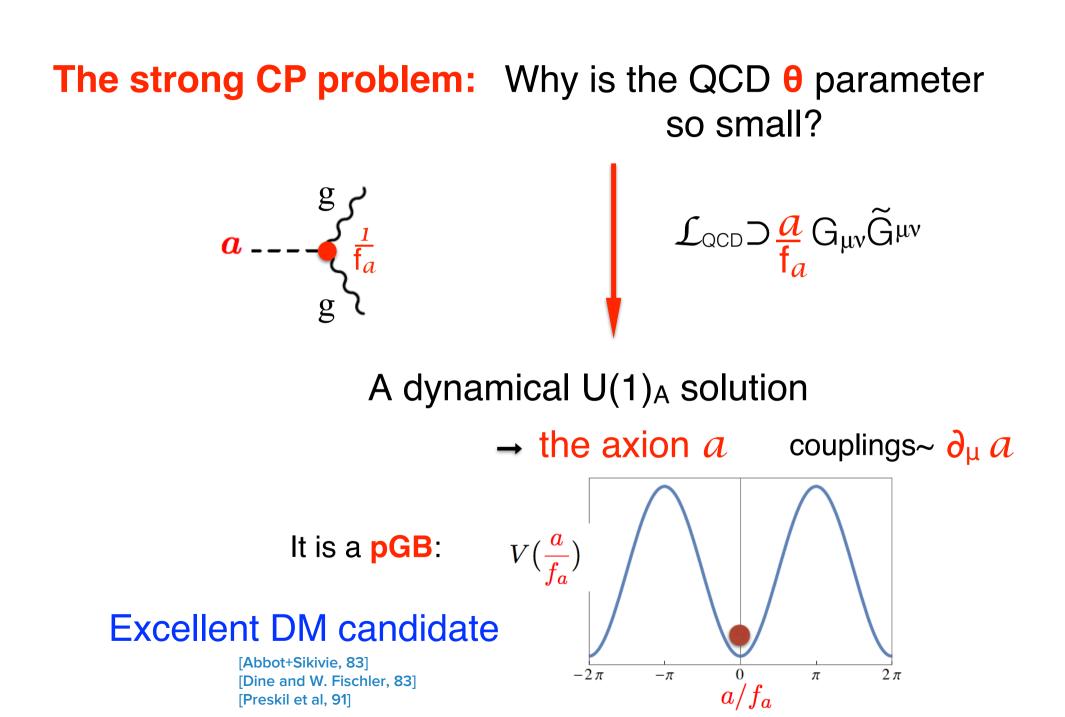
$$\widetilde{G}_{\mu\nu} = \epsilon_{\mu\nu\rho\sigma} G_{\mu\nu}$$



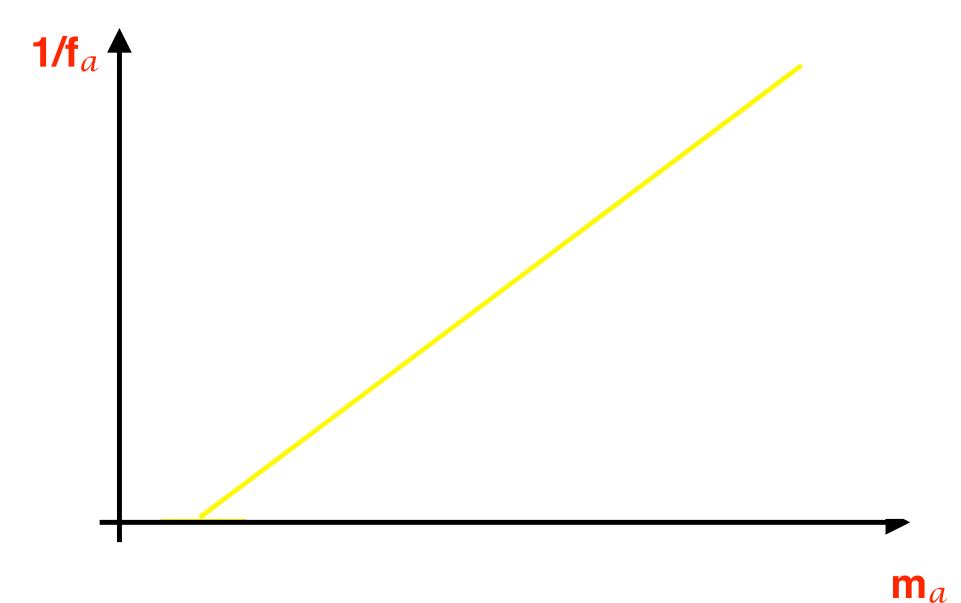
A dynamical $U(1)_A$ solution ?



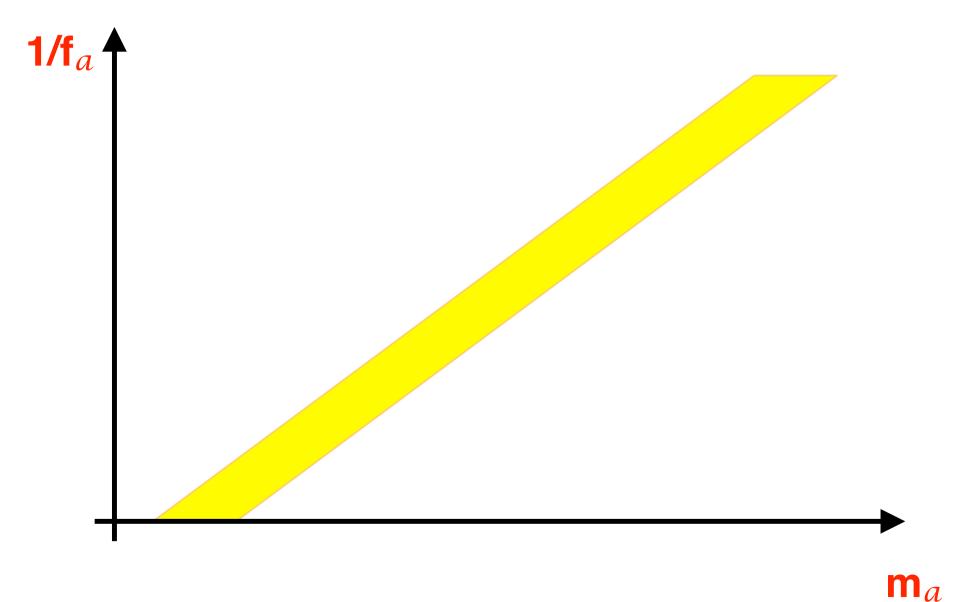




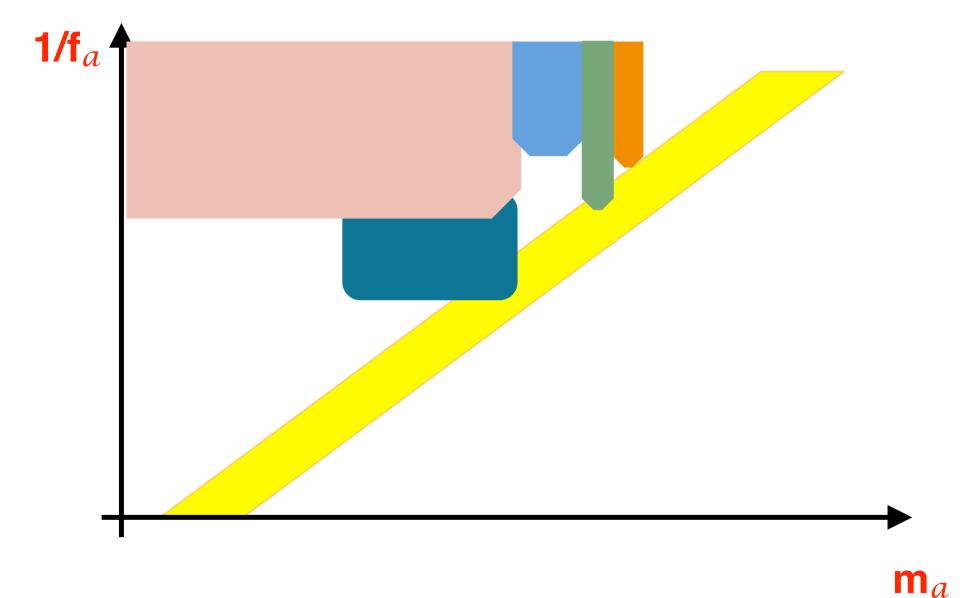
 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$



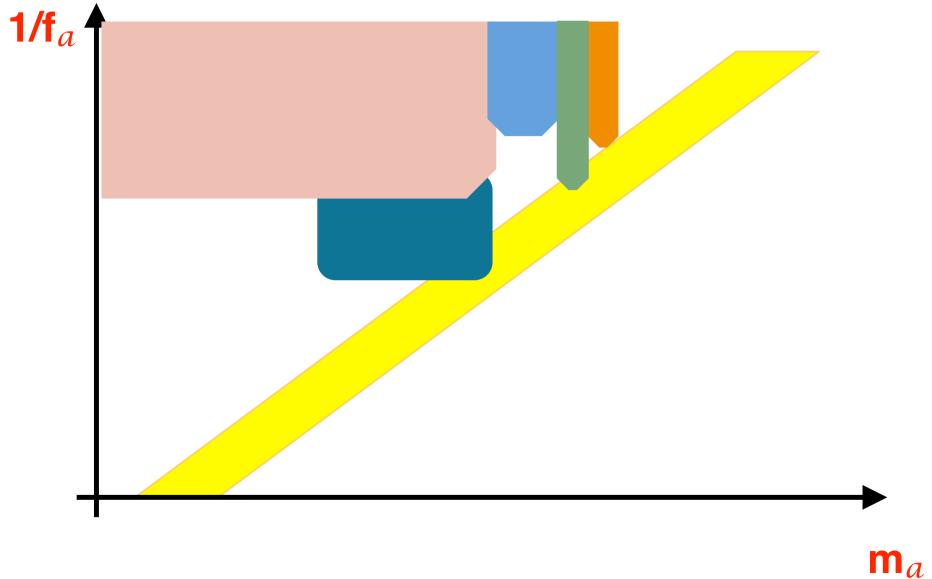
 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$



 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$



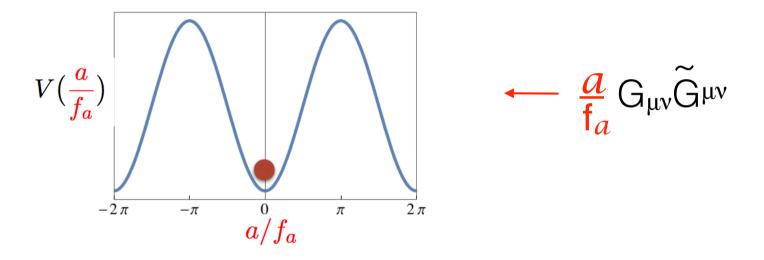
 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$



The value of the constant is determined by the strong gauge group

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:



$$V_{SM}\left(\frac{a}{f_{a}}\right) = -m_{\pi}^{2} f_{\pi}^{2} \sqrt{1 - \frac{4m_{u}m_{d}}{(m_{u} + m_{d})^{2}} \sin^{2}\left(\frac{a}{2f_{a}}\right)}$$

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

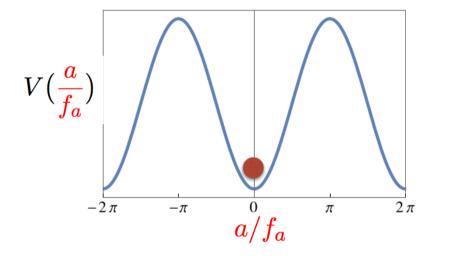


$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2 \frac{m_u m_d}{(m_u + m_d)^2}$$

canonical QCD axion

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:



 $m_a^2 f_a^2 = m_\pi^2 f_\pi^2$

canonical QCD axion

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

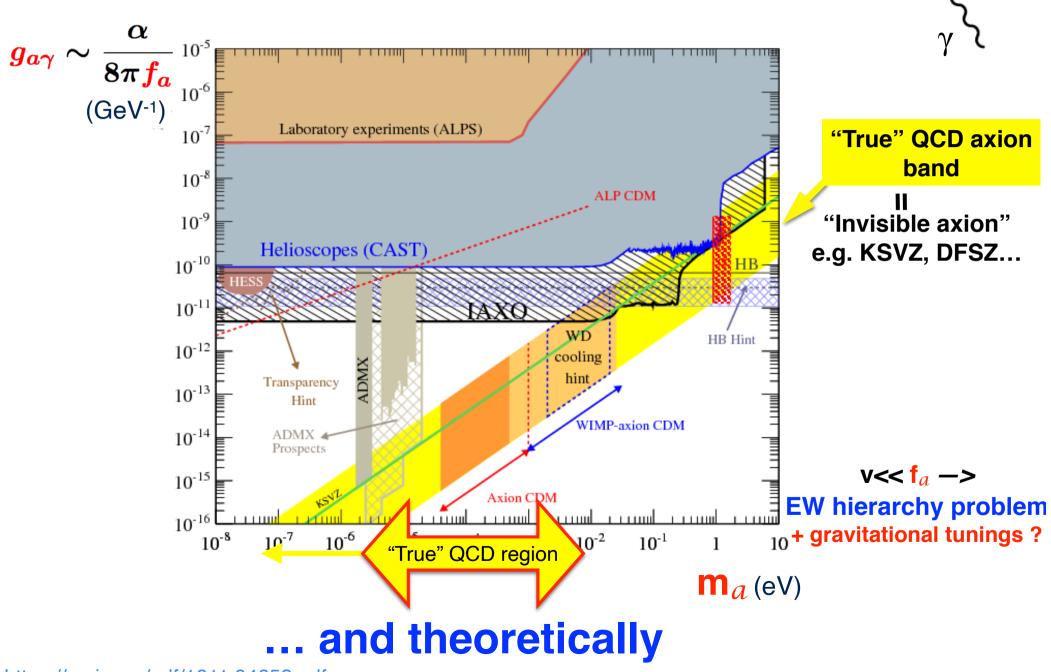
* If the confining group is QCD: $m_a^2 f_a^2 = m_\pi^2 f_\pi^2$

$$10^{-5} < m_a < 10^{-2} eV$$
, $10^9 < f_a < 10^{12} GeV$

Because of SN and hadronic data, if axions light enough to be emitted

"Invisible axion"

Intensely looked for experimentally...

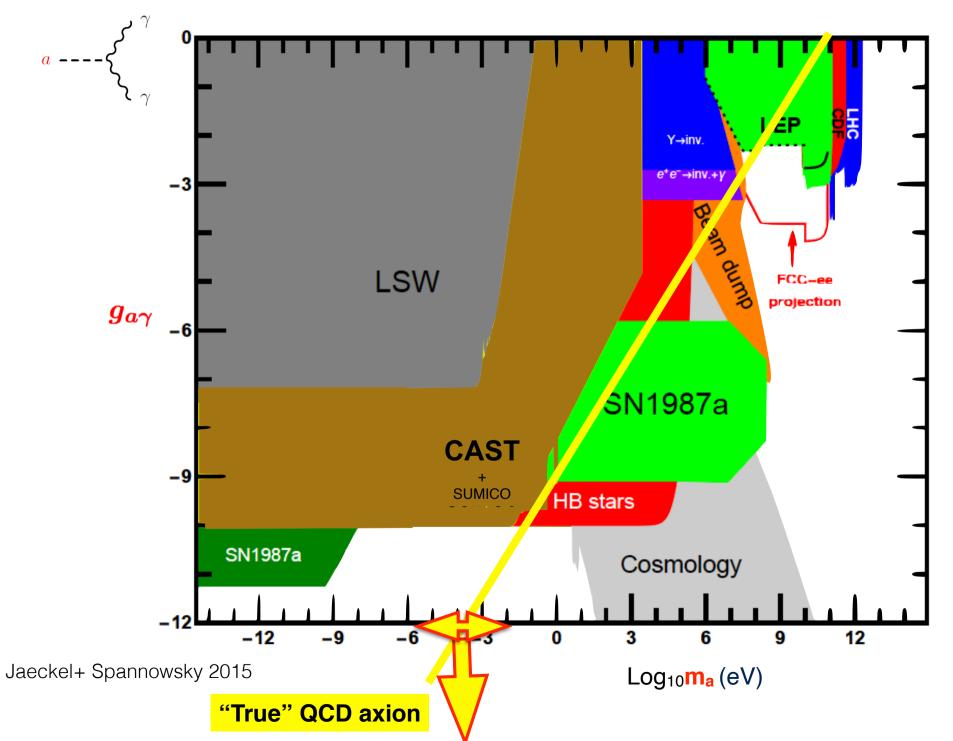


a _ _ .

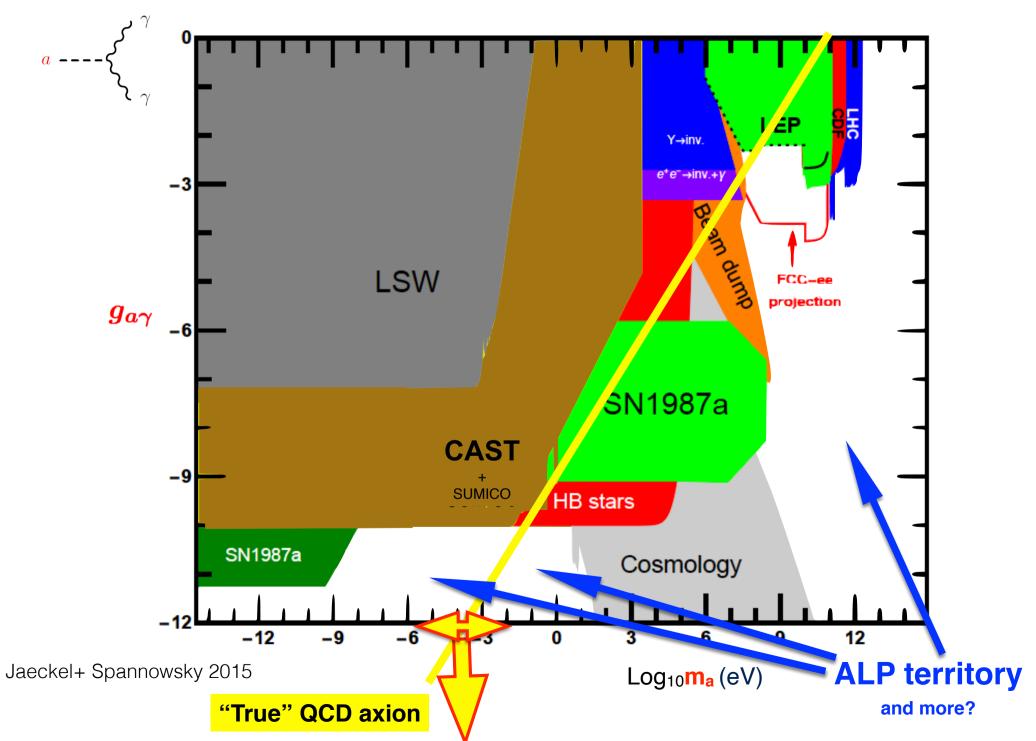
 $g_{a\gamma}$

https://arxiv.org/pdf/1611.04652.pdf

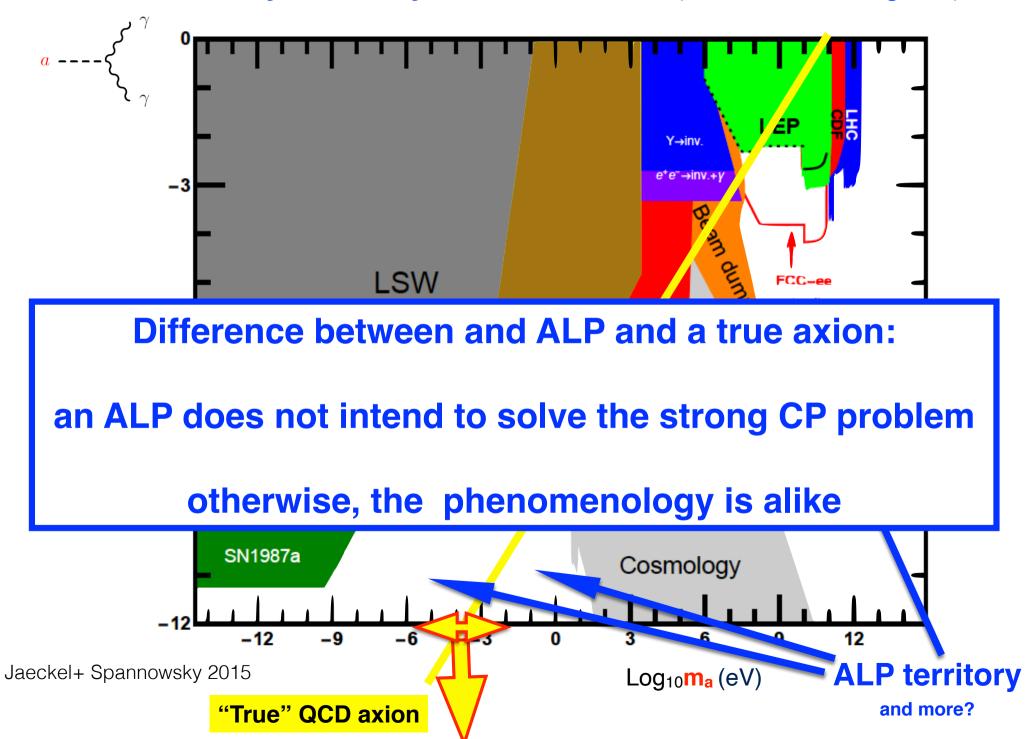
ALPs (axion-like particles) territory



ALPs (axion-like particles) territory



ALPs territory: can they be true axions ?(i.e. solve strong CP)



ALP-Linear effective Lagrangian at NLO

SM EFT Complete basis (bosons+fermions):

$$\begin{aligned} \mathscr{L}_{\text{eff}} &= \mathscr{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \sum_{i}^{\text{total}} c_{i} \mathbf{O}_{i}^{d=5} \\ \mathbf{O}_{\tilde{B}} &= -B_{\mu\nu} \tilde{B}^{\mu\nu} \frac{a}{f_{a}} \qquad \mathbf{O}_{\tilde{G}} &= -G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \frac{a}{f_{a}} \\ \mathbf{O}_{\tilde{W}} &= -W_{\mu\nu}^{a} \tilde{W}^{a\mu\nu} \frac{a}{f_{a}} \qquad \frac{\partial_{\mu} a}{f_{a}} \sum_{\substack{\psi = Q_{L}, Q_{R}, \\ L_{L}, L_{R}}} \bar{\psi} \gamma_{\mu} X_{\psi} \psi \end{aligned}$$

where X_{ψ} is a general 3x3 matrix in flavour space

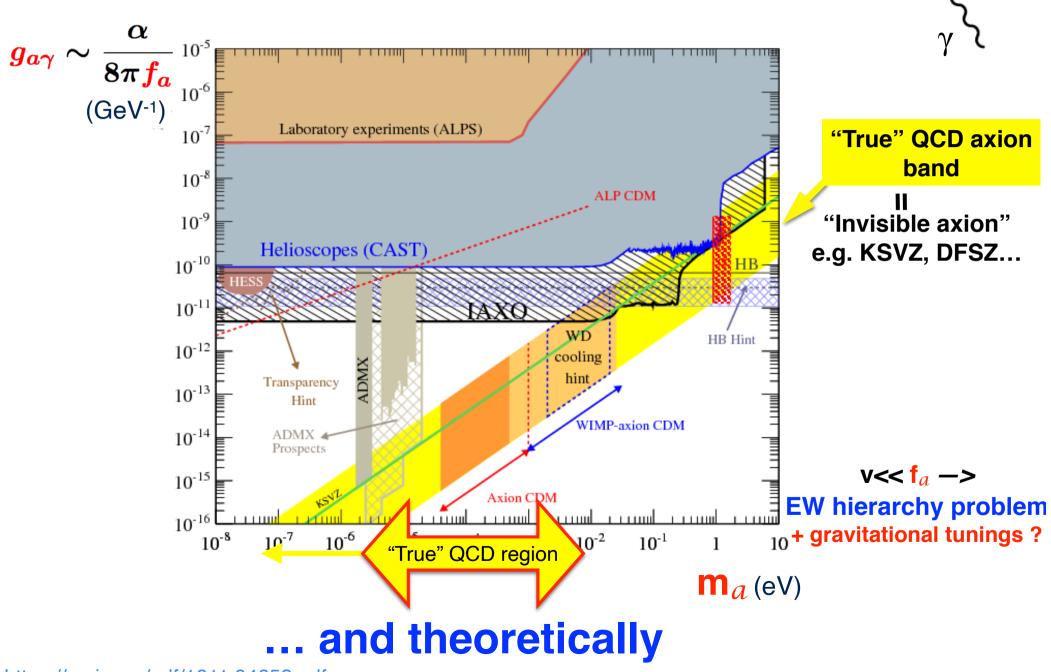
Georgi + Kaplan + Randall 1986 Choi + Kang + Kim, 1986 Salvio + Strumia + Shue, 2013

The field of axions and ALPs is BLOOMING

in Experiment ... and Theory

The field of axions and ALPs is BLOOMING

Intensely looked for experimentally...

