## Scotogenic $A_{5} \rightarrow A_{4}$ Dirac Neutrinos

## Ernest Ma

Physics and Astronomy Department
University of California Riverside, CA 92521, USA

## Contents

- Two Useful Ideas
- Tetrahedron and Pentatope
- Model Particle Content
- Seesaw Charged Leptons
- Scotogenic Dirac Neutrino Mass
- Freeze-In Dark Matter
- Concluding Remarks


## Two Useful Ideas

(A) Neutrino masses exist because of dark matter, i.e. scotogenically. [Ma, PRD 73, 077301 (2006)]

For Majorana neutrinos, dark parity may be related to lepton parity: $\pi_{D}=(-1)^{L+2 j}$, where $j$ is the intrinsic spin of the particle. [Ma, PRL 115, 011801 (2015)]

For Dirac neutrinos, dark number may be related to lepton number: $D=L-(2 j)_{[\bmod 2]}$.
[Ma, PLB 809, 135736 (2020)]
(B) Non-Abelian discrete flavor symmetries such as $A_{4}$ allow all charged-lepton masses to be different, and yet predict a pattern for neutrino masses and mixing.
[Ma/Rajasekaran, PRD 64, 113012 (2001)]
Up to 2012, the focus of model building was
Tribimaximal: $\theta_{13}=0, \sin ^{2} \theta_{23}=1 / 2, \sin ^{2} \theta_{12}=1 / 3$.
[Harrison/Perkins/Scott, PLB 530, 167 (2002)]
At present, the data are closer to
Cobimaximal: $\theta_{13} \neq 0, \sin ^{2} \theta_{23}=1 / 2, \delta_{C P}= \pm \pi / 2$.
[Babu/Ma/Valle, PLB 552, 207 (2003);
Grimus/Lavoura, PLB 579, 113 (2004)]

## Tetrahedron and Pentatope

In 3 dimensions, the points $(1,0,0),(0,1,0),(0,0,1)$, $(1,1,1)$ form a tetrahedron with the symmetry $A_{4}$. It has the irreducible representations $\underline{1}, \underline{1}^{\prime}, \underline{1}^{\prime \prime}, \underline{3}$. In the decomposition $\underline{3} \times \underline{3}=\underline{1}+\underline{1}^{\prime}+\underline{1}^{\prime \prime}+\underline{3}+\underline{3}$,

$$
U_{\omega}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

is obtained with $\omega=\exp (2 \pi i / 3)=-1 / 2+i \sqrt{3} / 2$.
[Cabibbo, PLB 72, 333 (1978); Wolfenstein, PRD 18, 958 (1978)]

In most applications, the charged-lepton mass matrix is diagonalized on the left by $U_{\omega}$, then the PMNS matrix is obtained from multiplying $U_{\omega}^{\dagger}$ to the unitary matrix $U_{\nu}$ diagonalizing the neutrino mass matrix also on the left. If

$$
U_{\nu}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 / \sqrt{2} & 0 & -i / \sqrt{2} \\
1 / \sqrt{2} & 0 & i / \sqrt{2}
\end{array}\right)
$$

then tribimaximal mixing occurs. [Ma, PRD 70, 031901R (2004)] If $U_{\nu}$ is an orthogonal matrix, then cobimaximal mixing occurs. [Fukuura/Miura/Takasugi/Yoshimura, PRD 61, 073002 (2000)]

In 4 dimensions, the points $(2,0,0,0),(0,2,0,0)$, $(0,0,2,0),(0,0,0,2),(\varphi, \varphi, \varphi, \varphi)$, where $\varphi=(1+\sqrt{5}) / 2=1.618$ is the golden ratio, form a pentatope with the symmetry $A_{5}$.
[Everett/Stuart, PRD 79, 085005 (2009)].
It has the irreducible representations $\underline{1}, \underline{3}, \underline{3}{ }^{\prime}, \underline{4}, \underline{5}$.
Their multiplication rules are $3 \times 3=1+3+5$,
$3^{\prime} \times 3^{\prime}=1+3^{\prime}+5,3 \times 3^{\prime}=4+5,3 \times 4=3^{\prime}+4+5$, $3^{\prime} \times 4=3+4+5,4 \times 4=1+3+3^{\prime}+4+5$, etc.
The decompositions to $A_{4}$ representations are $1 \sim 1$, $3 \sim 3,3^{\prime} \sim 3,4 \sim 3+1,5 \sim 3+1^{\prime}+1^{\prime \prime}$.