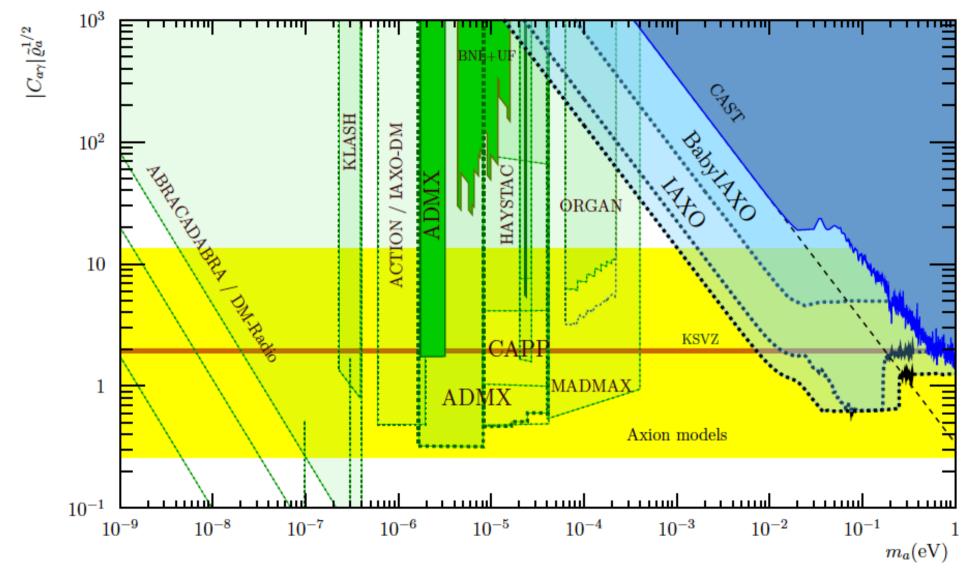


a _ _ .

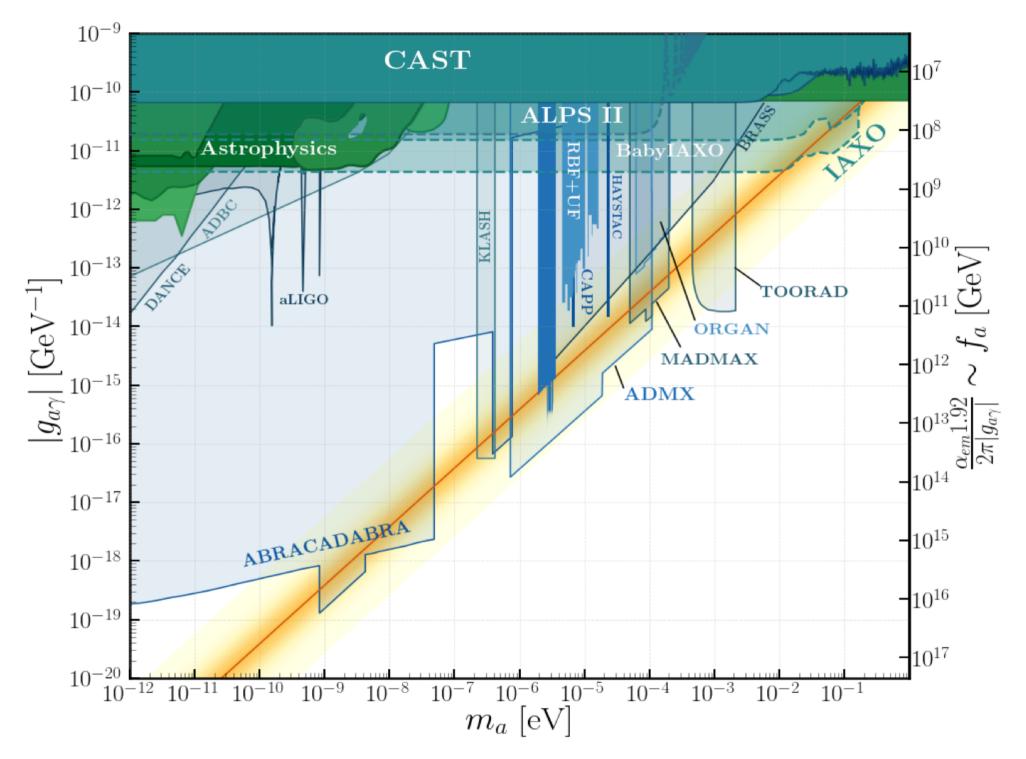
 $g_{a\gamma}$

https://arxiv.org/pdf/1611.04652.pdf

Advances on Haloscopes



Irastorza and Redondo, arXiv:1801.08127



courtesy of Pablo Quilez

The field is **BLOOMING**

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$

* If the confining group is larger than QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$
 \pm extra

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$

* If the <u>confining group is larger than QCD</u>:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$
 + extra

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$

* If the <u>confining group is larger than QCD</u>:

If $m_a^2 f_a^2 = LARGE$ constant

the true-axion parameter space relaxes

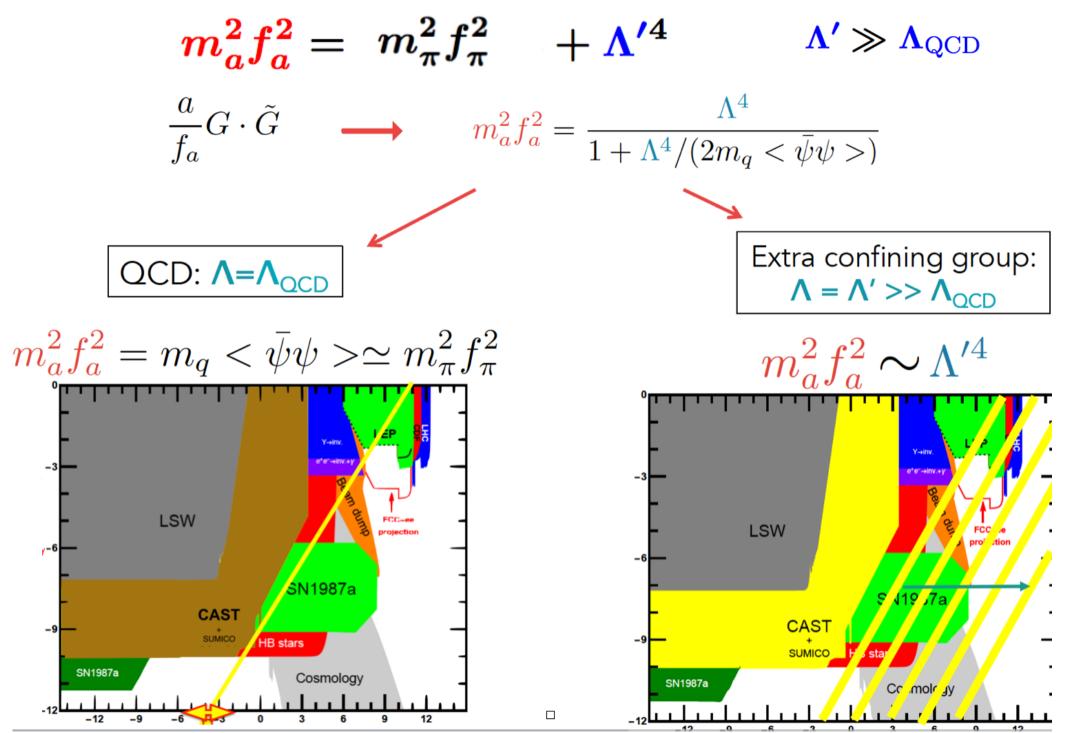
A heavy true axion?

$m_a^2 f_a^2 = - LARGE constant$

e.g., and additional confining group

$$egin{array}{rcl} m_a^2 f_a^2 &=& m_\pi^2 f_\pi^2 & + \Lambda'^4 & \Lambda' \gg \Lambda_{ ext{QCD}} \ && ext{QCD} & ext{QCD}' \end{array}$$

e.g., and additional confining group



HEAVY axions

 $m_a^2 f_a^2 = LARGE constant$

an old idea, strongly revived lately [Rubakov, 97] [Berezhiani et al ,01] [Fukuda et al, 01] [Hsu et al, 04] [Hook et al, 14] [Chiang et al, 16] [Khobadize et al,] [Dimopoulos et al, 16] [Gherghetta et al, 16] [Agrawal et al, 17] [Gaillard et al, 18] [Fuentes-Martin et al, 19] [Csaki et al, 19] [Gherghetta et al, 20]

To know how heavy are the axion(s) of your BSM theory

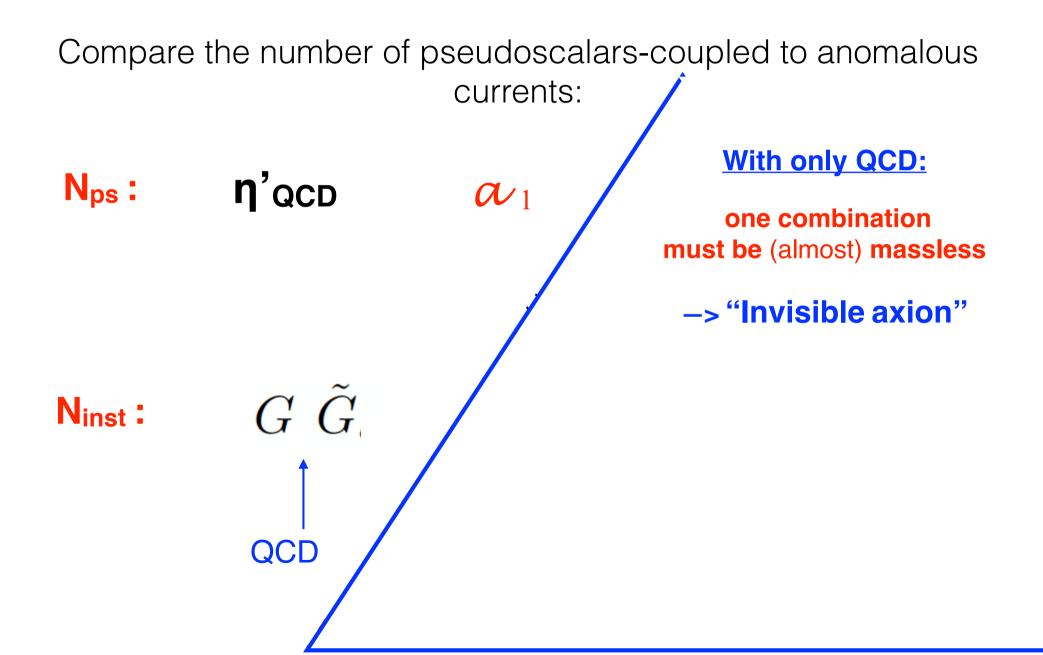
Compare the number of pseudoscalars-coupled to anomalous currents:

N_{ps}: η'_{QCD} α_1 α_2 α_3

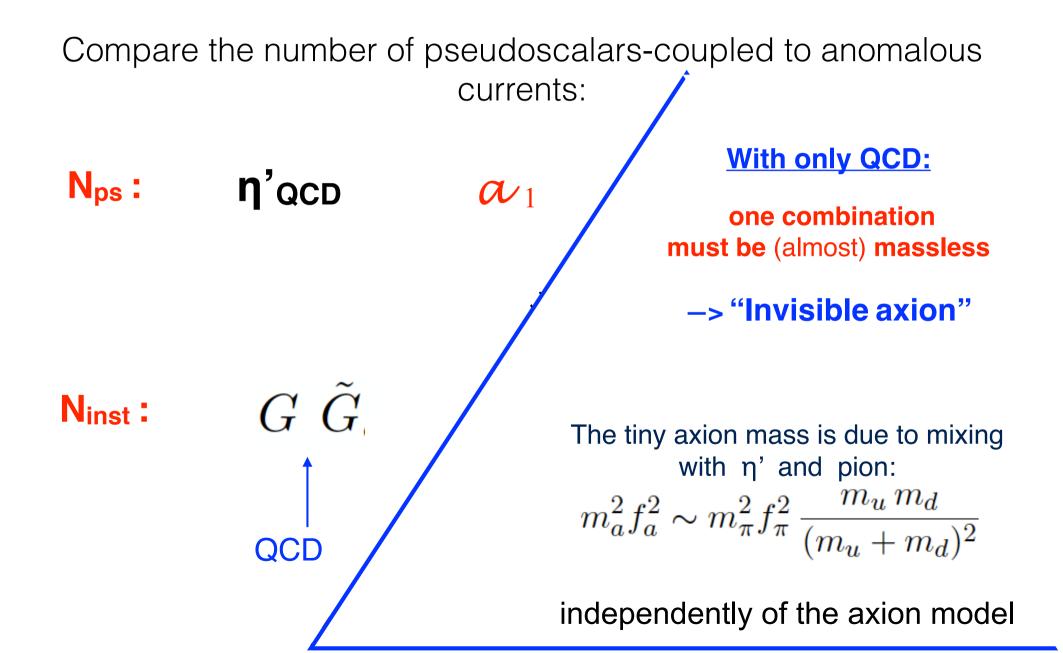
with how many different sources of (instanton) masses

 Ninst:
 $G \ \tilde{G}$ $G' \tilde{G}'$ $G' \tilde{G}''$ $G' \tilde{G}''$
 \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow </

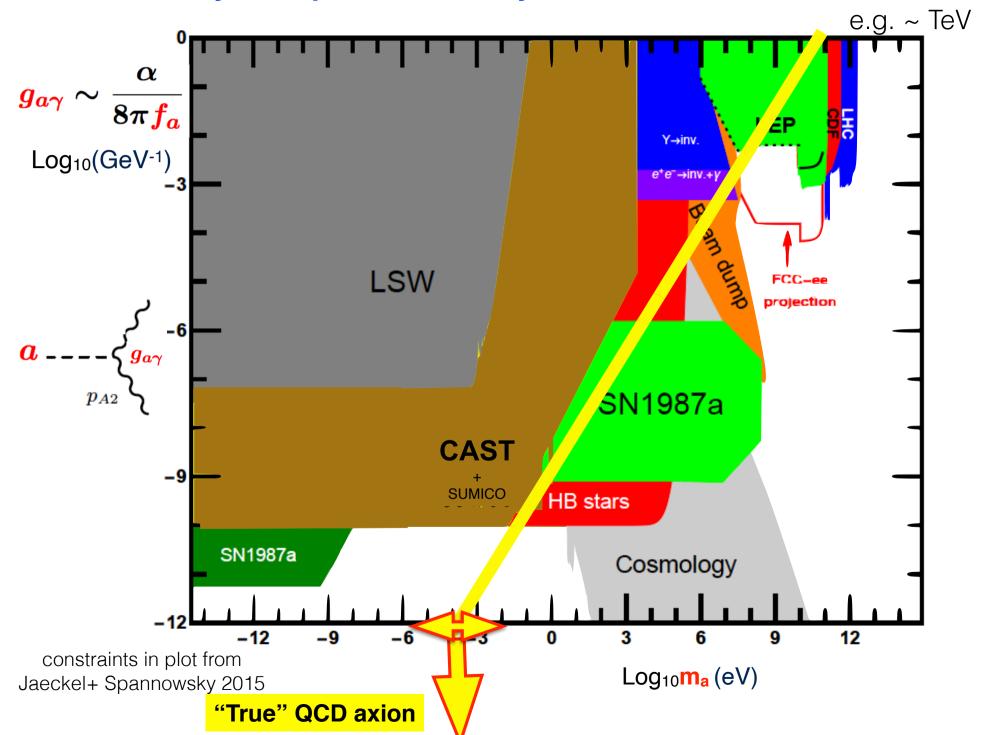
To know how heavy are the axion(s) of your BSM theory



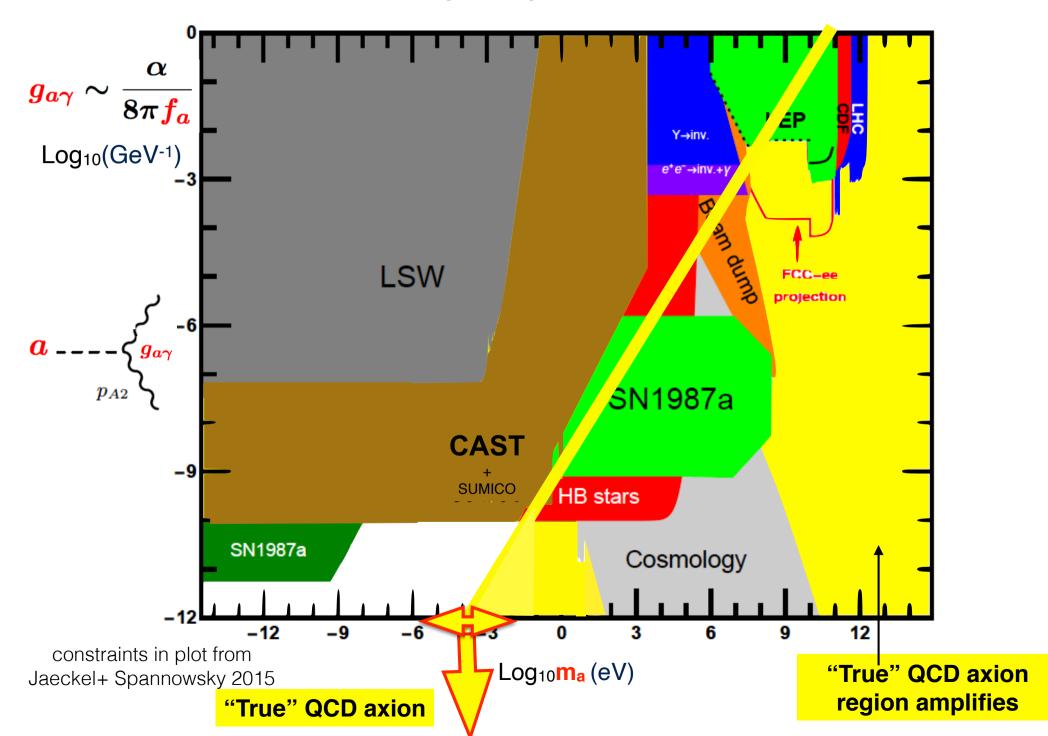
To know how heavy are the axion(s) of your BSM theory



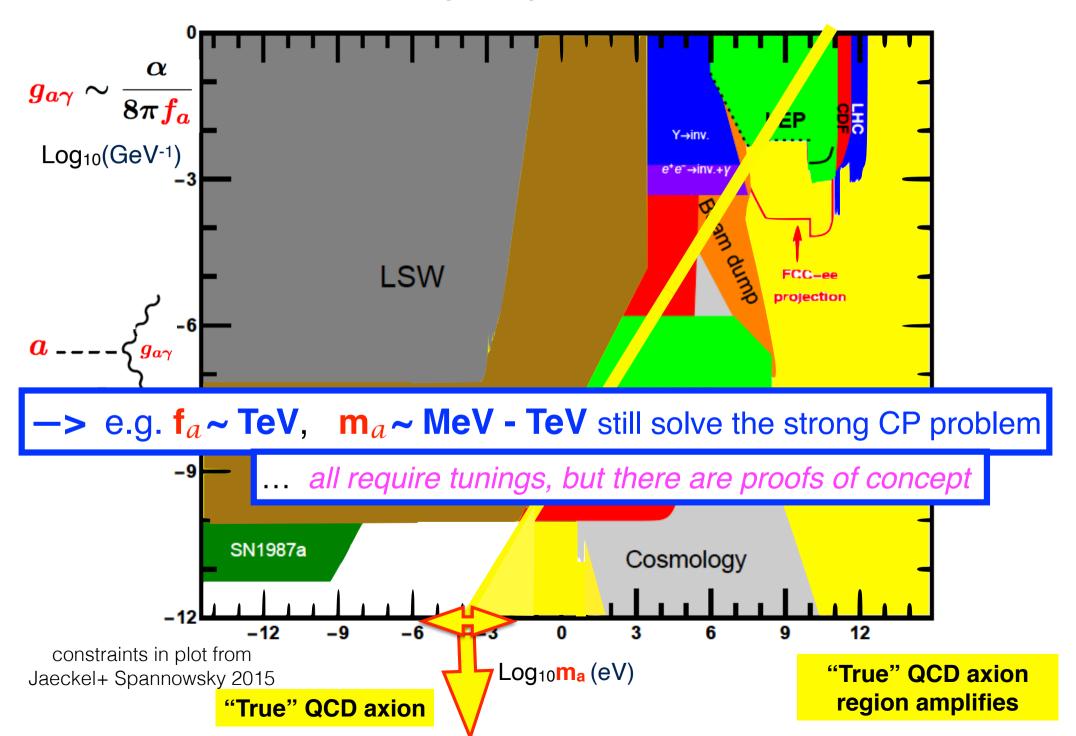
Much territory to explore for heavy 'true" axions and for ALPs



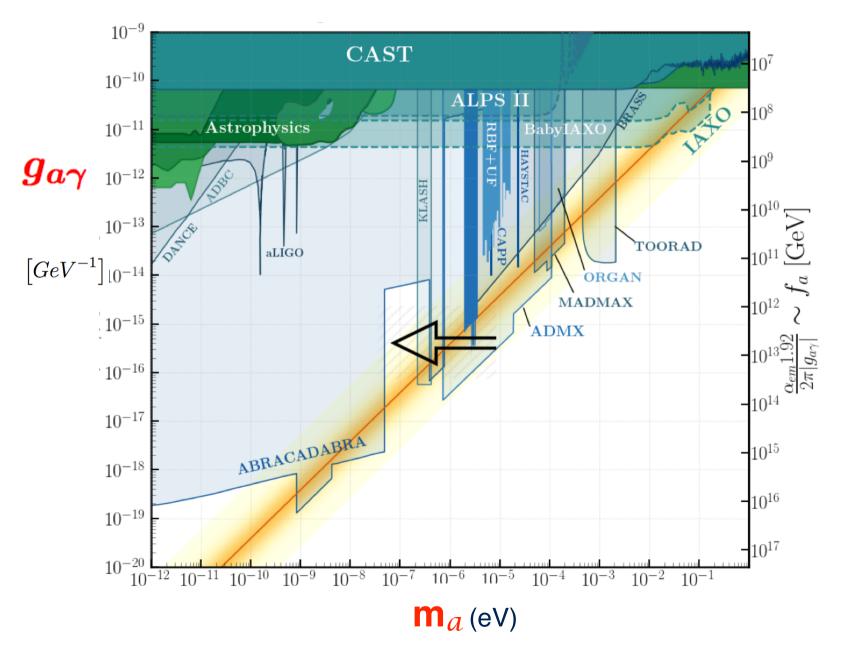
ALPs territory: they can be true axions



ALPs territory: they can be true axions



LIGTHER than usual axions ?



LIGTHER than usual axions

$$m_a^2 f_a^2 =$$
 small **constant**

How to do that without fine-tunings?

Luca de Luzio, Pablo Quilez, Andreas Ringwald & BG:

* And solve the strong CP problem: arXiv 2102.00012

* And solve the strong CP and DM problems: arXiv 2102.01082

LIGTHER than usual axions

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$
 – extra

How to do that without fine-tunings?

Luca de Luzio, Pablo Quilez, Andreas Ringwald & BG:

- * And solve the strong CP problem: arXiv 2102.00012
- * And solve the strong CP and DM problems: arXiv 2102.01082

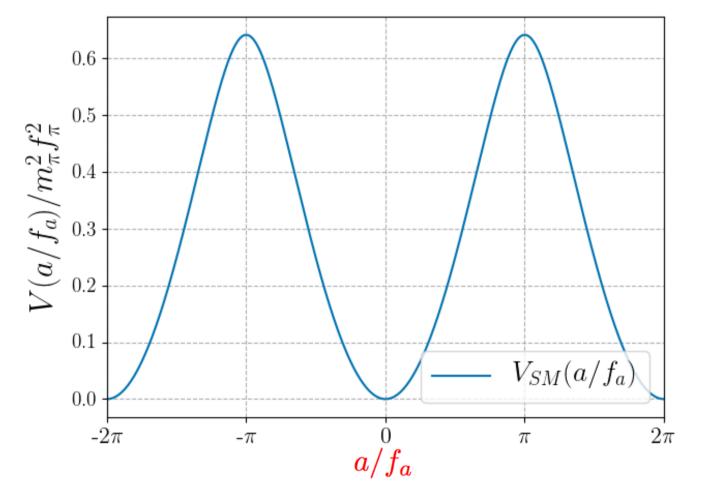
Can you naturally solve the strong CP problem with a lighter-than usual axion ?

(forget dark matter for the moment)

You want a lighter axion—> you want a flatter potential

Canonical QCD axion:

$$V_{SM}\left(\frac{a}{f_{a}}\right) = -m_{\pi}^{2} f_{\pi}^{2} \sqrt{1 - \frac{4m_{u}m_{d}}{(m_{u} + m_{d})^{2}} \sin^{2}\left(\frac{a}{2f_{a}}\right)}$$



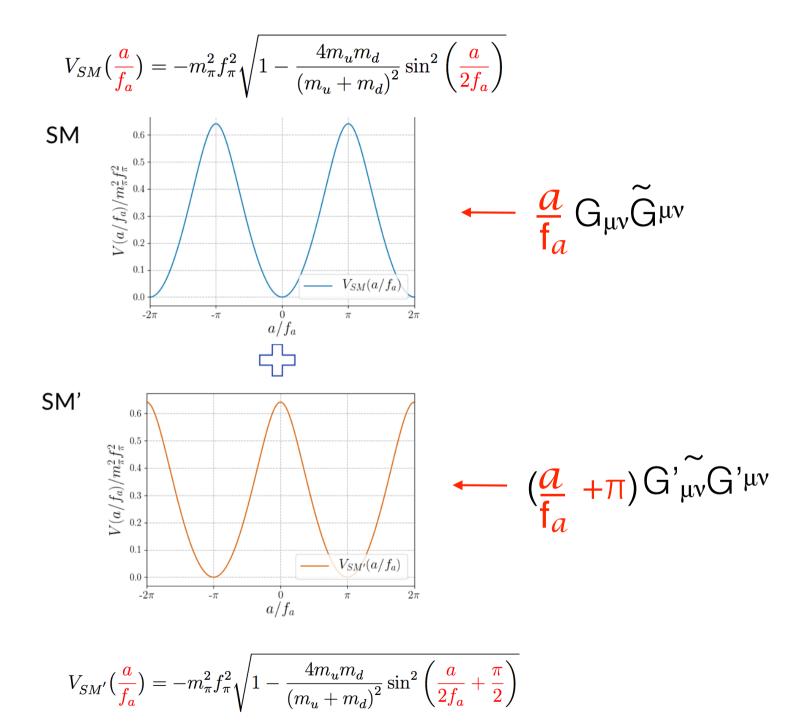
how to add something that naturally flattens it?

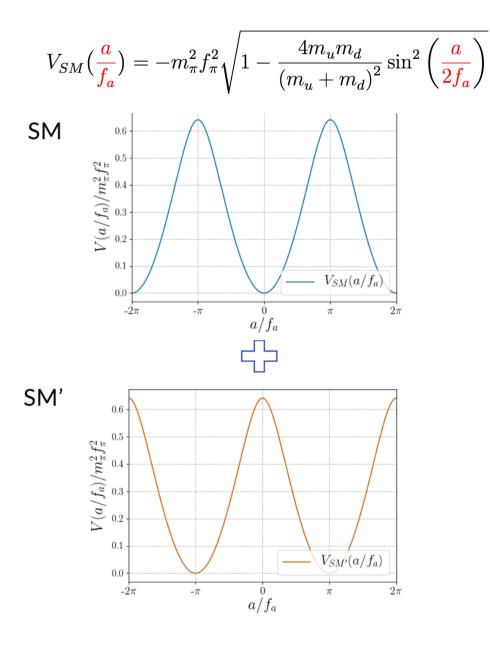
A Z₂ (or Z_N) symmetry : mirror degenerate worlds

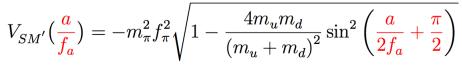
[Hook, 18]

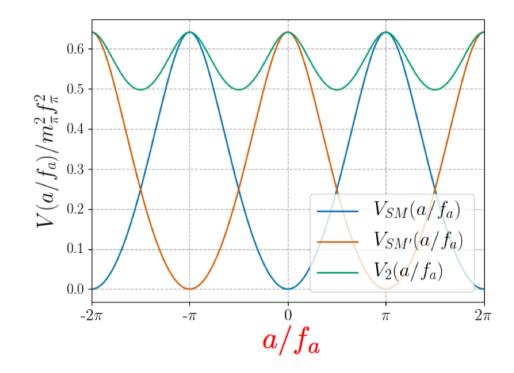
$$Z_2: \quad \mathrm{SM} \longrightarrow \mathrm{SM}'$$
$$a \longrightarrow a + \pi f_a$$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm SM'} + \frac{\alpha_s}{8\pi} \left(\frac{a}{f_a} - \theta \right) G \widetilde{G} + \frac{\alpha_s}{8\pi} \left(\frac{a}{f_a} - \theta + \pi \right) G' \widetilde{G}'$$
QCD
QCD'

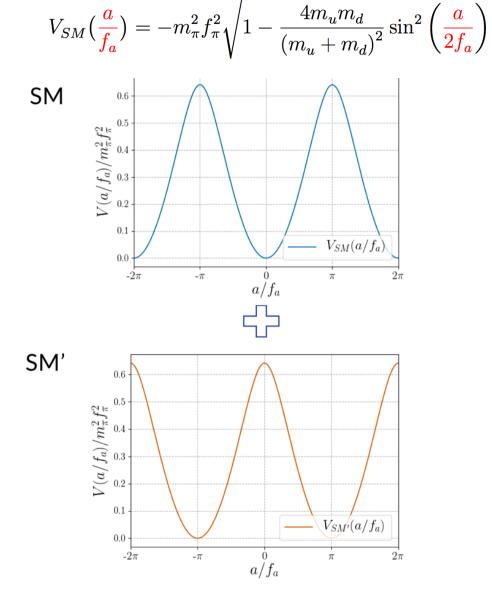




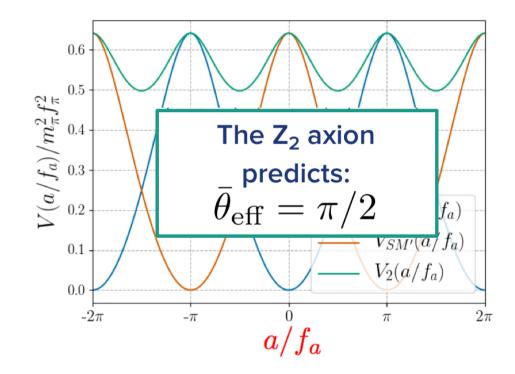




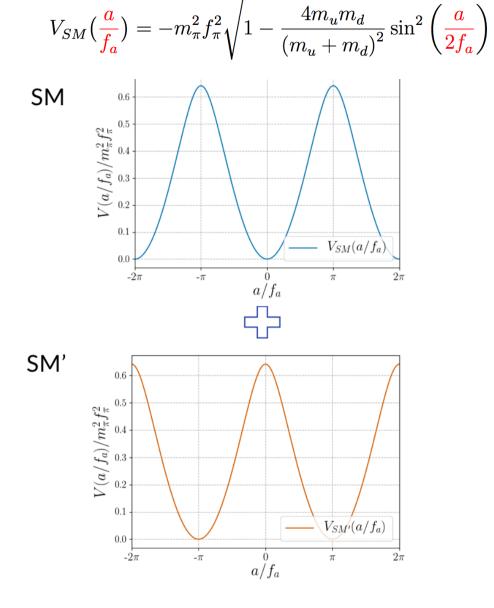
[Hook, 18]



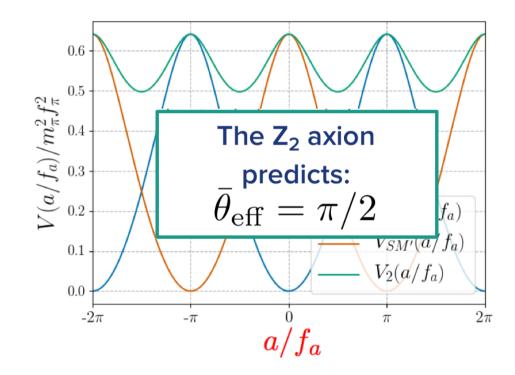
$$V_{SM'}\left(\frac{a}{f_a}\right) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{\left(m_u + m_d\right)^2} \sin^2\left(\frac{a}{2f_a} + \frac{\pi}{2}\right)}$$



[Hook, 18]

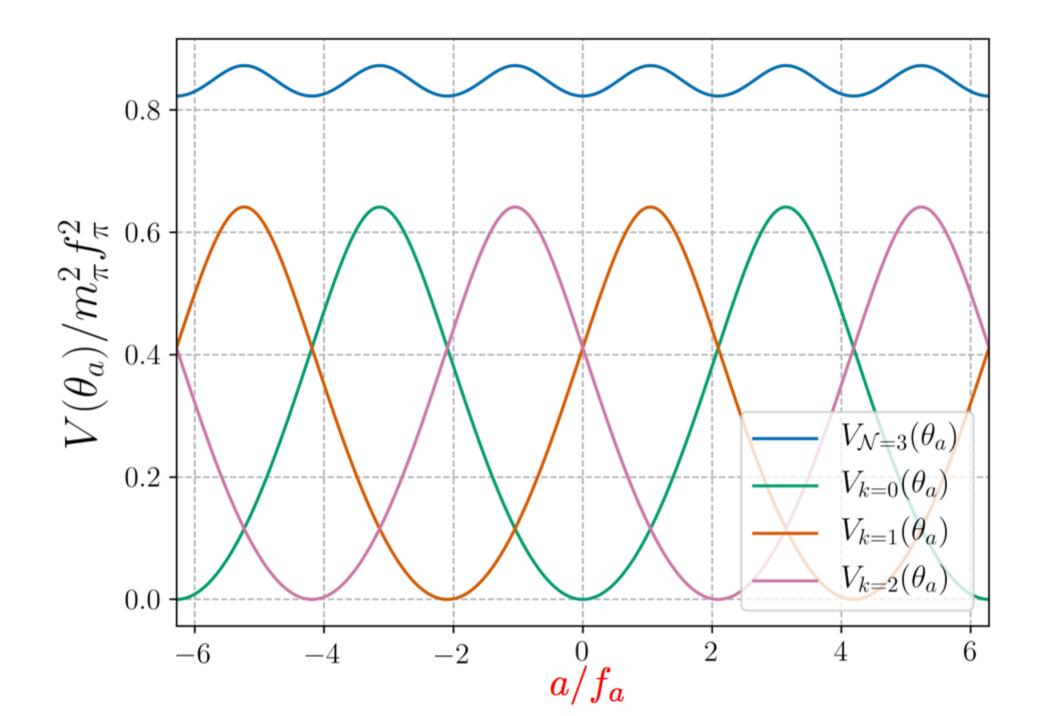


$$V_{SM'}\left(\frac{a}{f_a}\right) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{\left(m_u + m_d\right)^2} \sin^2\left(\frac{a}{2f_a} + \frac{\pi}{2}\right)}$$



you need N=odd

Example: Z₃



Z_{N axion} : N mirror degenerate worlds [Hook, 18]

CV1

...

$$Z_{N}: SM \longrightarrow SM^{k}$$

$$a \longrightarrow a + \frac{2\pi k}{N} f_{a}$$

$$SM_{k=1}$$

$$Z_{N}$$

$$SM_{k=2}$$

$$SM_{k=3}$$

- → The axion realizes the Z_N non-linearly.
- → N degenerate worlds with the same couplings as in the SM except for the theta parameter

$$\mathcal{L} = \sum_{k=0}^{\mathcal{N}-1} \left[\mathcal{L}_{\mathrm{SM}_k} + \frac{\alpha_s}{8\pi} \left(\theta_a + \frac{2\pi k}{\mathcal{N}} \right) G_k \widetilde{G}_k \right] + \dots$$

Compact analytical formula for Z_N axion mass

di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

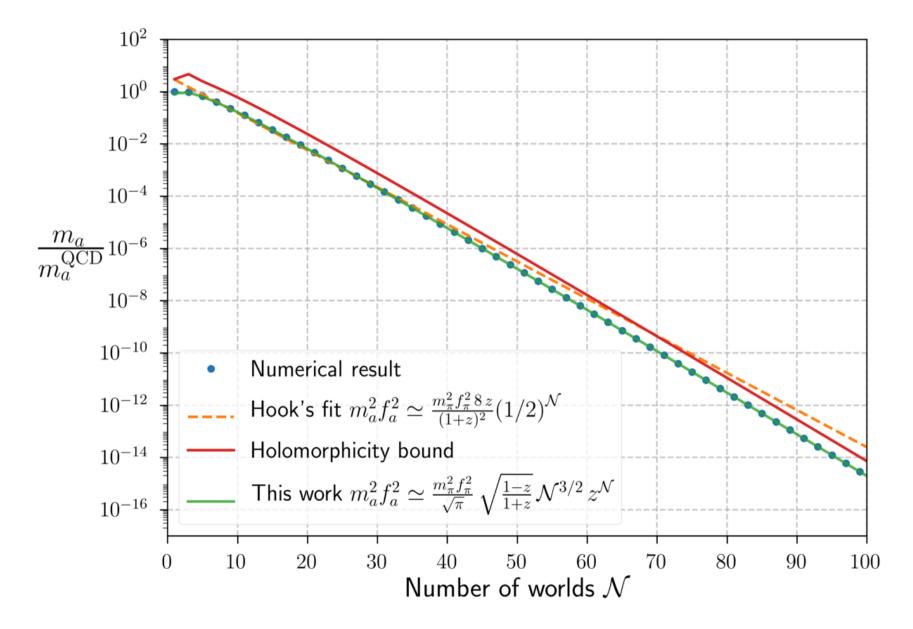
- → Using Fourier decomposition and Gauss hypergeometric functions we managed to show that:
 - The total Z_N axion potential approaches a cosine:

$$V_{\mathcal{N}}\left(\frac{a}{f_a}\right) \simeq -\frac{m_a^2 f_a^2}{\mathcal{N}^2} \cos(\mathcal{N}\frac{a}{f_a})$$

Compact analytical formula for the axion mass

$$m_a^2 f_a^2 \simeq \frac{m_\pi^2 f_\pi^2}{\sqrt{\pi}} \sqrt{\frac{1-z}{1+z}} \mathcal{N}^{3/2} z^{\mathcal{N}} \qquad z = m_u/m_d$$

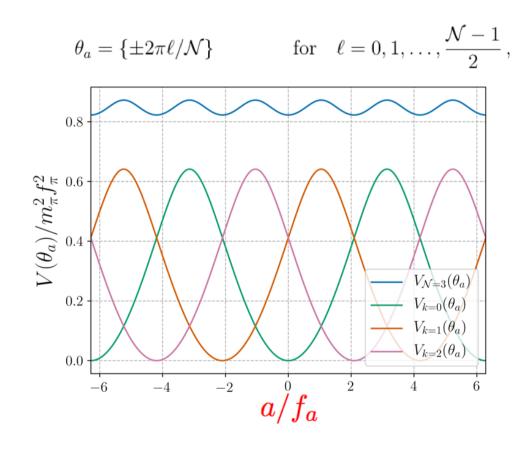
Z_N axion mass formula

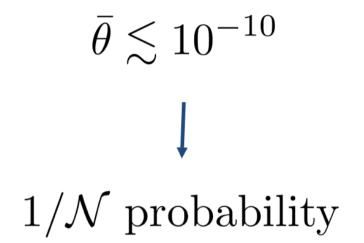


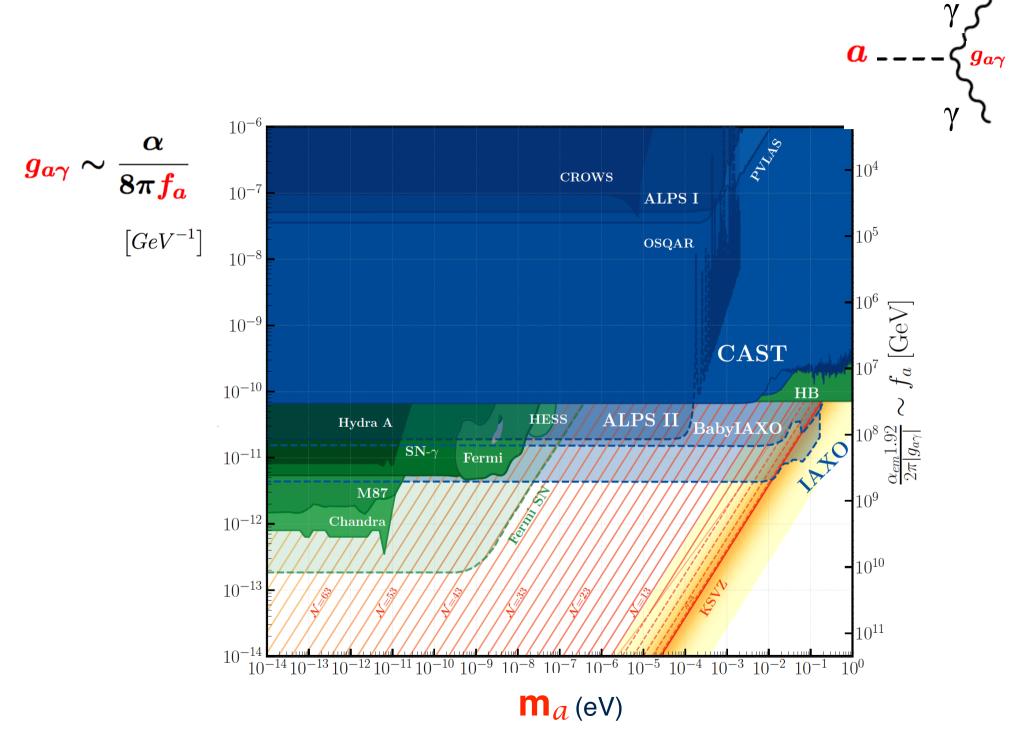
excellent agreement with numerical already for N=3

Caveat:

—> There are N minima: we "only" solve strong CP with 1/N prob.