## Model Particle Content

Consider the following particle content:

| fermion/scalar | $S U(2)_{L} \times U(1)_{Y}$ | $A_{5}$ | $A_{4}$ | $L$ | $D=L-2 j$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $L_{L}=(\nu, l)_{L}$ | $(2,-1 / 2)$ | 3 | 3 | 1 | 0 |
| $l_{R}$ | $(1,-1)$ | 3 | 3 | 1 | 0 |
| $\nu_{R}$ | $(1,0)$ | $3^{\prime}$ | 3 | 1 | 0 |
| $E_{L, R}$ | $(1,-1)$ | 3 | 3 | 1 | 0 |
| $\Phi=\left(\phi^{+}, \phi^{0}\right)$ | $(2,1 / 2)$ | 1 | 1 | 0 | 0 |
| $N_{L, R}$ | $(1,0)$ | 4 | 3,1 | 0 | -1 |
| $\eta=\left(\eta^{0}, \eta^{-}\right)$ | $(2,-1 / 2)$ | $3^{\prime}$ | 3 | 1 | 1 |
| $\zeta^{0}$ | $(1,0)$ | 3 | 3 | 1 | 1 |
| $\zeta^{-}$ | $(1,-1)$ | $3^{\prime}$ | 3 | 1 | 1 |

There is only one Higgs doublet $\Phi$ as in the Standard Model (SM). Only renormalizable terms are allowed in this model, i.e. it is ultraviolet complete. All dimension-4 terms must obey $A_{5}$, whereas $A_{4}$ and its breaking occur through soft terms.
Allowed: $\bar{l}_{R} \Phi^{\dagger} L_{L}, \bar{E}_{R} \Phi^{\dagger} L_{L}(3 \times 1 \times 3)$;
$\bar{L}_{L} \eta N_{R}\left(3 \times 3^{\prime} \times 4\right) ; \bar{\nu}_{R} \zeta^{0} N_{L}\left(3^{\prime} \times 3 \times 4\right)$.
Forbidden: $\bar{\nu}_{R} \tilde{\Phi}^{\dagger} L_{L}\left(3^{\prime} \times 1 \times 3\right)$; $\bar{N}_{R} \tilde{\Phi}^{\dagger} L_{L}(4 \times 1 \times 3)$.
The soft trilinear term $\Phi \eta \bar{\zeta}^{0}\left(1 \times 3^{\prime} \times 3\right)$ breaks $A_{5}$, but not $A_{4}$. Hence $\nu_{L}$ cannot couple to $\nu_{R}$ at tree level because of $A_{5}$, but is linked to it in one loop under $A_{4}$.


## Seesaw Charged Leptons

Since both $l_{R}$ and $E_{R}$ transform as $\underline{3}$ under $A_{5}$, the latter may be defined to be the one which couples to $l_{L}$ through $\phi^{0}$ and the former does not. Once chosen this way, both $l_{R}$ and $E_{R}$ will couple to $E_{L}$. Hence the $6 \times 6$ mass matrix linking $(l, E)_{L}$ to $(l, E)_{R}$ is

$$
\mathcal{M}=\left(\begin{array}{cc}
0 & M_{l E} \\
M_{E l} & M_{E E}
\end{array}\right)
$$

Under $A_{5}$, all the $3 \times 3$ entries $M_{l E}, M_{E l}, M_{E E}$ are proportional to the identity, with $M_{l E}$ coming from $\left\langle\phi^{0}\right\rangle$.