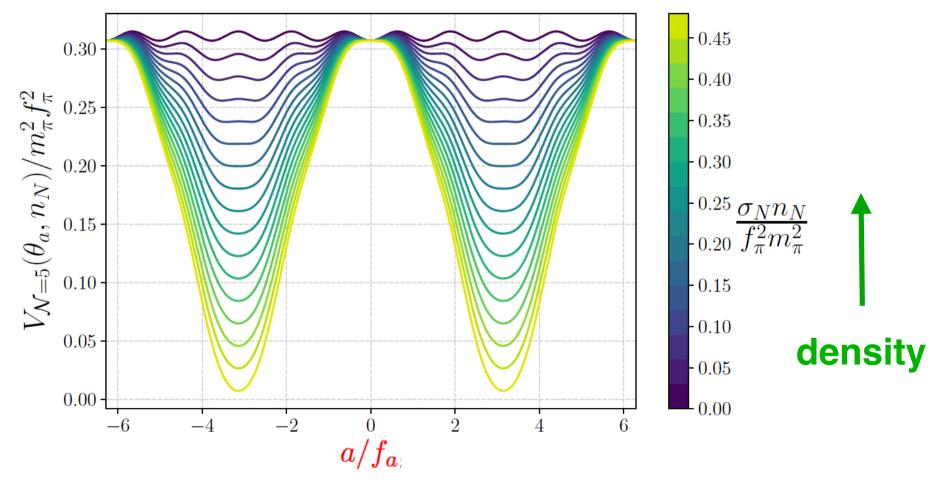




di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

Model-independent bounds from high-density objects

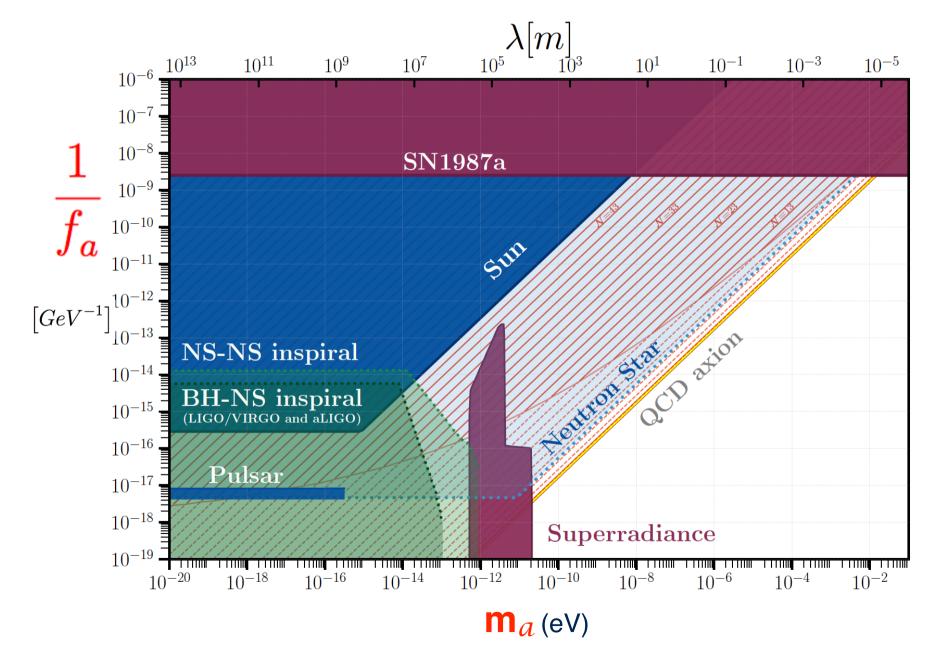
A stellar object of high (SM) density is a background that breaks explicitly $Z_{\mbox{\scriptsize N}}$



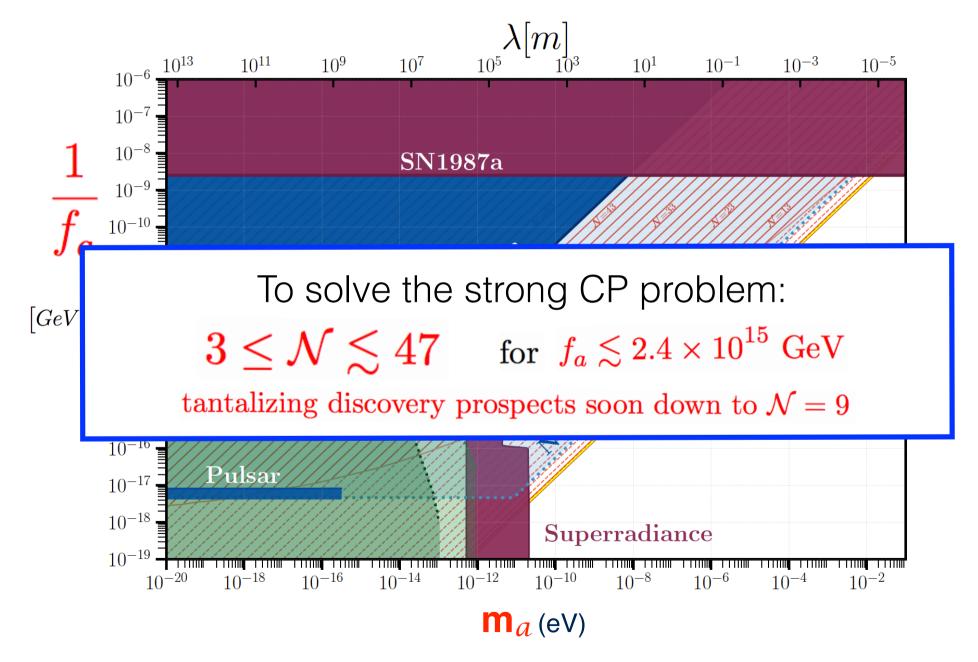
the potential minimum is at π (instead of 0)

Hook, Huang 2018 Di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

Model-independent bounds from high-density objects



Model-independent bounds from high-density objects

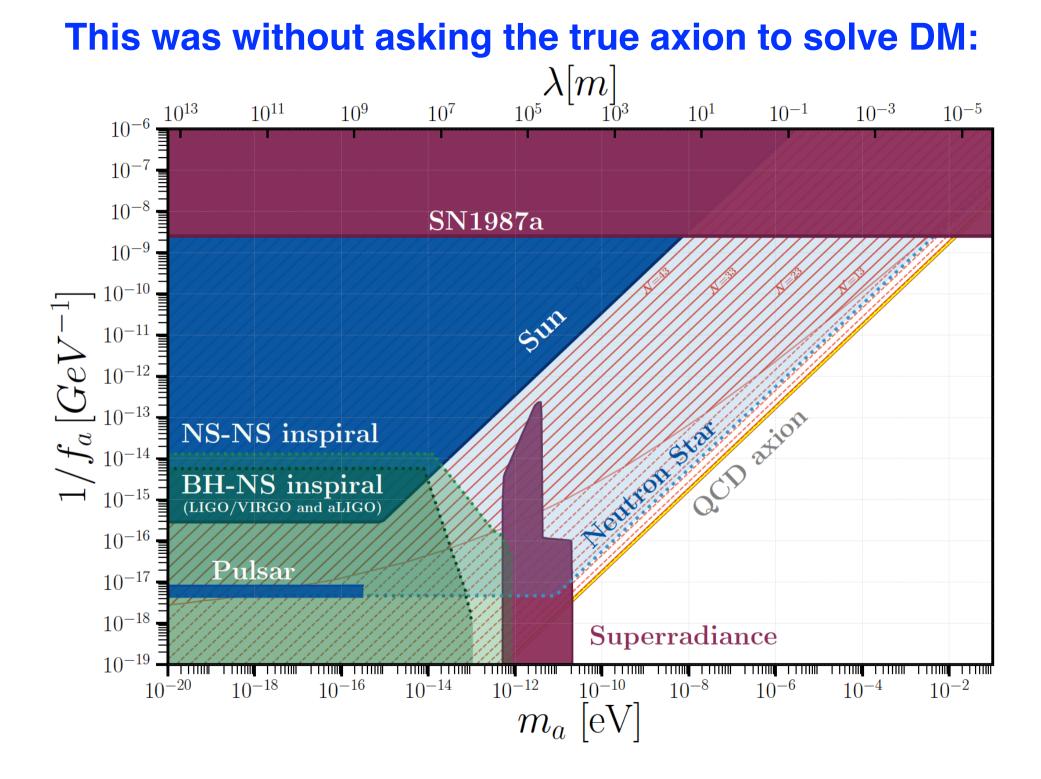


Dark matter from the Z_N axion

For instance:

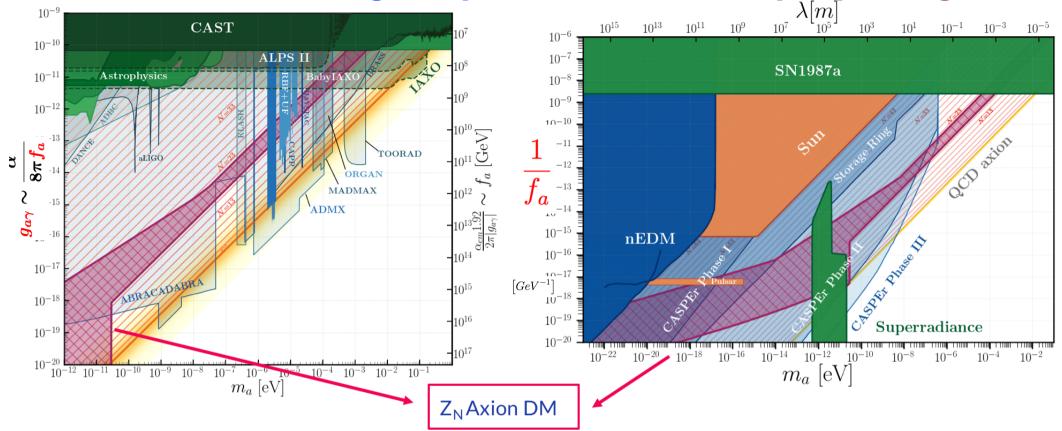
* Could CASPER-Electric Phase-I find a true axion?

* Could fuzzy DM ($m_{DM} \sim 10^{-22} \text{ eV}$) be a true axion?



To solve the strong CP problem and DM: purple region $\lambda[m]_{_{10^5}}]$ 10^{3} 10^{15} 10^{13} 10^7 10^{-1} 10^{-3} 10^{11} 10^{9} 10^1 10^{-5} 10^{-6} 10^{-7} SN1987a 10^{-8} 10^{-9} 10^{-10} OCD axion 10^{-11} $\int_{0}^{10^{-12}} \int_{0}^{10^{-12}} \int_{0}^{10^{-13}} \int_{0}^{10^{-13}} \int_{0}^{10^{-15}} \int_{0}^{10^{-16}}$ 10^{-12} 10^{-13} Z_N Axion DM Charter Phase 1 nEDM 10^{-16} 10^{-17} SPET 10^{-18} 10^{-19} **Superradiance** 10^{-20} 10^{-14} 10^{-12} 10^{-22} 10^{-20} 10^{-18} 10^{-16} 10^{-2} 10^{-10} 10^{-8} 10^{-6} 10^{-4} $m_a |e\rangle$

To solve the strong CP problem and DM: purple region

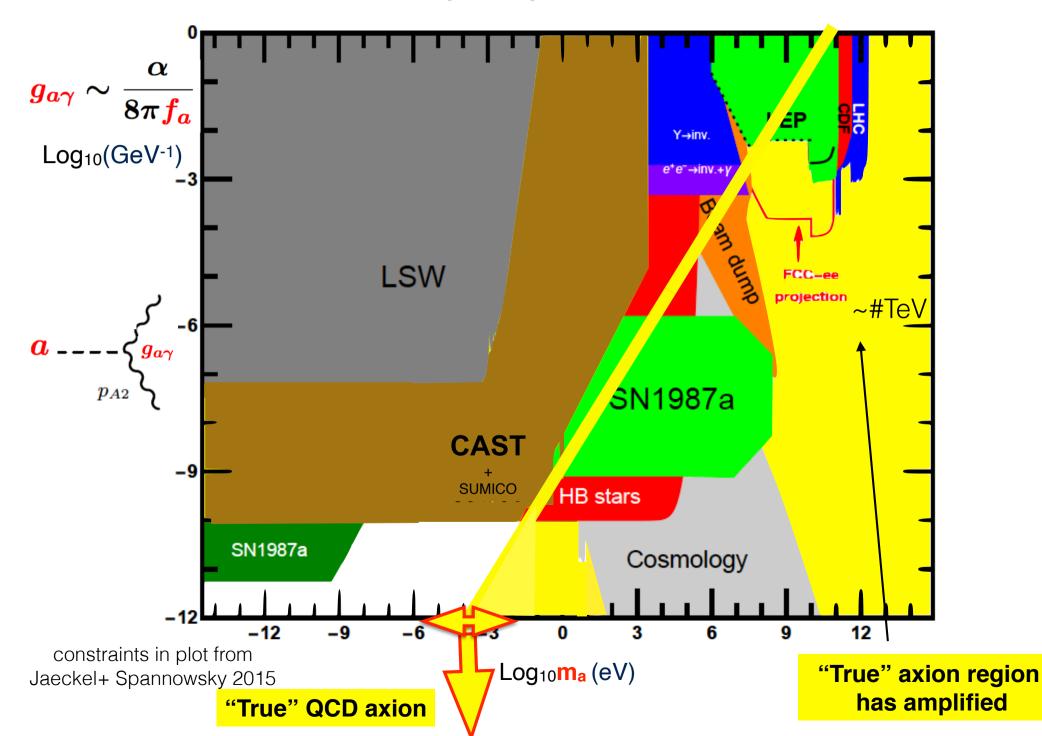


 $3 \leq \mathcal{N} \lesssim 65$ allowed

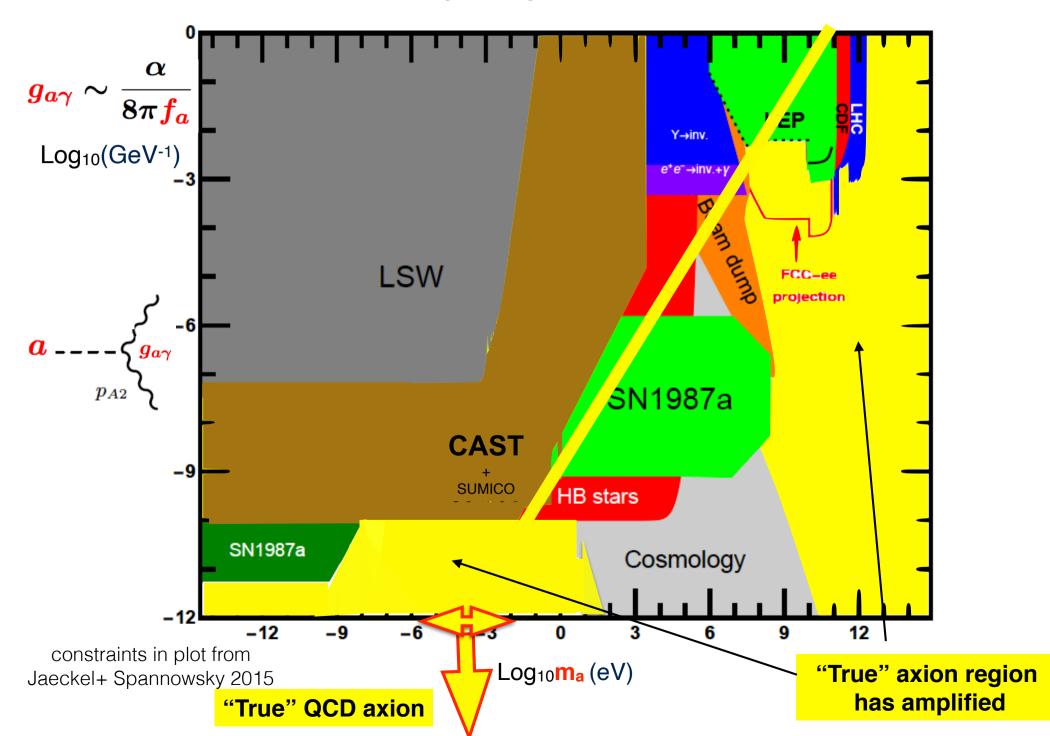
Solutions for $10^{-22} \text{ eV} \le m_a \le m_a^{QCD}$