It is now assumed that the soft term $M_{E l}$ breaks $A_{5}$ in a way compatible with $A_{4}$, using $E \sim 3$ and $l_{R} \sim 3$ and a gauge singlet flavon $\sim 3$. [Ma, MPLA 21, 2931 (2006)]

$$
M_{E l}=\left(\begin{array}{ccc}
h_{1} v^{\prime} & h_{2} v^{\prime \prime} & h_{3} v^{\prime \prime} \\
h_{3} v^{\prime \prime} & h_{1} v^{\prime} & h_{2} v^{\prime \prime} \\
h_{2} v^{\prime \prime} & h_{3} v^{\prime \prime} & h_{1} v^{\prime}
\end{array}\right)
$$

This magically decomposes to $U_{\omega} M_{\text {diag }} U_{\omega}{ }^{\dagger}$, with eigenvalues $h_{1} v^{\prime}+\left(h_{2}+h_{3}\right) v^{\prime \prime}, h_{1} v^{\prime}+\left(h_{2} \omega+h_{3} \omega^{2}\right) v^{\prime \prime}$, $h_{1} v^{\prime}+\left(h_{2} \omega^{2}+h_{3} \omega\right) v^{\prime \prime}$. The seesaw $3 \times 3$ charged-lepton mass matrix is $M_{l l}=M_{l E} M_{E E}^{-1} M_{E l}$, as desired.

## Scotogenic Dirac Neutrino Mass

Let $\psi_{1}^{0}=\eta^{0} \cos \theta-\zeta^{0} \sin \theta, \psi_{2}^{0}=\eta^{0} \sin \theta+\zeta^{0} \cos \theta$, with masses $m_{1,2}$, then the radiative Dirac neutrino mass matrix $\left(\mathcal{M}_{\nu}\right)_{i j}$ is [using $F(x, y)=x \ln (x / y) /(x-y)$ ]

$$
\frac{\sin \theta \cos \theta}{16 \pi^{2}} \sum_{k, k^{\prime}, a} f_{i k a}^{L} f_{k^{\prime} k 4}^{\phi} f_{k^{\prime} j a}^{R}\left[F\left(m_{2}^{2}, M_{a}^{2}\right)-F\left(m_{1}^{2}, M_{a}^{2}\right)\right] .
$$

The $f$ couplings come from $3 \times 3^{\prime} \rightarrow 4$ of $A_{5}$. Let $\left(a_{1}, a_{2}, a_{3}\right) \sim 3,\left(b_{1}, b_{2}, b_{3}\right) \sim 3^{\prime}$, then the four components of $N$ are $3^{-1 / 2}\left[\varphi^{-1} a_{3} b_{2}-\varphi a_{1} b_{3}, \varphi a_{3} b_{1}+\right.$ $\left.\varphi^{-1} a_{2} b_{3},-\varphi^{-1} a_{1} b_{1}+\varphi a_{2} b_{2}, a_{2} b_{1}-a_{1} b_{2}+a_{3} b_{3}\right]$.

If $M_{1,2,3,4}$ are all equal, then all three Dirac neutrino masses are equal as well. Assume instead that $N_{4}$ is very heavy (breaking $A_{5} \rightarrow A_{4}$ ), and all entries of the $3 \times 3$ mass matrix spanning $N_{1,2,3}$ are much smaller than $m_{1,2}$. In that case, $\mathcal{M}_{\nu}$ reduces to [Ma, PLB 717, 235 (2012)]

$$
\begin{gathered}
\frac{\sin \theta \cos \theta \ln \left(m_{2}^{2} / m_{1}^{2}\right)}{16 \pi^{2}} \sum_{k, k^{\prime}, a, b} f_{i k a}^{L} f_{k^{\prime} k 4}^{\phi} f_{k^{\prime} j b}^{R} M_{a b} . \\
\propto \tilde{\mathcal{M}}=\left(\begin{array}{ccc}
\varphi^{2} M_{12} & M_{11}+M_{33} & \varphi^{-2} M_{32} \\
M_{22}+M_{33} & \varphi^{-2} M_{21} & \varphi^{2} M_{31} \\
\varphi^{-2} M_{13} & \varphi^{2} M_{23} & M_{11}+M_{22}
\end{array}\right) .
\end{gathered}
$$