First "fuzzy dark matter" true axion

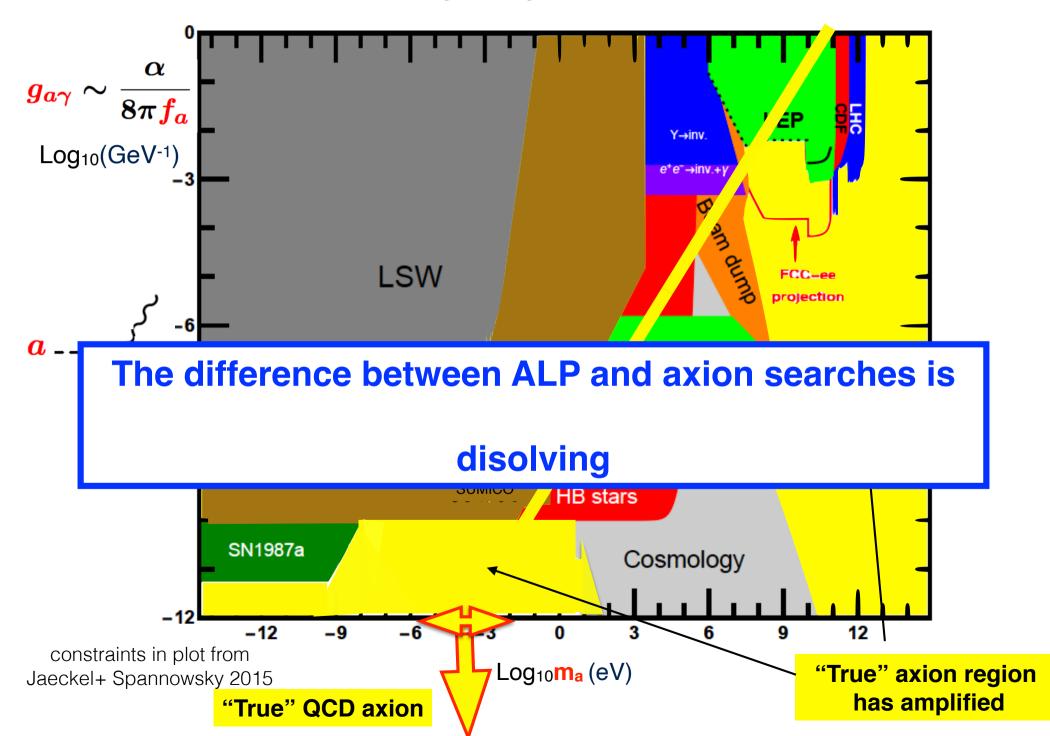
ALPs territory: they can be true axions



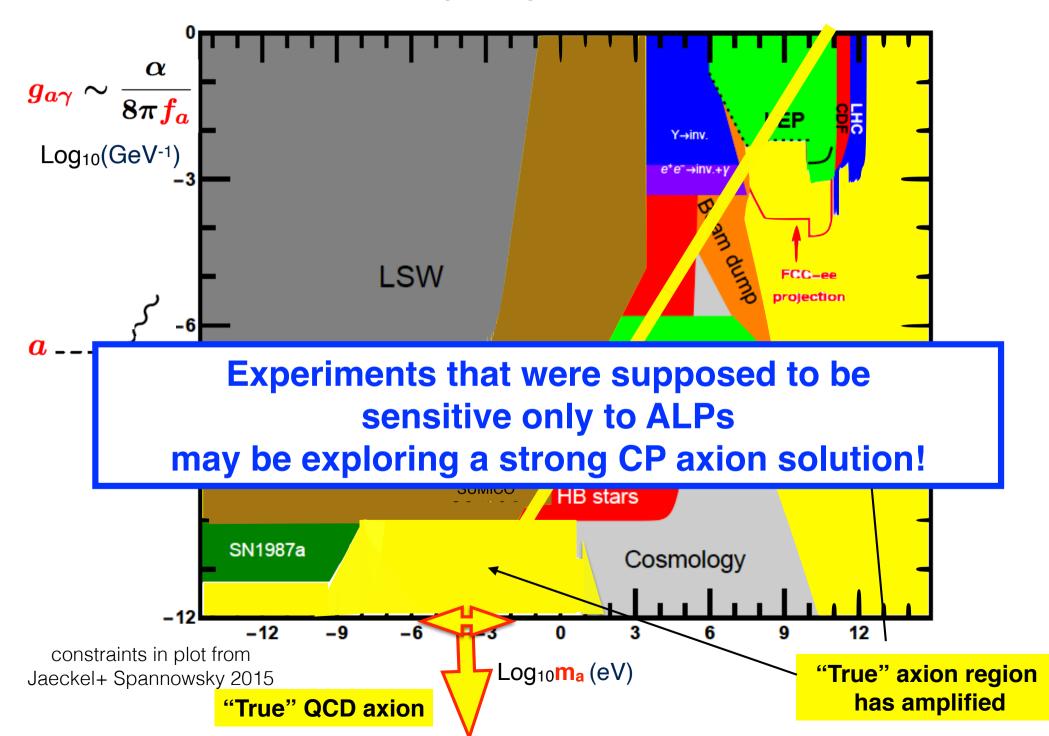
ALPs territory: they can be true axions

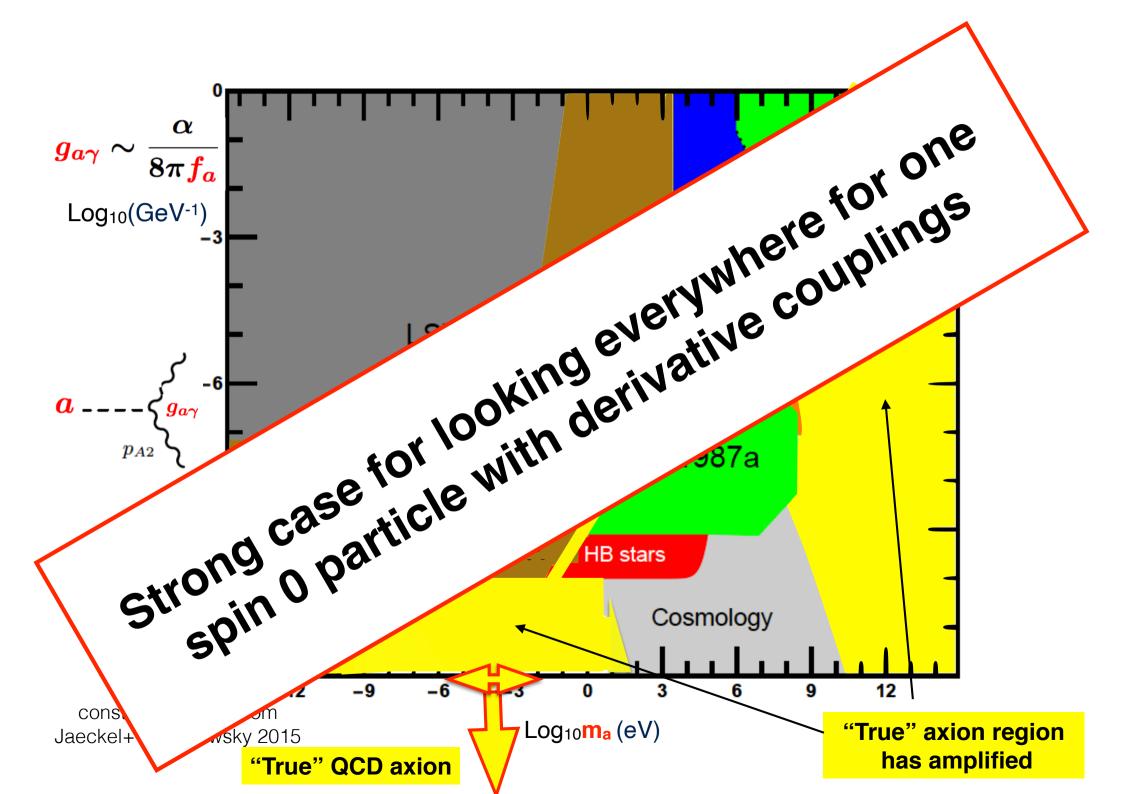


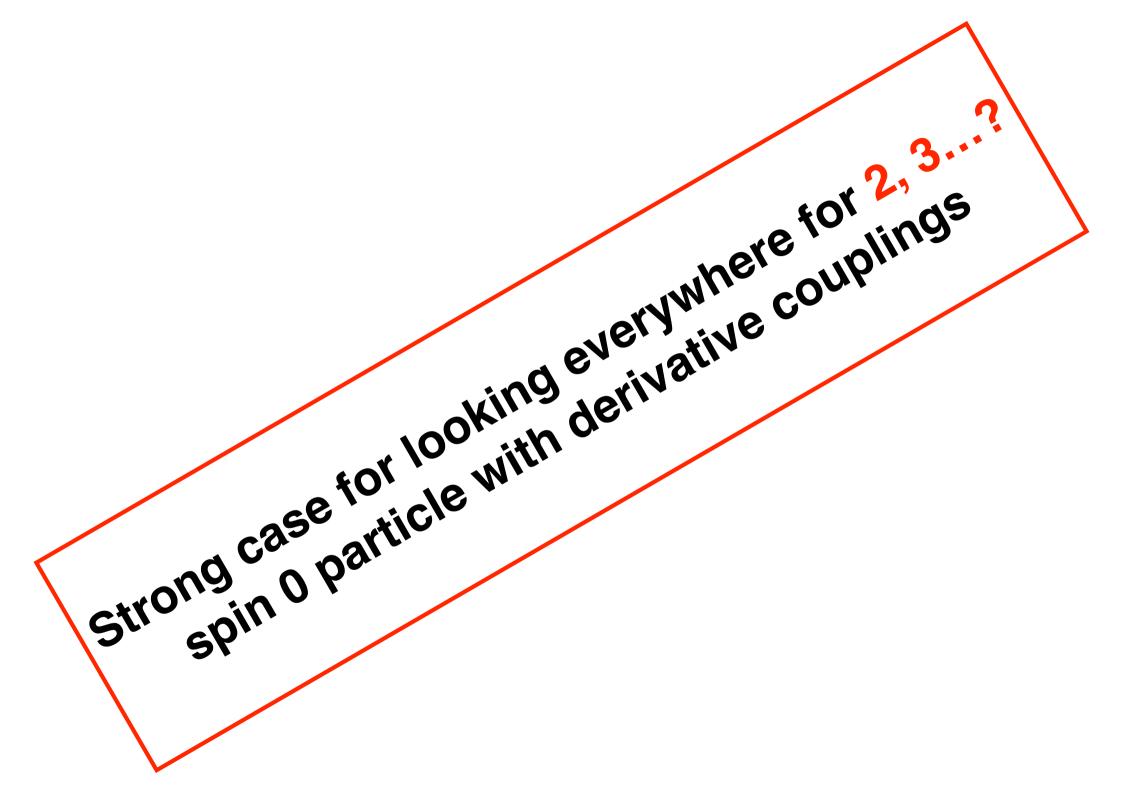
ALPs territory: they can be true axions



ALPs territory: they can be true axions





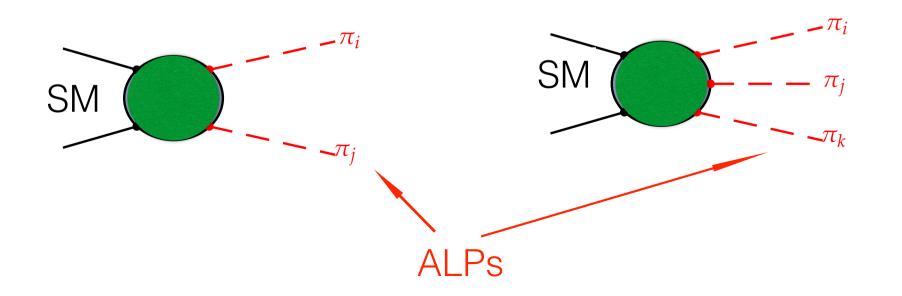


Degenerate ALPs

What happens if the ALP is charged under some unbroken dark symmetry D?

The ALP would then necessarily be in a multiplet of D

If the SM sector is uncharged —> no single ALP production



Discrete Goldstone Bosons

Spontaneously broken discrete symmetries can ameliorate the UV convergence of theories with scalars ! (Das-Hook)

The byproduct is degenerate multiplets of ALPs

B. Gavela, R. Houtz, P. Quilez, V. Enguita-Vileta arXiv:2205.09131

--> see talk by Victor Enguita

Consider a triplet of real scalars $\Phi \equiv (\phi_1, \phi_2, \phi_3)$

and a typical SSB condition
$$\phi_1^2+\phi_2^2+\phi_3^2=f^2$$

* Within SO(3), two massless GBs result $\phi(\pi_1, \pi_2)$

-> explicit breaking needed to give them masses

$$V(\phi_1, \phi_2, \phi_3) \supset \Lambda^2 \left(\epsilon_1 \phi_1^2 + \epsilon_2 \phi_2^2 + \epsilon_3 \phi_2^2 \right) + \lambda \phi_1^4 + \cdots$$

arbitrary and sensitive to quadratic corrections

* Within A₄ (or A₅..) \subset SO(3)

-> two massive π_1 , π_2 result without breaking the symmetry

-> <u>NOT</u> sensitive to quantum quadratic corrections

* but very few invariant terms possible, e.g. for A₄

$$egin{split} \mathcal{I}_2 = \phi_1^2 + \phi_2^2 + \phi_3^2 \ \mathcal{I}_3 = \phi_1 \phi_2 \phi_3 \ \mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4 \end{split}$$

The most general potential is an arbitrary function of them:

$$V(\phi_1, \phi_2, \phi_3) = V(\mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4)$$

* but very few invariant terms possible, e.g. for A₄

$$\begin{split} \mathcal{I}_2 = \phi_1^2 + \phi_2^2 + \phi_3^2 & \xrightarrow{\text{this is the only quadratic}} \\ \mathcal{I}_3 = \phi_1 \phi_2 \phi_3 \\ \mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4 \end{split}$$

The most general potential is an arbitrary function of them:

$$V(\phi_1, \phi_2, \phi_3) = V(\mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4)$$

* but very few invariant terms possible, e.g. for A₄

at low energy
$$\mathcal{I}_2 = \phi_1^2 + \phi_2^2 + \phi_3^2 = f^2$$

 $\mathcal{I}_3 = \phi_1 \phi_2 \phi_3$
 $\mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4$

* but very few invariant terms possible, e.g. for A₄

at low energy \mathcal{I}_2 is irrelevant for π_1 , π_2 $\mathcal{I}_3 = \phi_1 \phi_2 \phi_3$ $\mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4$

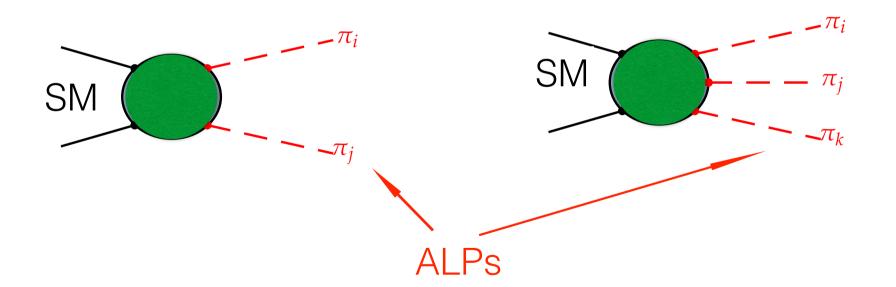
In consequence, the most general potential for π_1 , π_2 is:

$$V(\pi_1, \pi_2) = V(\mathcal{I}_3, \mathcal{I}_4)$$

* We explored the natural minima and discovered that a discrete subgroup remains explicit in the spectrum, i.e. ``à la Wigner"

Z₃ for A₄ \rightarrow degenerate π_1 , π_2 doublet

no single ALP emission possible



* The endpoint of distributions (e.g. invariant mass, m_T...) differentiates easily one from more than one invisible particles emitted

* We explored the natural minima and discovered that a discrete subgroup remains explicit in the spectrum, i.e. ``à la Wigner'' Z_3 for triplet of A_4 —> degenerate π_1 , π_2 doublet

Z₃ and Z₅ for triplet of A₅ \rightarrow degenerate π_1 , π_2 doublet

A₄ for quadruplet of A₅ \rightarrow degenerate π_1 , π_2 , π_3 triplet non-abelian

etc.

Conclusions

Axions and ALPs: blooming experiments and theory

—> The parameter space to find a true axion that solves the strong CP problem has expanded beyond the QCD axion band: heavier and lighter true axions, e.g. first ``fuzzy DM'' axion

-> Searches for ALPs and true axions merging

-> Discrete Goldstone bosons are massive ALPs protected from quadratic divergences and produced in degenerate multiplets

Strong physics case to look everywhere for one or more axions or ALPs

Conclusions

Axions and ALPs: blooming experiments and theory

—> The parameter space to find a true axion that solves the strong CP problem has expanded beyond the QCD axion band: heavier and lighter true axions, e.g. first ``fuzzy DM´´ axion

-> Searches for ALPs and true axions merging Talks J. Machado J. Bonilla

-> Discrete Goldstone bosons ---- Talk by Victor Enguita

Strong physics case to look everywhere for one or more axions or ALPs

Conclusions

Axions and ALPs: blooming experiments and theory Theory:

—> The parameter space to find a true axion that solves the strong CP problem has expanded beyond the QCD axion band.

Heavier then usual and lighter than usual axions possible. They can also explain DM. —> e.g. first ``fuzzy DM'' axion

A CULTURE OF

Experiment:

—> Searches for ALPs and true axions merging

Strong physics case to look everywhere for singlet scalars with couplings proportional to momenta

The seal

19 50 5

Conclusions / Outlook

It is a deep pleasure to be here today

Thank you very very much for the invitation!

Backup

ALPs

We will consider the SM plus a generic scalar field *a*

with derivative (+ anomalous) couplings to SM particles

and scale f_a :

an ALP (axion-like particle)

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\partial_{\mu}a}{f_a} \times SM^{\mu}$$
general effective couplings

This is ~shift symmetry invariant: $a \rightarrow a + cte$. - ~ Goldstone boson

Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz 2017 arXiv:1701.05379

An example of

HEAVY axion theory

which solves the strong CP problem

use Massless Quarks

A new QCD-colored <u>massless</u> quark has a U(1)_A symmetry: it solves the strong CP problem

$$\psi \to e^{i\beta\gamma_5}\psi$$

 $heta \to heta + rac{lpha_s}{8\pi}eta$

Hide the massless coloured quark in heavy states bound by the new strong force

K. Choi, J.E. Kim 1985

Colour Unified Dynamical Axion

First colour-unified model with massless quarks M.K. Gaillard, M.B. Gavela, P. Quilez, R. Houtz, R. del Rey <u>arXiv:1805.06465</u>

SU(6)
$$\bigcirc$$
 SU(3)_c x SU(3)

Confinement scales: Age

solves strong CP problem with massless SU(6) fermion

Colour Unified Dynamical Axion

First colour-unified model with massless quarks M.K. Gaillard, M.B. Gavela, P. Quilez, R. Houtz, R. del Rey <u>arXiv:1805.06465</u>

SU(6)
$$\bigcirc$$
 SU(3)_c × SU(3)

solves strong CP problem with massless SU(6) fermion

$$SU(6) \times SU(3') \xrightarrow{\Lambda_{\rm CUT}} SU(3)_c \times SU(3)_{\rm diag}$$

..... —> backup slides

Colour Unified Dynamical Axion

First colour-unified model with massless quarks M.K. Gaillard, M.B. Gavela, P. Quilez, R. Houtz, R. del Rey <u>arXiv:1805.06465</u>

SU(6)
$$\bigcirc$$
 SU(3)_c × SU(3)

Confinement scales: Λ_{QCD}

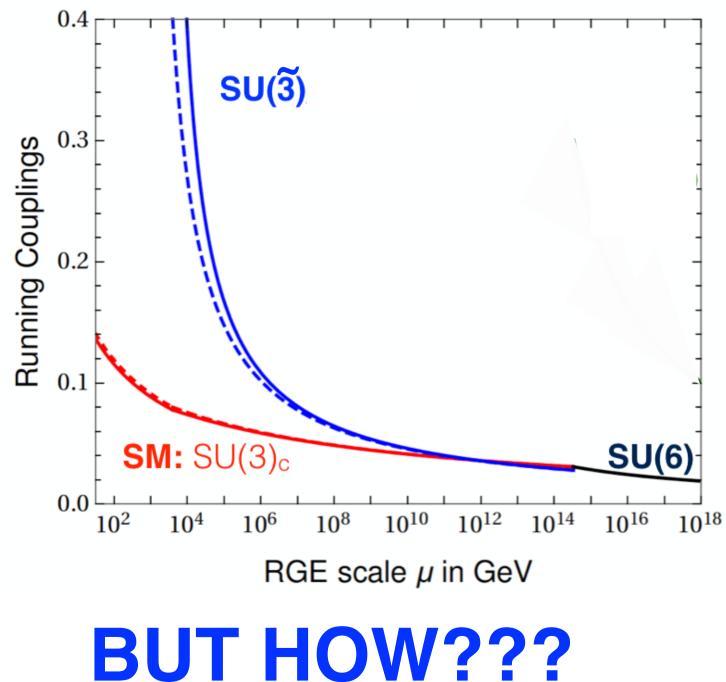
Solve strong CP problem with massless SU(6) fermion

 ${\ensuremath{\bullet}}$ The massless quark to absorb the unified group's θ_6

$$\frac{SU(1)}{\Psi_{L}} \frac{SU(1)}{20} \frac{U(1)}{1} 0$$

We aim at $\tilde{\Lambda} \sim \text{TeV} >> \Lambda_{QCD}$

You would like to achieve:



The SM fermions

There is a problem: SM quarks have now SU(6) partners

$$Q_{L}^{(6)} \equiv (\tilde{q}, \tilde{q})_{L} \qquad U_{R}^{(6)} \equiv (\tilde{u}, \tilde{u})_{R} \qquad D_{R}^{(6)} \equiv (\tilde{d}, \tilde{d})_{R}$$

These are the troublemakers

A UV complete solution

Add a new group outside the CUT group

$$SU(6) \times SU(3') \xrightarrow{\Lambda_{\rm CUT}} SU(3)_c \times SU(3)_{\rm diag}$$

with prime fermions charged only under SU(3')

Both SU(3)_c and SU(3)_{diag} unbroken and confining, $\Lambda_{diag} >> \Lambda_{QCD}$

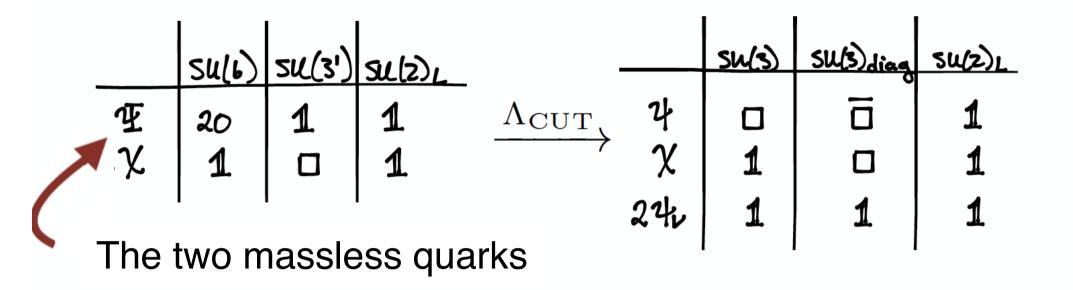
A UV complete solution

Add a new group outside the CUT group

$$SU(6) \times SU(3') \xrightarrow{\Lambda_{\rm CUT}} SU(3)_c \times SU(3)_{\rm diag}$$

with prime fermions charged only under SU(3')

* The role of prime fermions is to pair with the quark partners and make them heavy



• Goal: $SU(3)_{diag}$ confines at a higher scale than $SU(3)_c$

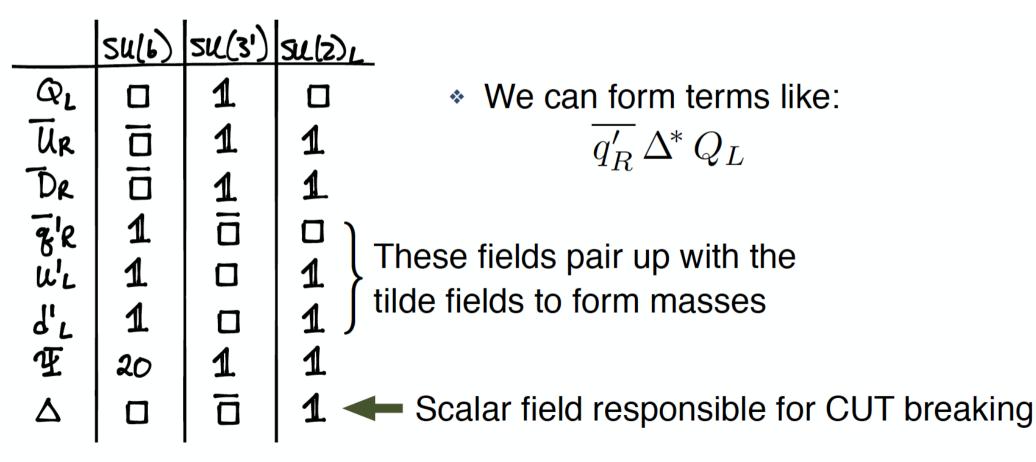
$$\frac{1}{\alpha_{\text{diag}}(\mu)} = \frac{1}{\alpha_6(\mu)} + \frac{1}{\alpha'(\mu)} \qquad \mu = \Lambda_{CUT}$$
$$\alpha_c(\Lambda_{CUT}) = \alpha_6(\Lambda_{CUT})$$

A UV complete solution

Add a new group outside the CUT group

$$SU(6) \times SU(3') \xrightarrow{\Lambda_{\rm CUT}} SU(3)_c \times SU(3)_{\rm diag}$$

with prime fermions charged only under SU(3')



The CUT breaking

$$SU(6) \times SU(3') \xrightarrow{\Lambda_{\rm CUT}} SU(3)_c \times SU(3)_{\rm diag}$$

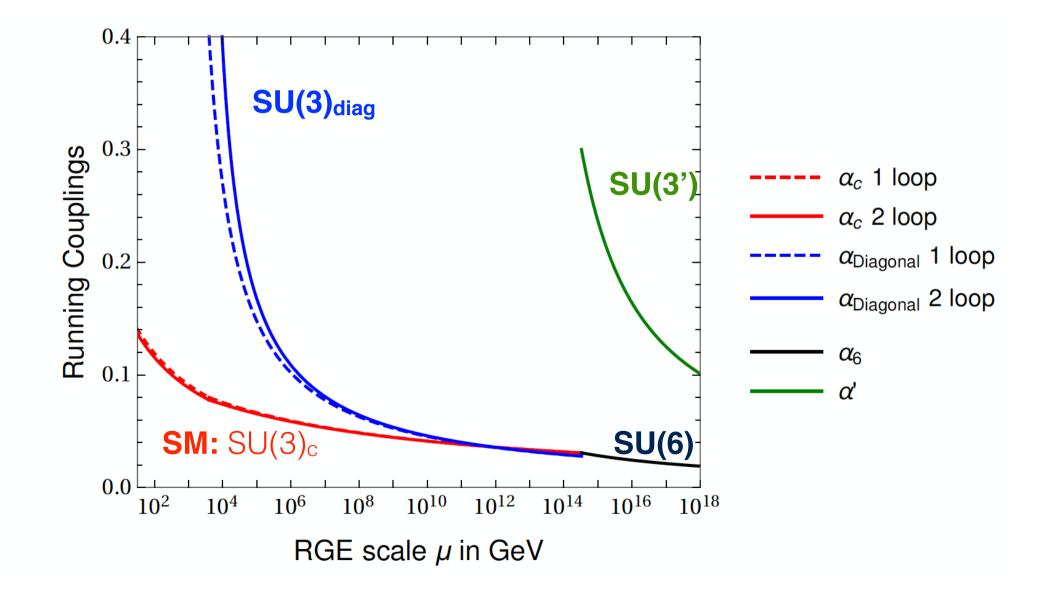
$$\mathcal{L} \ni \kappa_q \overline{q'_R} \,\Delta^* \, Q_L + \kappa_u u'_L \,\Delta \,\overline{U_R} + \kappa_d d'_R \,\Delta \,\overline{D_R} + \text{h.c.}$$

$$\langle \Delta \rangle = \Lambda_{\rm CUT} \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right) \ \ \, \begin{tabular}{ll} \bullet & {\rm This \ VEV \ pattern \ grabs} \\ {\rm only \ the \ tilde \ quarks} \\ {\rm out \ of \ the \ spectrum} \end{array} \right.$$

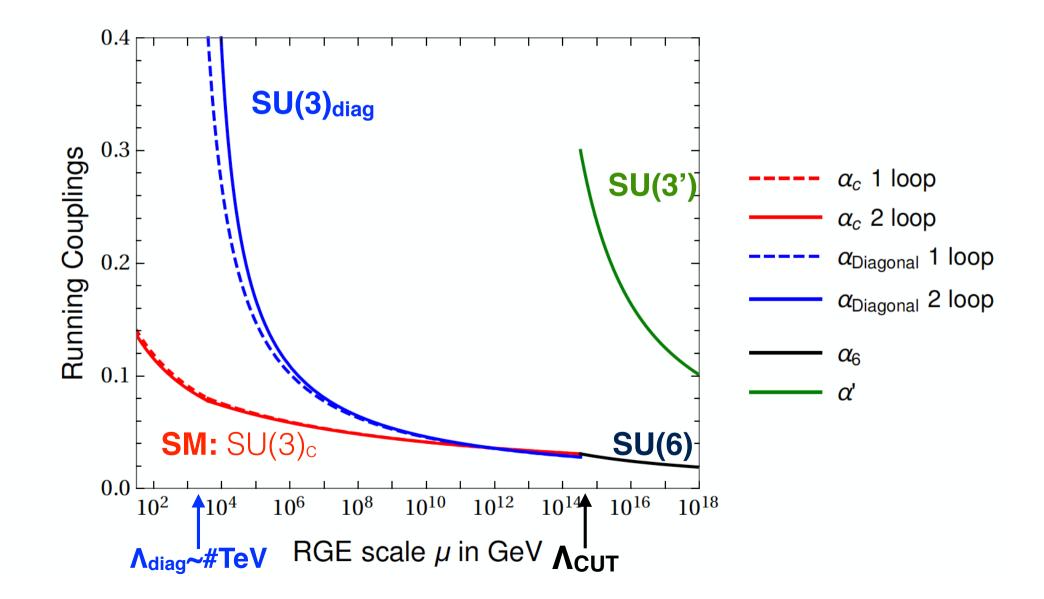
$$\mathcal{L} \ni \Lambda_{\text{CUT}} \left(\kappa_q \overline{q'_R} \tilde{q}_L + \kappa_u u'_L \overline{\tilde{u}_R} + \kappa_d d'_L \overline{\tilde{d}_R} \right) + \text{h.c.}$$

* This accomplishes the task of forming mass terms for the SU(6) partner fields $\tilde{q},\tilde{u},\tilde{d}$

Model I: Unification and Confinement



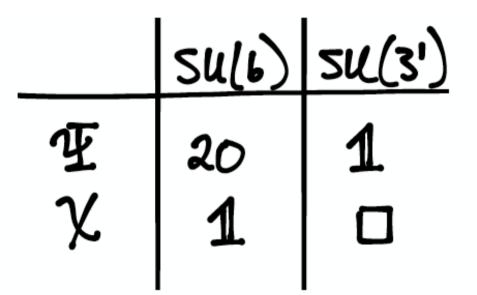
Model I: Unification and Confinement



The axion spectrum of the CUT theory

$\begin{array}{c} SU(6) \times SU(3') \\ \mathbf{\theta_6} & \mathbf{\theta_{3'}} \end{array}$

two massless fermions so as to rebasorb both θ_6 and θ'



-> two dynamical axions with scale set by Λ_{diag} : $\eta'_{\Psi} = (\bar{\psi}\psi) \qquad \eta'_{\chi} = (\bar{\chi}\chi)$

What are the masses of the two dynamical axions?