To obtain cobimaximal mixing, $\tilde{\mathcal{M}}$ is assumed to be diagonalized by an orthogonal matrix $\mathcal{O}$ on the left. This means that $\tilde{\mathcal{M}} \tilde{\mathcal{M}}^{\dagger}$ should be real. Using

$$
U_{l \nu}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} \\
\left(s_{12}-i c_{12} s_{13}\right) / \sqrt{2} & \left(-c_{12}-i s_{12} s_{13}\right) / \sqrt{2} & i c_{13} / \sqrt{2} \\
\left(s_{12}+i c_{12} s_{13}\right) / \sqrt{2} & \left(-c_{12}+i s_{12} s_{13}\right) / \sqrt{2} & -i c_{13} / \sqrt{2}
\end{array}\right),
$$

and the central values $s_{13}=0.148, c_{13}=0.989$,

$$
s_{12}=0.554, c_{12}=0.832
$$

$$
\mathcal{O}=U_{\omega} U_{l \nu}=\left(\begin{array}{ccc}
0.927 & -0.363 & 0.085 \\
0.336 & 0.714 & -0.614 \\
0.162 & 0.598 & 0.785
\end{array}\right)
$$

As a numerical example, assume first a reduction of parameters: $\varphi^{2}\left(M_{12}, M_{31}, M_{23}\right)=\varphi^{-2}\left(M_{21}, M_{13}, M_{32}\right)$, then $\mathcal{M}_{\nu}$ is of the form
$\mathcal{M}_{\nu}=\left(\begin{array}{lll}y_{1} & x_{1} & y_{3} \\ x_{2} & y_{1} & y_{2} \\ y_{2} & y_{3} & x_{3}\end{array}\right)$, with $\mathcal{M}_{\nu} \mathcal{M}_{\nu}^{\dagger}=\mathcal{O}\left(\begin{array}{ccc}m_{1}^{2} & 0 & 0 \\ 0 & m_{2}^{2} & 0 \\ 0 & 0 & m_{3}^{2}\end{array}\right) \mathcal{O}^{T}$,
resulting in

$$
\left(\begin{array}{c}
x_{1}^{2}+y_{1}^{2}+y_{3}^{3} \\
x_{2}^{2}+y_{1}^{2}+y_{2}^{2} \\
x_{3}^{2}+y_{2}^{2}+y_{3}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
0.859 & 0.113 & 0.026 \\
0.132 & 0.510 & 0.358 \\
0.007 & 0.377 & 0.616
\end{array}\right)\left(\begin{array}{c}
m_{1}^{2} \\
m_{2}^{2} \\
m_{3}^{2}
\end{array}\right),
$$

and

$$
\left(\begin{array}{l}
y_{1}\left(x_{1}+x_{2}\right)+y_{2} y_{3} \\
y_{3}\left(x_{1}+x_{3}\right)+y_{1} y_{2} \\
y_{2}\left(x_{2}+x_{3}\right)+y_{1} y_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-0.337 & 0.240 & 0.097 \\
0.079 & -0.206 & 0.127 \\
-0.031 & -0.438 & 0.469
\end{array}\right)\left(\begin{array}{l}
m_{1}^{2} \\
m_{2}^{2} \\
m_{3}^{2}
\end{array}\right) .
$$

Assuming normal ordering of neutrino masses with $\Delta m_{21}^{2}=7.53 \times 10^{-5} \mathrm{eV}^{2}$ and $\Delta m_{32}^{2}=2.453 \times 10^{-3} \mathrm{eV}^{2}$, the above 6 equations are solved for $y_{1}=0$, resulting in $x_{1}=0.00597 \mathrm{eV}, x_{2}=0.01334 \mathrm{eV}, x_{3}=0.02711 \mathrm{eV}$, $y_{2}=0.02850 \mathrm{eV}, y_{3}=0.00924 \mathrm{eV}, m_{1}=0.00684 \mathrm{eV}$. Hence $m_{2}=0.011 \mathrm{eV}, m_{3}=0.051 \mathrm{eV}$, with
$\sum m_{\nu}=0.07 \mathrm{eV}$, less than 0.15 eV from cosmology.

## Freeze-In Dark Matter

Defining $D=L-(2 j)_{[\bmod 2]}$, the charged leptons and neutrinos have $D=0$, whereas $D=1$ for $\eta, \zeta$ and $D=-1$ for $N$.
The dark neutral fermions $N$ are presumably light, say of order GeV in mass, and they are weakly coupled to the leptons. They are not suitable for freeze-out dark matter, but with the help of the charged scalar gauge singlet $\zeta^{-} \sim 3^{\prime}$, they may be rare decay products of the SM Higgs boson, with a lifetime long enough to be freeze-in dark matter.


The effective Higgs Yukawa coupling $f_{h}$ to $\bar{N} N$ is

$$
f_{h}=\frac{\lambda_{\zeta} f_{\zeta}^{L} f_{\zeta}^{R} v m_{E}}{16 \pi^{2}}\left[\frac{1}{m_{\zeta}^{2}-m_{E}^{2}}-\frac{m_{E}^{2} \ln \left(m_{\zeta}^{2} / m_{E}^{2}\right)}{\left(m_{\zeta}^{2}-m_{N}^{2}\right)^{2}}\right] .
$$

The decay rate of $h$ to $\bar{N} N$ is

$$
\Gamma_{h}=\frac{f_{h}^{2} m_{h}}{8 \pi} \sqrt{1-4 r^{2}}\left(1-2 r^{2}\right), \quad r=m_{N} / m_{h}
$$

If the reheat temperature of the Universe is $T_{R} \sim 1$ to 10 TeV , and $f_{h} \sim 10^{-11}$, then $N$ has the correct relic density, as a feebly interacting massive particle (FIMP).

## Concluding Remarks

Flavor symmetries may relate Dirac neutrino masses and mixing to their dark matter counterparts through the scotogenic mechanism, using the symmetry $A_{5}$ breaking to $A_{4}$. A numerical example of cobimaximal neutrino mixing fitting present data with normal ordering of neutrino masses is obtained, implying a $3 \times 3$ dark fermion mass matrix of the form (in units of order GeV )

$$
\mathcal{M}_{N} \sim\left(\begin{array}{ccc}
0.987 & 0 & 7.461 \\
0 & 1.724 & 0.353 \\
1.089 & 2.419 & -0.390
\end{array}\right)
$$

Details of this presentation appear in PLB 829, 137104 (2022) [arXiv:2202.13031].

Further development:
The lepton number $L$ is an input global symmetry assumed in this model. However, if the dark number $D$ is gauged and is broken by 3 (or more) units, then $D$ remains a global symmetry.
[Ma/Picek/Radovcic, PLB 726, 744 (2013)]
The linkage of $N$ and $\eta, \zeta$ to the leptons through $A_{5} \rightarrow A_{4}$ would again lead to $D=L-(2 j)_{[\bmod 2]}$. [Ma, arXiv:2203.12034]

## International Conference on Neutrinos and Dark Matter (NuDM-2022)

25-28 September 2022 in Sharm El-Sheikh, Egypt
https://conferences.andromedapublisher.com/
NuDM-2022/index.html
email: NuDM-2022@andromedapublisher.com
Your participation is most welcome!