There are **three** pseudo scalars-coupled to anomalous currents:

$$\eta'_{QCD}$$
 η'_{ψ} η'_{X}

For how many sources of (instanton) masses ? Two or three ?

$$G_{\rm diag} \tilde{G}_{\rm diag} \qquad G_c \tilde{G}_c \qquad \text{and}....?$$

Small Size Instantons (SSI) and Axion Mass

Instantons effects are exponentially suppressed

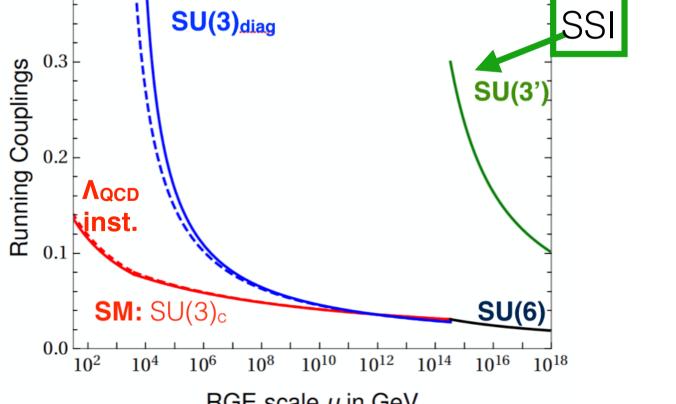
 $D[\alpha'(\mu)] \propto e^{-2\pi/\alpha'(\mu)}$

Usually sizable only at the confinement scale

$$\left(e^{-2\pi/0.1} \sim 10^{-28}\right)$$

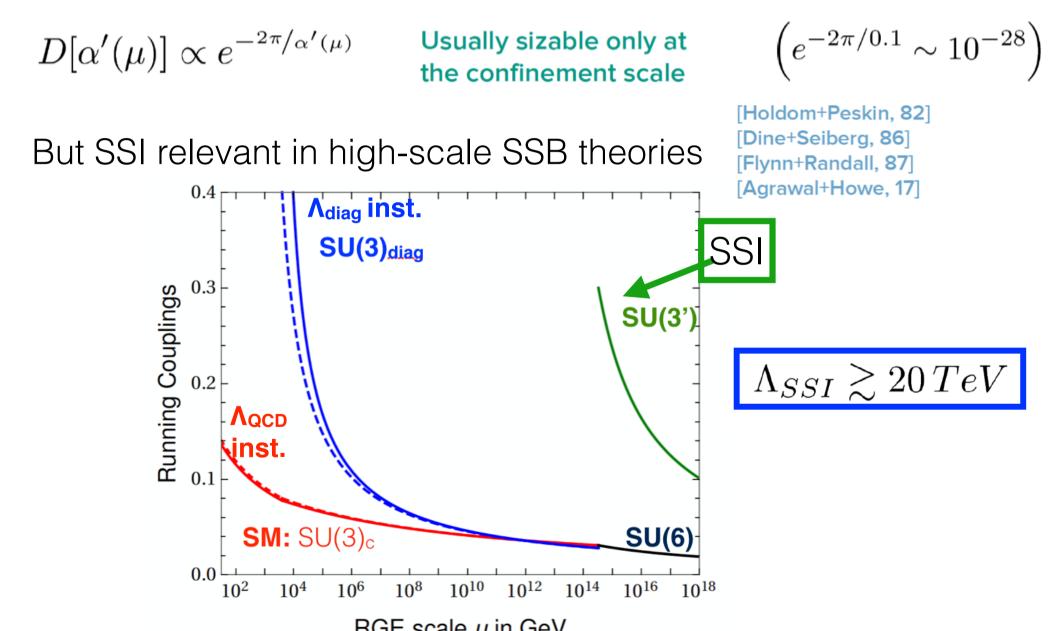
Ie SSB theories SSI (Holdom+Peskin, 82] [Dine+Seiberg, 86] [Flynn+Randall, 87] [Agrawal+Howe, 17] [SSI]

Λ_{diag} inst.



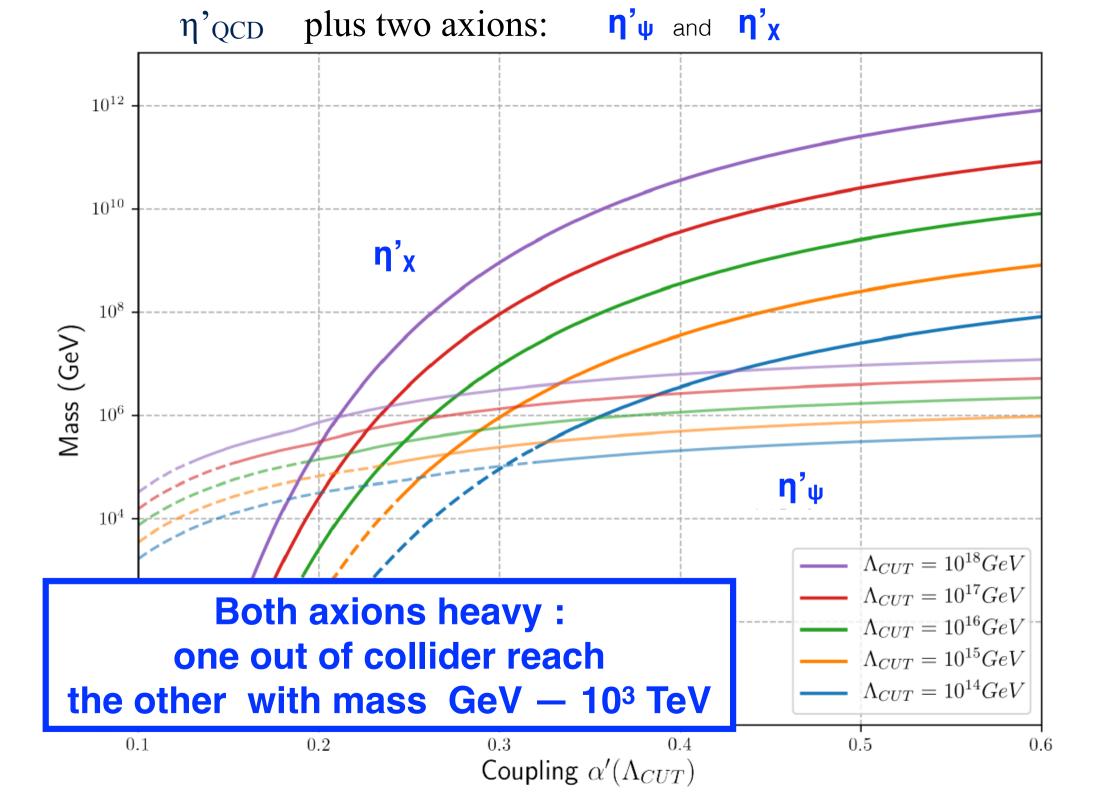
Small Size Instantons (SSI) and Axion Mass

Instantons effects are exponentially suppressed

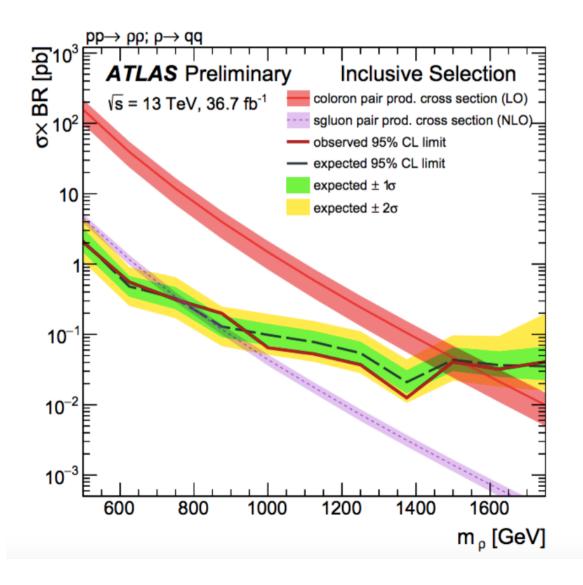


The effective potential for the three singlet pseudoscalars: $\begin{array}{c} \mathbf{\eta' QCD} \qquad \mathbf{\eta' \psi} \qquad \mathbf{\eta' \chi} \\ \hline \mathbf{axions} \\ V_{eff} = \frac{\Lambda_{SSI}^4}{2} \left(2 \frac{\eta'_{\chi}}{f_d}\right)^2 + \frac{\Lambda_{diag}^4}{2} \left(2 \frac{\eta'_{\chi}}{f_d} + \sqrt{6} \frac{\eta'_{\psi}}{f_d}\right)^2 + \frac{\Lambda_{QCD}^4}{2} \left(2 \frac{\eta'_{QCD}}{f_{\pi}} + \sqrt{6} \frac{\eta'_{\psi}}{f_d}\right)^2 \\ \underbrace{SU(3') \text{ SSI Instantons}} \\ SU(3)_{diag} \text{ Instantons at conf.} \\ \end{array}$

has three sources of mass —> two massive axions



Collider Phenomenology



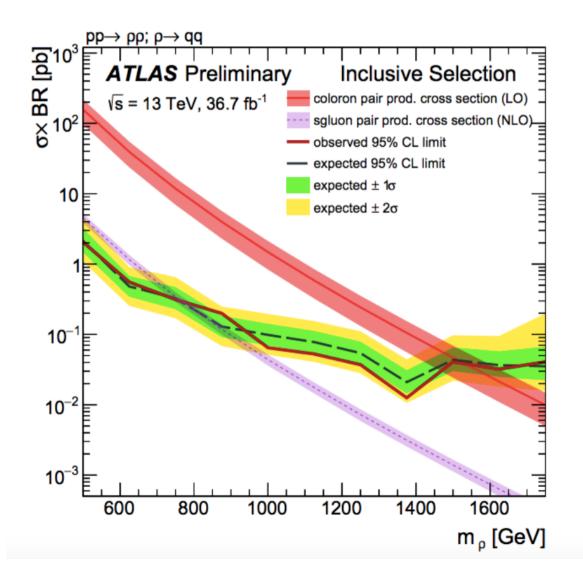
- We have a bound on color octet scalars
 - $m(\pi_d) \gtrsim 700 \text{ GeV}$

$$m^2(8_c) \approx \frac{9\alpha_c}{4\pi} \Lambda_{\rm diag}^2$$

 $\Lambda_{\rm diag} \approx 3 {\rm ~TeV}$

and this is the PQ scale !

Collider Phenomenology



 We have a bound on color octet scalars

 $m(\pi_d) \gtrsim 700 \text{ GeV}$

$$m^2(8_c) \approx \frac{9\alpha_c}{4\pi} \Lambda_{\rm diag}^2$$

 $f_a \approx 3 \text{ TeV}$

and this is the PQ scale !

The low-energy spectrum is observable

e.g. with large Yukawas:

The U(3) flavor symmetry is broken by condensate

 $U(3)_L \times U(3)_R \longrightarrow U(3)_V$ QCD-colored "pions"

 $\langle \psi \psi \rangle$

 $\mathbf{\cap}$

- * This results in 9 pGB's. $9 = 1_c + 8_c$
- The "pion" masses get pushed up to the cutoff of the theory via interactions with gluons

$$\int \int dx = \int \int dx = \int \int dx = \int m^2(8_c) \approx \frac{9\alpha_c}{4\pi} \Lambda_{\text{diag}}^2$$

* The most general Lagrangian includes Higgs-prime fermions Yukawa couplings:

$$\mathcal{L} \ni y'_u q'_L \Phi u'^c_L + y'_d q'_L \tilde{\Phi} d'^c_L + \text{h.c.}$$

Solution to the Strong CP problem

- → Any source of axion mass breaks the PQ symmetry, do SSI spoil the Strong CP solution?
- → Breaking pattern imposes:

→

$$\mathcal{L} \supset \bar{\theta}_6 \, \frac{\alpha_6}{8\pi} G_6 \tilde{G}_6 + \bar{\theta}' \, \frac{\alpha'}{8\pi} G' \tilde{G}' \longrightarrow (\bar{\theta}_6 + \bar{\theta}') \, \frac{\alpha_{\text{diag}}}{8\pi} G_{\text{diag}} \tilde{G}_{\text{diag}} + \bar{\theta}_6 \, \frac{\alpha_c}{8\pi} G_c \tilde{G}_c$$

$$V_{eff} = \frac{\Lambda_{\text{SSI}}^4}{2} \left(-2 \, \frac{\eta'_{\chi}}{f_{\text{d}}} + \bar{\theta}' \right)^2 + \frac{\Lambda_{\text{diag}}^4}{2} \left(-2 \, \frac{\eta'_{\chi}}{f_{\text{d}}} - \sqrt{6} \, \frac{\eta'_{\psi}}{f_{\text{d}}} + \bar{\theta}' + \bar{\theta}_6 \right)^2 + \frac{\Lambda_{\text{QCD}}^4}{2} \left(-\sqrt{6} \, \frac{\eta'_{\psi}}{f_{\text{d}}} + \bar{\theta}_6 \right)^2$$

→ The alignment of the 3 terms in the potential result in a CP-conserving minimum

$$\left\langle \bar{\theta'} - 2 \frac{\eta'_{\chi}}{f_{\rm d}} \right\rangle = 0, \qquad \left\langle \bar{\theta}_6 - \sqrt{6} \frac{\eta'_{\psi}}{f_{\rm d}} \right\rangle = 0$$

Strong CP problem solved

Pseudoscalar potential and masses

$$V_{eff} = \frac{\Lambda_{\text{SSI}}^4}{2} \left(2 \frac{\eta_{\chi}'}{f_{\text{d}}} \right)^2 + \frac{\Lambda_{\text{diag}}^4}{2} \left(2 \frac{\eta_{\chi}'}{f_{\text{d}}} + \sqrt{6} \frac{\eta_{\psi}'}{f_{\text{d}}} \right)^2 + \frac{\Lambda_{\text{QCD}}^4}{2} \left(2 \frac{\eta_{\text{QCD}}'}{f_{\pi}} + \sqrt{6} \frac{\eta_{\psi}'}{f_{\text{d}}} \right)^2$$

$$SU(3') \text{ SSI Instantons} \qquad SU(3)_{\text{diag}} \text{ Instantons at conf.} \qquad SU(3)_{\text{c}} \text{ Instantons at conf.}$$

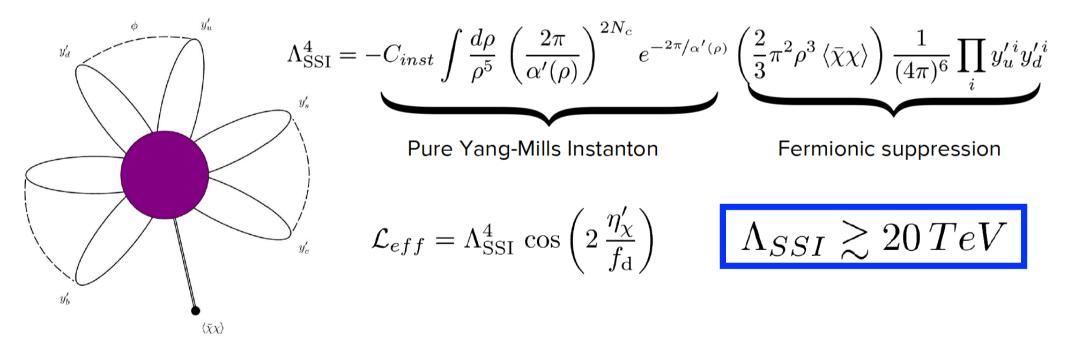
$$M_{\eta_{\chi}',\,\eta_{\psi}',\,\eta_{QCD}'}^{2} = \begin{pmatrix} 4\frac{\left(\Lambda_{SSI}^{4}+\Lambda_{d}^{4}\right)}{f_{d}^{2}} & 2\sqrt{6}\frac{\Lambda_{d}^{4}}{f_{d}^{2}} & 0\\ 2\sqrt{6}\frac{\Lambda_{d}^{4}}{f_{d}^{2}} & 6\frac{\left(\Lambda_{d}^{4}+\Lambda_{QCD}^{4}\right)}{f_{d}^{2}} & 2\sqrt{6}\frac{\Lambda_{QCD}^{4}}{f_{\pi}f_{d}}\\ 0 & 2\sqrt{6}\frac{\Lambda_{QCD}^{4}}{f_{\pi}f_{d}} & 4\frac{\Lambda_{QCD}^{4}}{f_{\pi}^{2}} \end{pmatrix}$$

Small Size Instantons (SSI) and Axion Mass

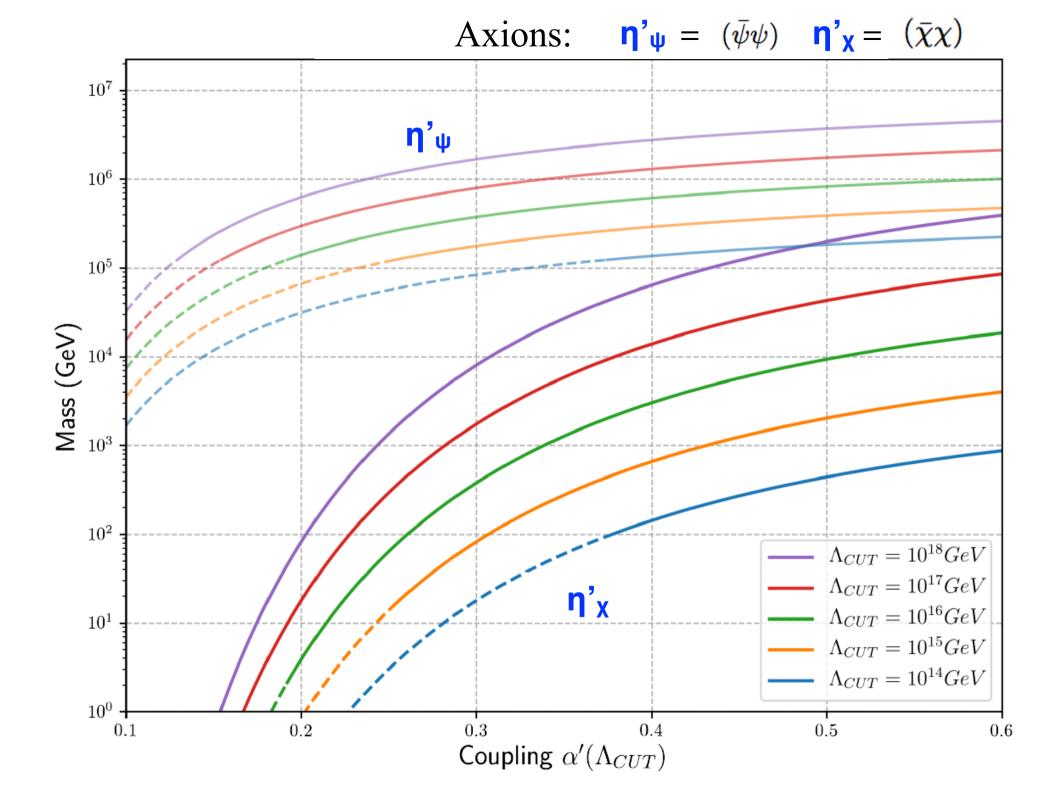
a) for small Yukawa couplings in the prime sector:

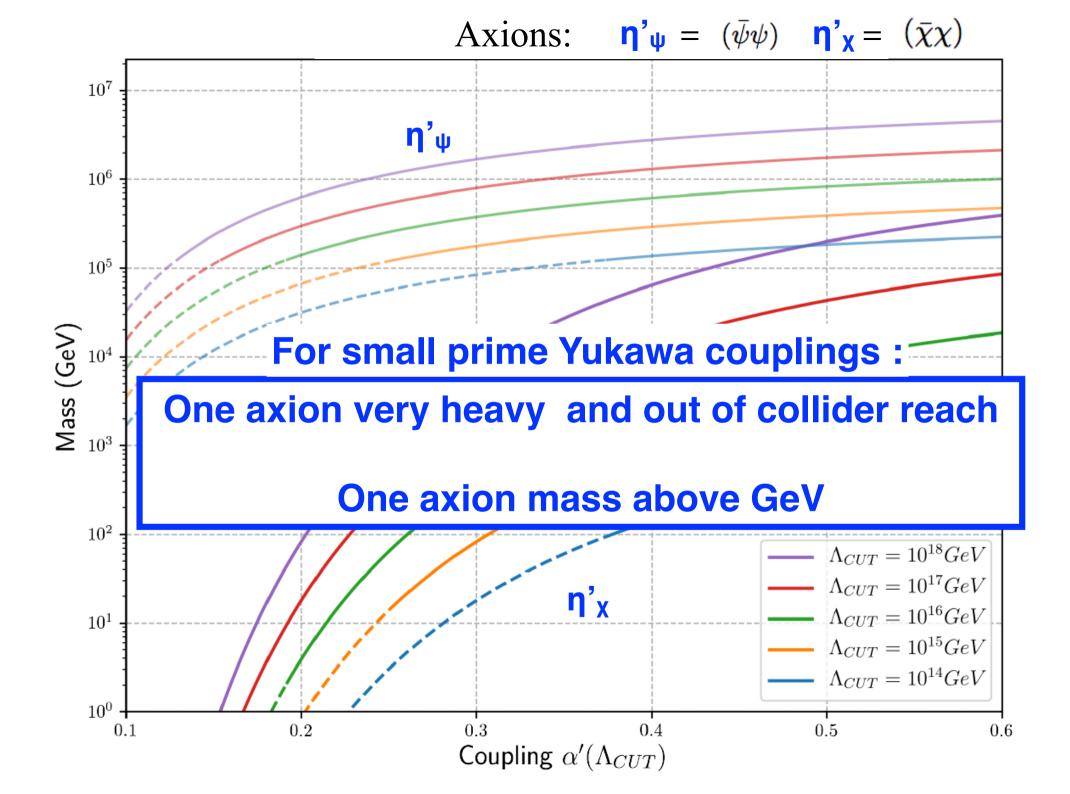
→ Dilute Instanton Gas approximation:

[t'Hooft, 73] [Callan+Dashen+Gross, 77] [Shifman+Vainshtein+Zakharov, 80]



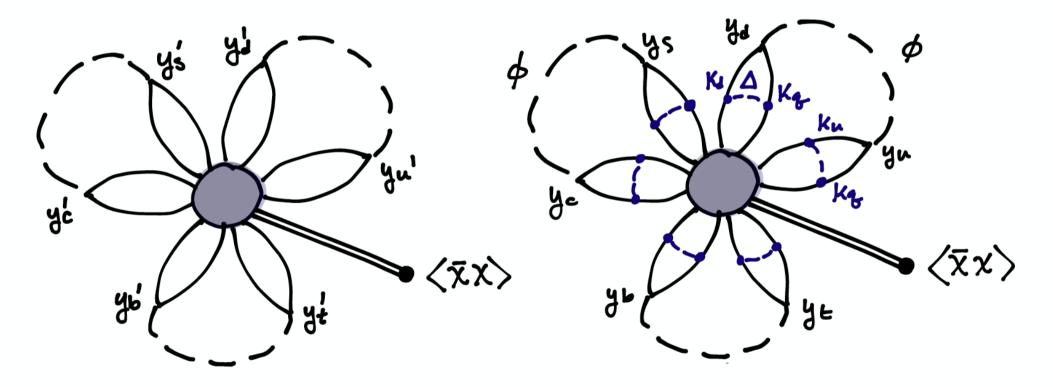
arXiv:1805.06465





Small Size Instantons with Fermions

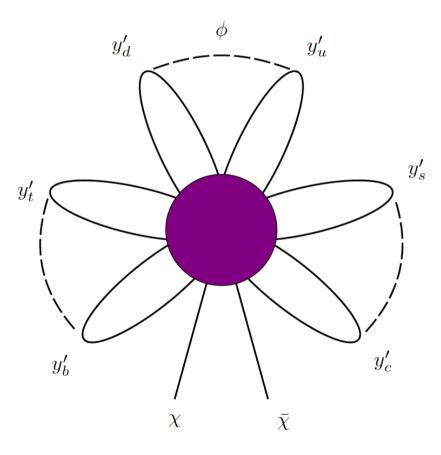
Adding fermion effects gives an instanton suppression



 $\Lambda_{SSI}^4 = -\int \frac{d\rho}{\rho^5} D[\alpha'(1/\rho)] \left(\frac{2}{3}\pi^2 \rho^3 \langle \bar{\chi}\chi \rangle\right) \frac{1}{(4\pi)^{18}} \prod_i Y_{u\,i}^{SM} Y_{d\,i}^{SM} \left(\kappa_q^i\right)^2 \kappa_u^i \kappa_d^i$

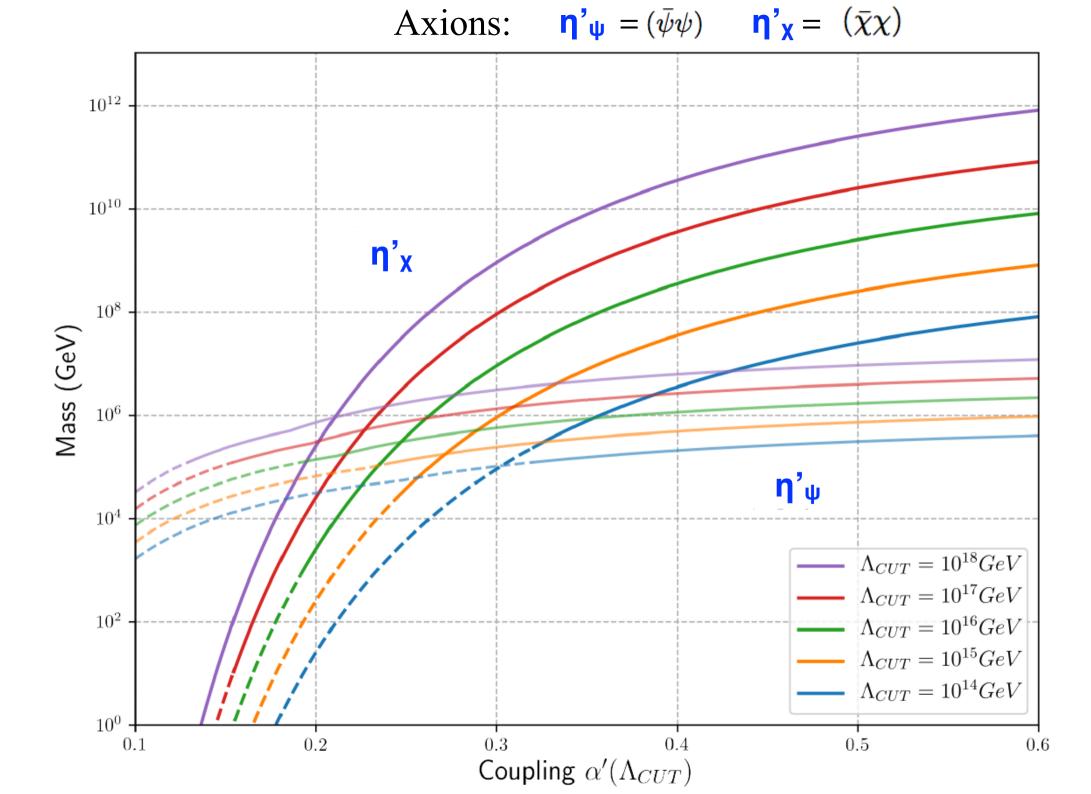
b) for O(1)Yukawa couplings in the prime sector:

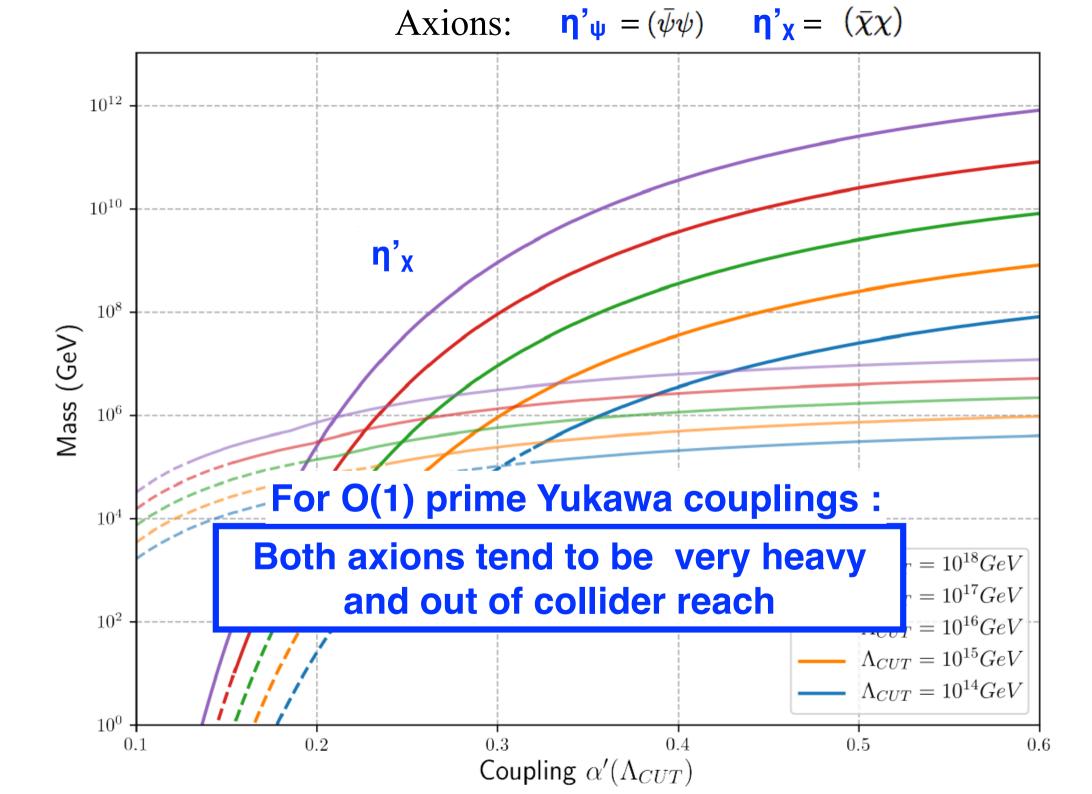
The prime sector instantons generate a large effective mass for the χ fermion



 $\mathcal{L}_{eff} = -m_{\chi}\bar{\chi}\chi$

 $m_{\chi} \simeq 4.1 \times 10^{-10} \Lambda_{\rm CUT}$





We also developed another UV completion

Same CUT gauge group

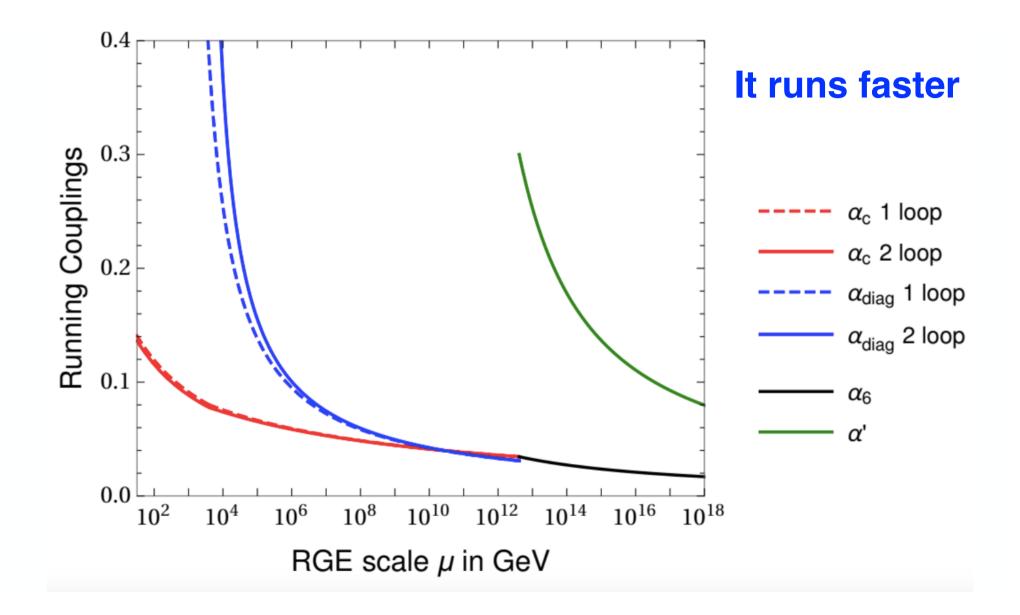
$$SU(6) \times SU(3') \xrightarrow{\Lambda_{\rm CUT}} SU(3)_c \times SU(3)_{\rm diag}$$

but instead of adding a second massless fermion as in

su(i)su(i)model I:
$$\frac{1}{Y}$$
 20 1 χ 1 \Box we added a second scalar Δ_2 : $\frac{su(i)}{Y}$ model II: Δ_2 1

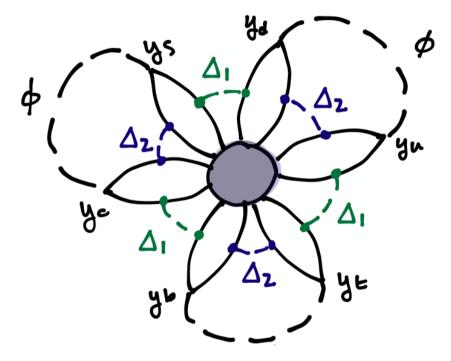
 Δ , Δ_2 and the prime fermions have now PQ charges

Model II: Small Size Instanton Contribution

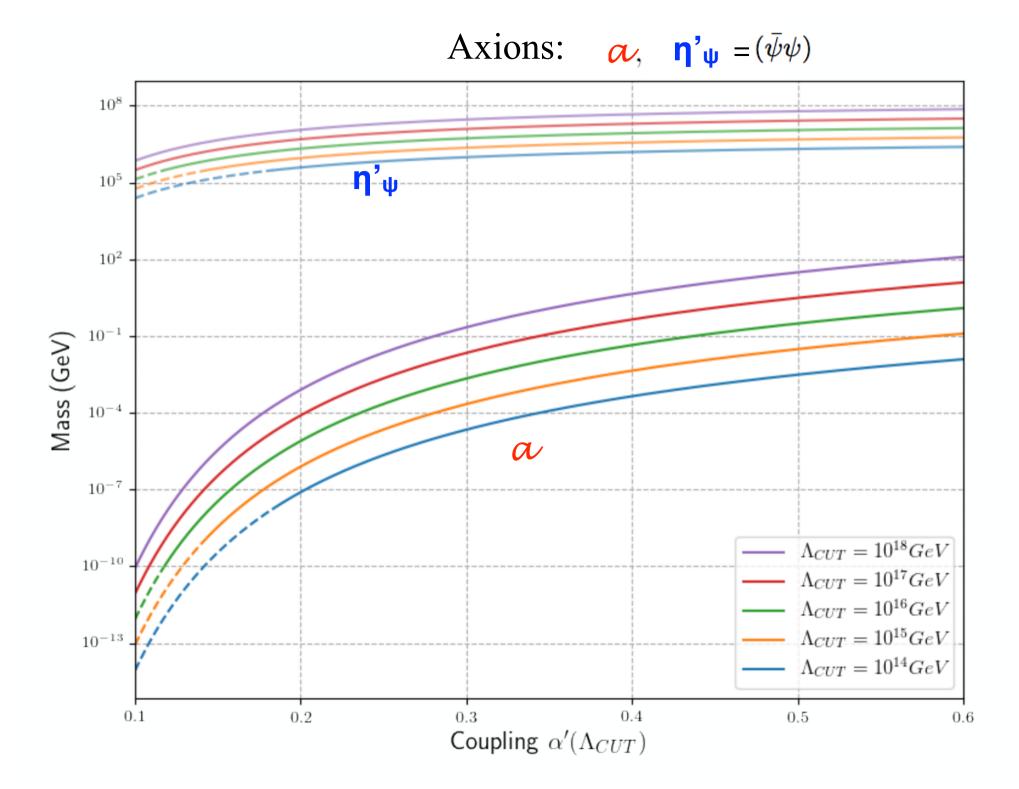


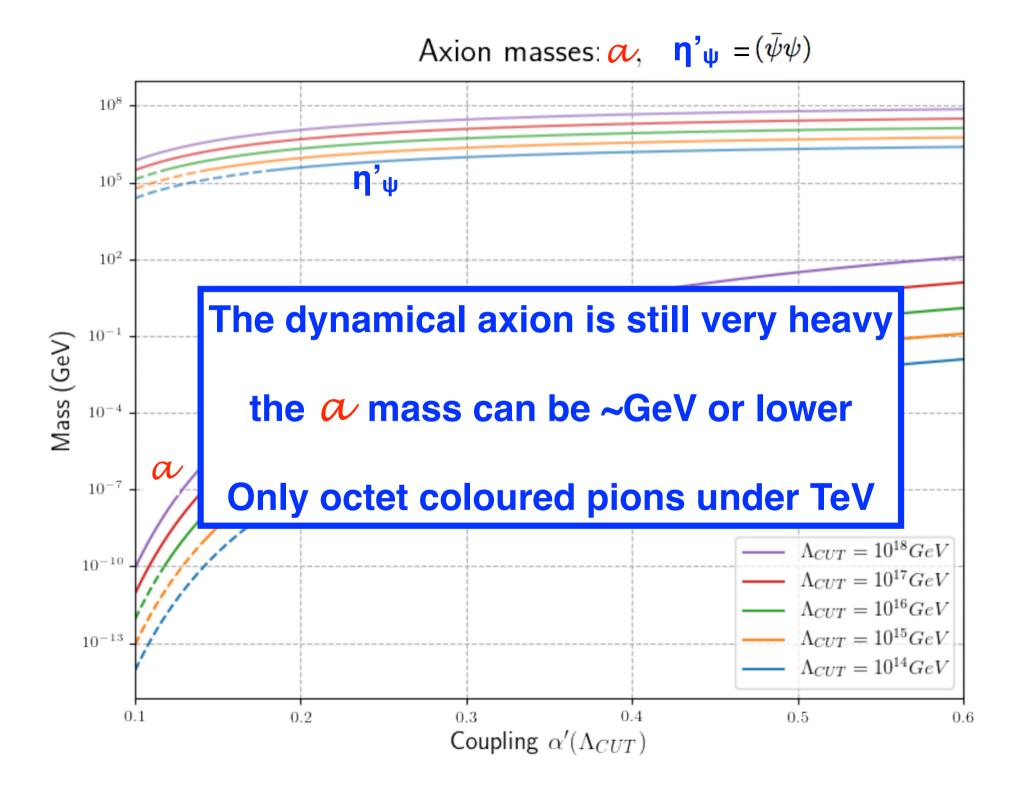
Model II: Small Size Instanton Contribution

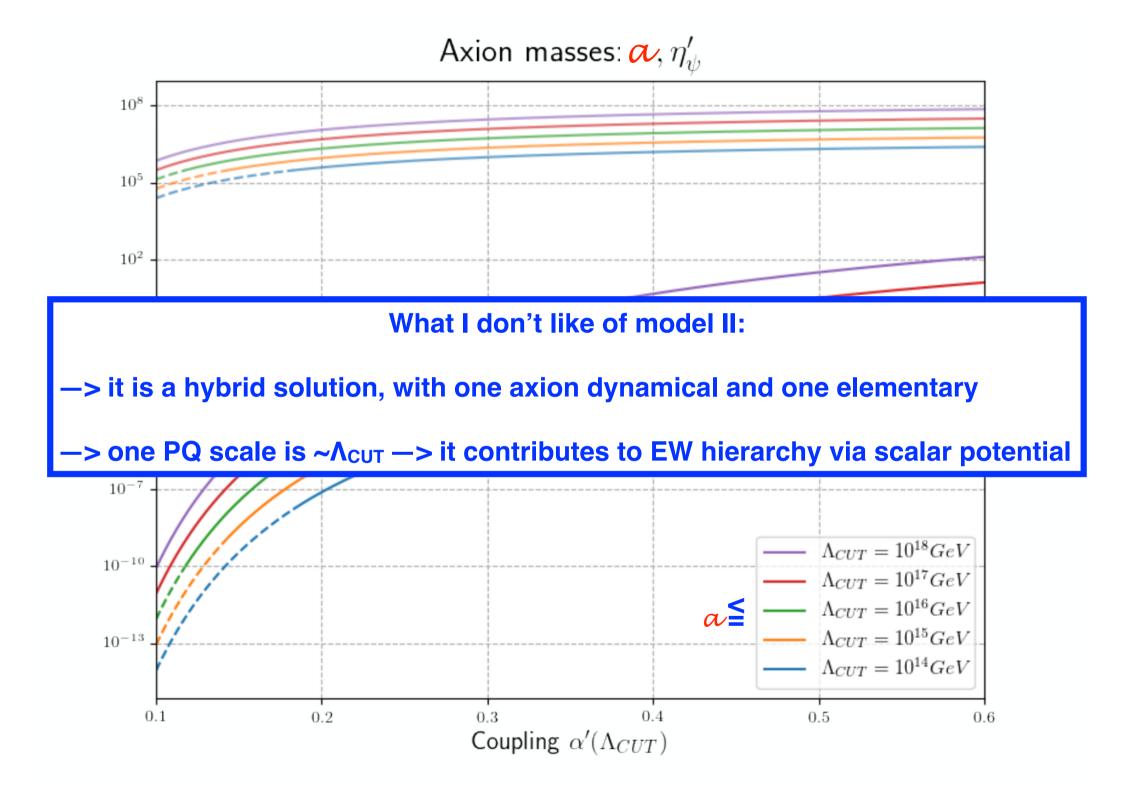
The prime Yukawa couplings to the Higgs are now forbidden by PQ symmetry



$$\Lambda_{SSI}^{4} = -\int \frac{d\rho}{\rho^{5}} D[\alpha'(1/\rho)] \frac{1}{(4\pi)^{18}} \prod_{i} Y_{ui}^{SM} Y_{di}^{M} \left(\kappa_{q}^{i}\right)^{2} \kappa_{u}^{i} \kappa_{d}^{i}$$



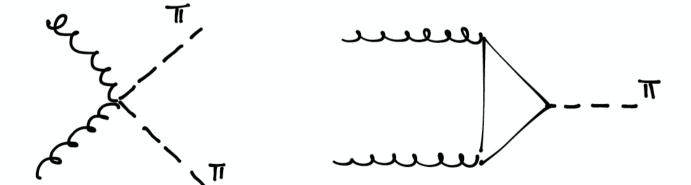




Collider Phenomenology

Collider accessible states are QCD colored "pions"

$$\mathcal{L} \ni D_{\mu}\pi_{d}D^{\mu}\pi_{d} + \frac{\pi_{d}^{a}}{f_{d}}\frac{\alpha_{s}}{16\pi}d_{abc}G^{b}_{\mu\nu}\tilde{G}^{c\mu\nu}$$

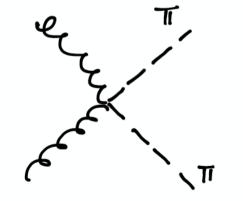


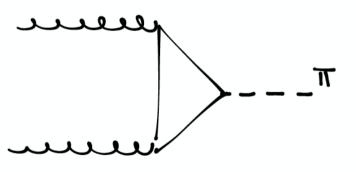
Pair produced
 Anomalous production

Collider Phenomenology

Collider accessible states are QCD colored "pions"

$$\mathcal{L} \ni D_{\mu}\pi_{d}D^{\mu}\pi_{d} + \frac{\pi_{d}^{a}}{f_{d}}\frac{\alpha_{s}}{16\pi}d_{abc}G^{b}_{\mu\nu}\tilde{G}^{c\mu\nu}$$





dominates production

dominates decay

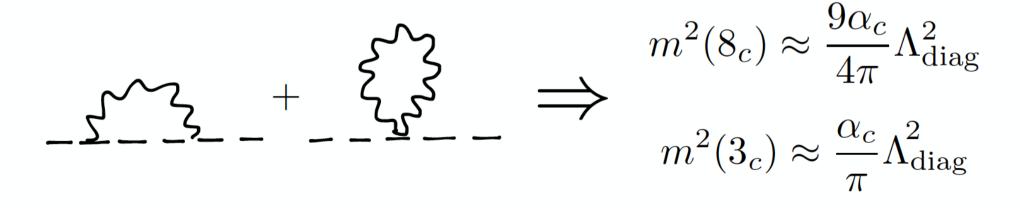
The low-energy observable spectrum

a) for small Yukawa couplings in the prime sector:

* The U(4) flavor symmetry is broken by condensates: $\langle \psi \psi \rangle \ \langle \bar{\chi} \chi \rangle$

$$U(4)_L \times U(4)_R \to U(4)_V$$

- * This results in 16 pGB's. $16 = 8_c + \bar{3}_c + 3_c + 1_c + 1_c$
- The "pion" masses get pushed up to the cutoff of the theory via interactions with gluons



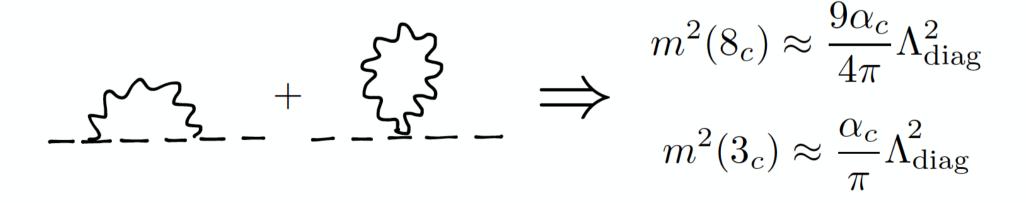
The low-energy observable spectrum

a) for small Yukawa couplings in the prime sector:

* The U(4) flavor symmetry is broken by condensates: $\langle \psi \psi \rangle \ \langle \bar{\chi} \chi \rangle$

 $U(4)_L \times U(4)_R \to U(4)_V \quad \text{QCD-colored "pions"}$

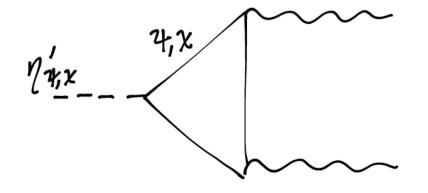
- * This results in 16 pGB's. $16 = 8_c + \overline{3}_c + 3_c + 1_c + 1_c$
- The "pion" masses get pushed up to the cutoff of the theory via interactions with gluons

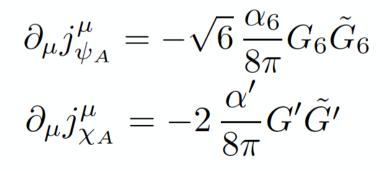


The $\eta^\prime {\rm Pseudoscalars}$

The associated currents of the QCD singlets are:

$$\begin{aligned} j^{\mu}_{\psi_{A}} &= \overline{\psi} \gamma^{\mu} \gamma^{5} t^{9} \psi &\equiv f_{d} \partial^{\mu} \eta'_{\psi} & * t^{9} = \frac{1}{\sqrt{6}} \mathbf{1}_{3 \times 3} \\ j^{\mu}_{\chi_{A}} &= \overline{\chi} \gamma^{\mu} \gamma^{5} \chi &\equiv f_{d} \partial^{\mu} \eta'_{\chi} & * f_{d} \text{ is the pGB scale:} \\ &\Lambda_{\text{diag}} \leq 4\pi f_{d} \end{aligned}$$





1

A crucial fact:

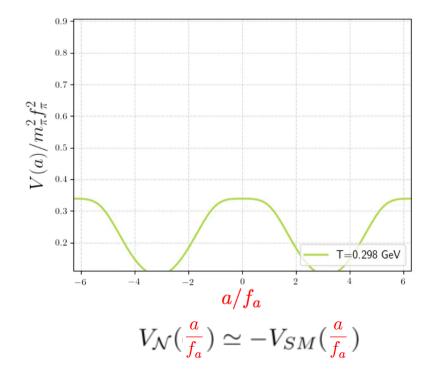
at high T, the potential minimum shifts from 0 to π

* Mirror worlds need to be colder than SM world:

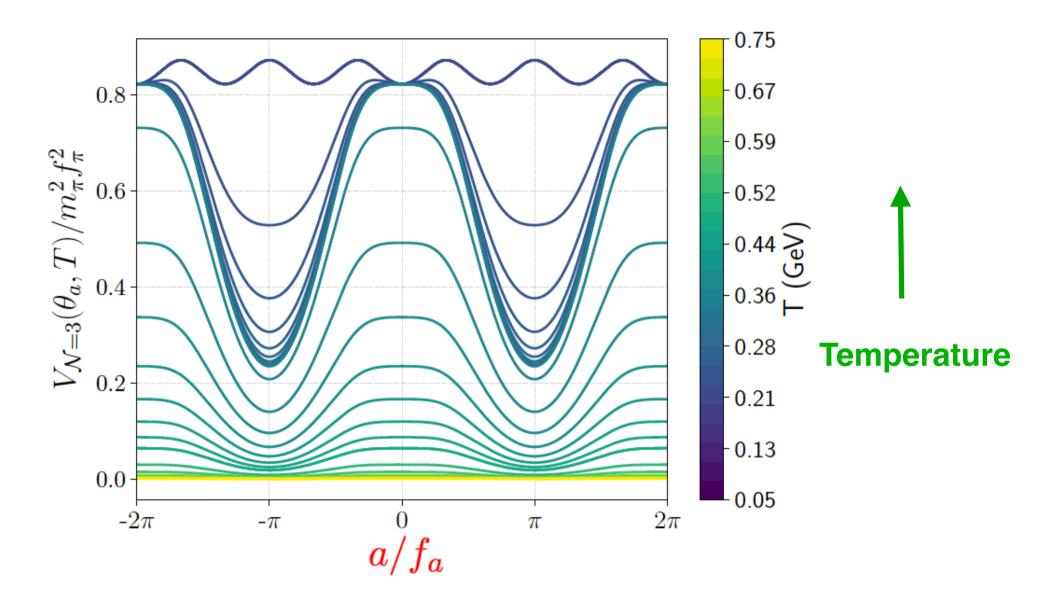
 ${\rm BBN:}\; N_{\rm eff} = 2.89 \pm 0.57 \ , \qquad {\rm CMB:}\; N_{\rm eff} \; = 2.99^{+0.34}_{-0.33} \, .$

$$\frac{T'}{T} < \frac{0.51}{\left(\mathcal{N} - 1\right)^{1/4}}$$

--> SM temperature effects break explicitly Z_N



At high T, the potential minimum shifts from 0 to π



The axion gets trapped in π : Trapped Misalignment

di Luzio, Quilez, Ringwald, BG arXiv 2102.01082

Trapped misalignment: a pure temperature effect

- * At high temperatures, the axion is trapped in the wrong minimum
- * The onset of oscillations is delayed
- * Less dilution = more DM

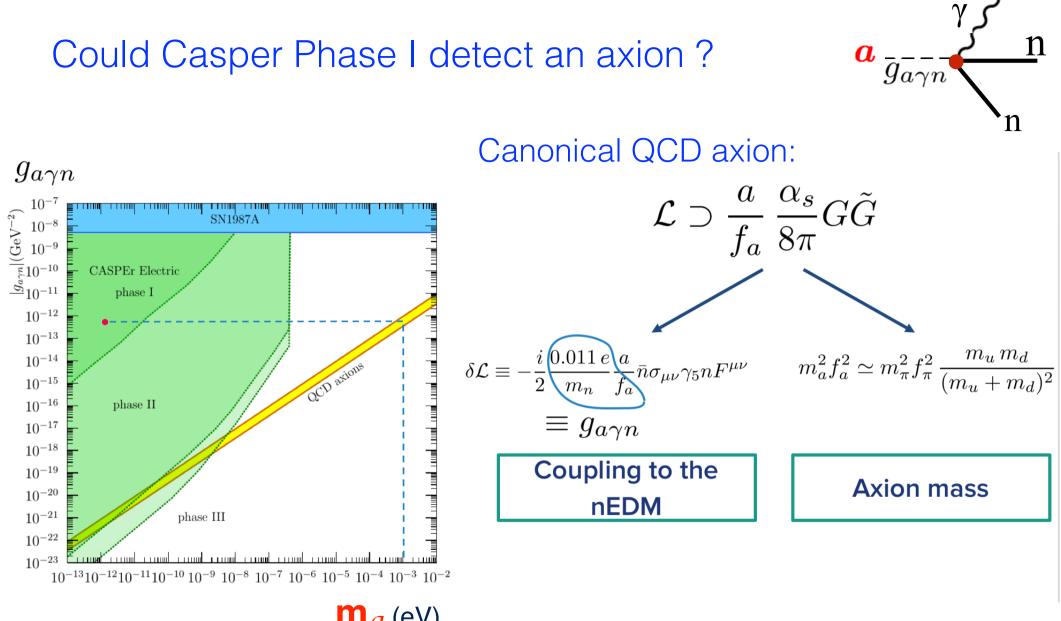
* After trapping, the axion can have enough kinetic energy to overfly many times the barrier—> further dilution: **trapped +kinetic** mislaign.

The Z_N axion can explain DM and solve the strong CP (with 1/N probab.)

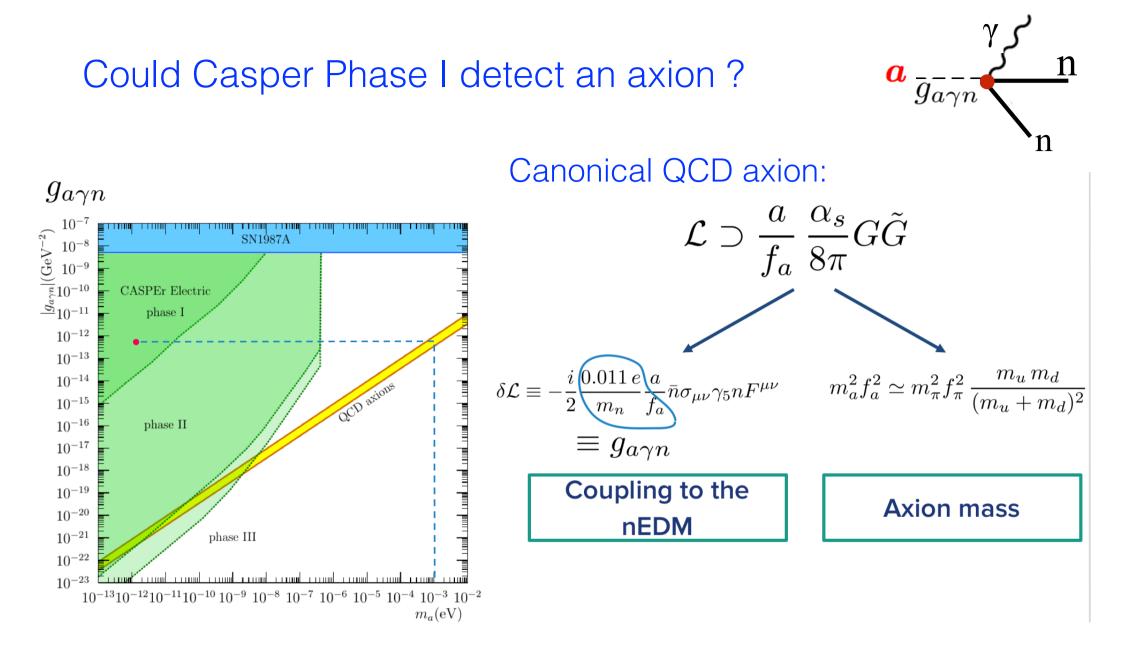
di Luzio, Quilez, Ringwald, BG arXiv 2102.01082

Could Casper Phase I detect an axion? \boldsymbol{a} $\overline{g}_{a\gamma n}$ n Canonical QCD axion: $g_{a\gamma n}$ $\mathcal{L} \supset \frac{a}{f_a} \, \frac{\alpha_s}{8\pi} G \tilde{G}$ 10^{-1} $\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{B_{a}}}_{a_{j}}}_{10^{-10}}}_{10^{-10}}}_{10^{-10}}}_{10^{-10}}$ SN1987A CASPEr Electric phase I 10^{-12} 10^{-13} $\frac{i}{2} \underbrace{\frac{0.011 \, e}{m_n}}_{f_a} \bar{n} \sigma_{\mu\nu} \gamma_5 n F^{\mu\nu} \qquad m_a^2 f_a^2 \simeq m_\pi^2 f_\pi^2 \, \frac{m_u \, m_d}{(m_u + m_d)^2}$ 10^{-14} ICD axions $\delta \mathcal{L} \equiv 10^{-15}$ 10^{-16} phase II $\equiv g_{a\gamma n}$ 10^{-17} 10^{-18} Coupling to the 10^{-19} **Axion mass** 10^{-20} **nEDM** 10^{-21} phase III 10^{-22} 10^{-23} $10^{-13}10^{-12}10^{-11}10^{-10}10^{-9}10^{-8}10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}$

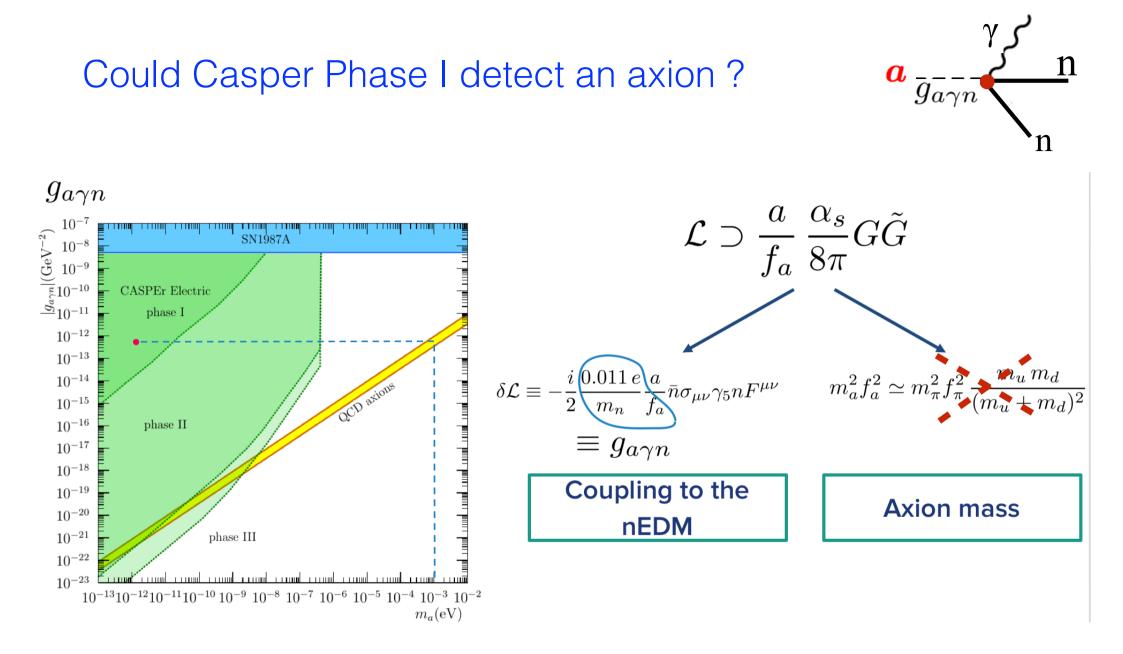
 \mathbf{m}_{a} (eV)



 \mathbf{m}_{a} (eV)



No signal possible from a canonical QCD axion

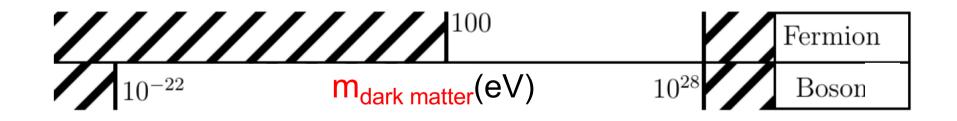


No signal possible from a canonical QCD axion Signal possible from a Z_N axion 85% of matter is dark

what is it?

Is it a new type of particle?

what mass?



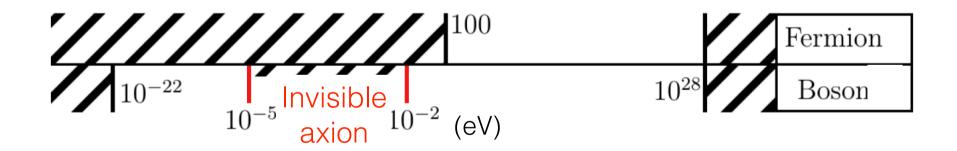
Does it feel anything else than gravity?

85% of matter is dark

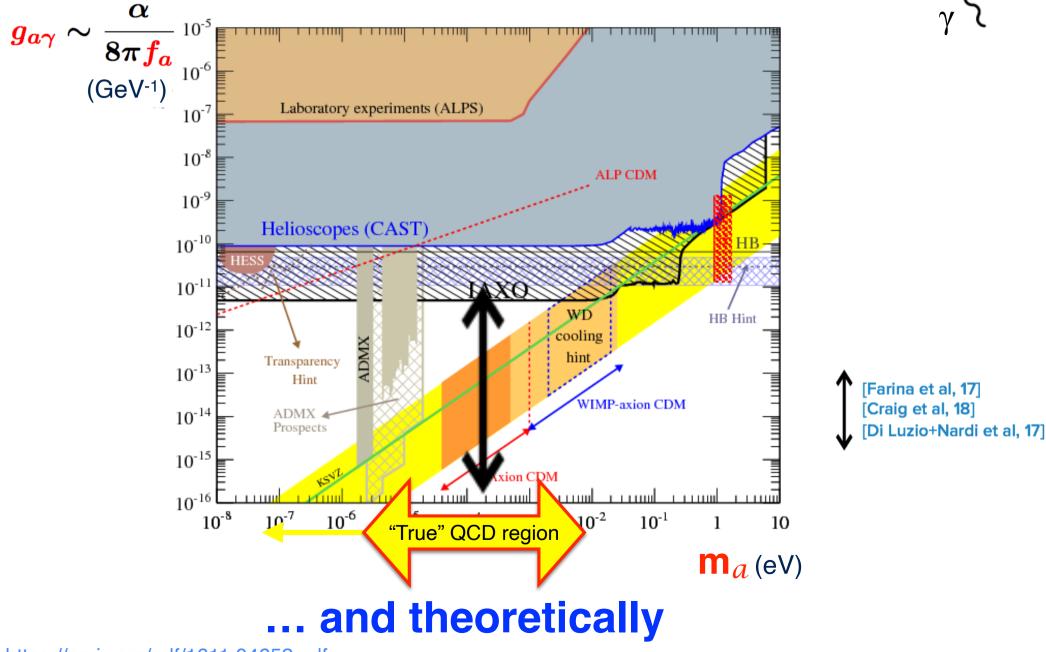
what is it?

Is it a new type of particle?

what mass?



Intensely looked for experimentally...



a _ _ _

 $g_{a\gamma}$

https://arxiv.org/pdf/1611.04652.pdf

Experiment: new experiments and new detection ideas

- * Helioscopes: axions produced in the sun. CAST, Baby-IAXO, TASTE, SUMICO
- * Haloscopes: assume that all DM are axions ADMX, HAYSTACK, QUAX, CASPER, Atomic
- * Traditional DM direct detection: axion/ALP DM XENON100
- Lab. search: LSW (light shining through wall, ALPS, OSQAR)
 PVLAS (vacuum pol.)..... and LHC!

Experiment: new experiments and new detection ideas

e.g. in Haloscopes

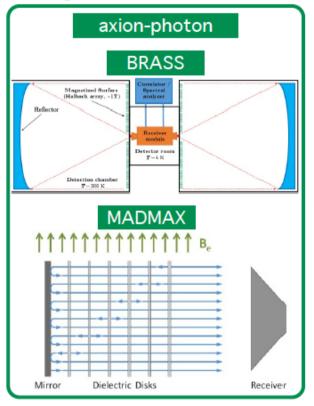
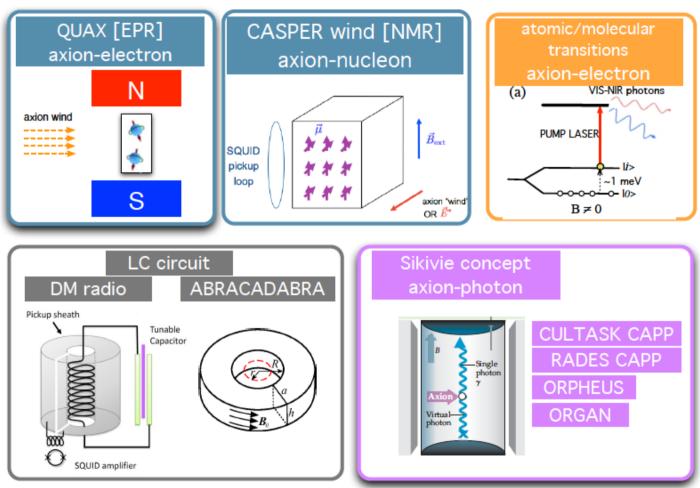
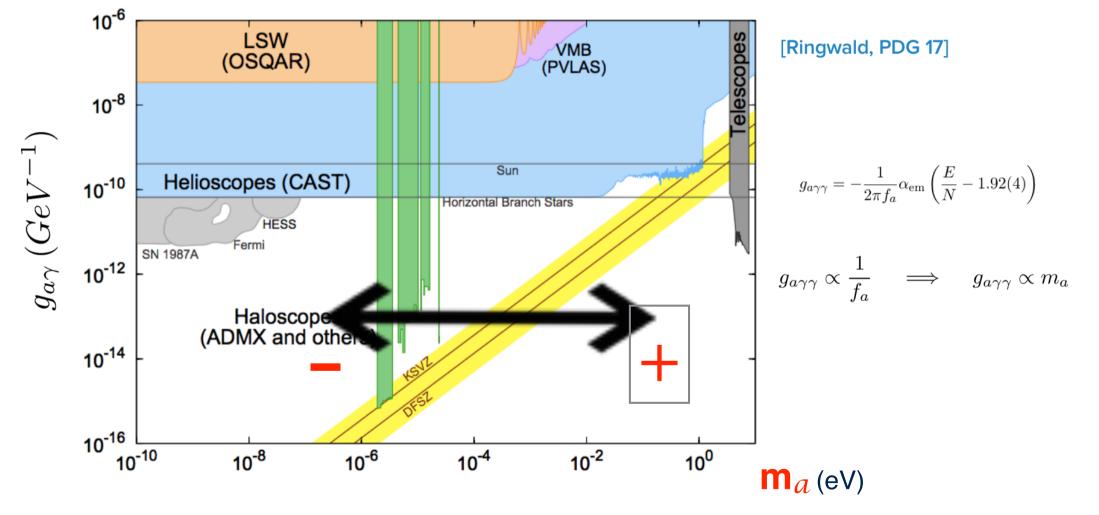


Image taken from C. Braggio talk at Invisibles18



plus LHC !

Intensely looked for experimentally...



... and theoretically

7

a ____