Momentum Dependent Effects in Higgs Couplings

Gustavo Burdman
University of São Paulo, Brazil

FLASY 2022, Lisbon

Based on arXiv:2204.07094, with Pedro Bittar

Outline

- •Physics Beyond the Standard Model in the next decade: Energy vs. Precision
- Exploring BSM in the Higgs Couplings

How do we study sensitivity to extensions of the SM?

EFTs

Explicit Models

- •Form Factors in Higgs Couplings from BSM physics
- Models and Signals
- Conclusions

The Transition from Energy to Precision

Looking for new physics beyond the SM

- Look for new particles at energy frontier: LHC.
- · Look for hidden/dark sectors: dark sector/DM searches at various energies
- Test the SM with precision, low(er) energies: Flavor Physics, Electroweak tests
- Precision Tests of the Higgs Sector: Higgs Couplings to everything

Higgs as a window to new dynamics BSM + Energy Frontier: at $\sqrt{s} \simeq 14~{
m TeV}$ for a while

Understand Higgs couplings at the LHC/HL-LHC

Higgs Couplings and New Physics

Effective Field Theory approach

New physics encoded in expansion in local HDOs

$$\mathcal{L}_{\text{SM}} + \sum_{i,n>4} \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}$$

SMEFT Brivio and Trott (2019)orHEFT Alonso, Gavela, Merlo, Rigolin, Yepes (2013)

- Model Independent
- Correlated constraints from EW and Higgs data
- Are dim-6 operators enough? Do we need dim-8 in some cases?
- •Reconstruction of non-local effects

 Are dim-6 enough to be as sensitive to them as the HL-LHC data?

Momentum Dependence in Higgs Couplings

Higgs as a window to BSM physics

New physics can generate momentum dependence in couplings

Requires off shell momentum

Form factor in Higgs couplings

Isidori, Trott (2014)

Bellazzini, Csaki, et al. (2016)

Gonçalves, Han, Mukhopadhyay (2018)

Is the EFT approach ideal to deal with momentum dependence effects?

Englert, Soreq, Spannowsky (2014) Azatov, Grojean, Paul, Salvioni (2014)

Form Factors in Higgs Couplings from BSM

Model dependent approach

Compute the Higgs form factors in a specific model — full momentum dependence

Matching with EFT may require operators of dim > 6 to capture full non-local features

Loose generality, Gain in power of data to constrain specific BSM not directly accessible

"Scan" over models so as to cover all signals: where is the momentum dependence coming from?

- Higgs line
- Gauge boson line
- Fermion line

Form Factors in Higgs Couplings from BSM

General features of Higgs Form Factors

In general, Higgs coupling to SM particle X in an extension of the SM

$$c_{h,X}(q,p) = c_{h,X}^{SM} \kappa_X F(q,p)$$

with $F(0, m_X) = 1$ couplings defined at zero momentum

But on shell modification can always be reabsorbed in $\kappa_X' = \kappa_X F(m_h, p)$

> Need off shell Higgs or X to observe momentum dependence

Form Factors in Higgs Couplings from BSM

Three Examples

A Composite Higgs Model

Fermion and Vector resonances

Mixing of Higgs with a heavier scalar

Scalar resonance

Mixing with an unparticle scalar sector

No resonances

Agashe, Contino, Pomarol (2005)

Composite Higgs Models

Higgs is a pseudo-Goldstone boson $G \to H$ Coset G/H at scale f

Spectrum

$$\mathcal{L} = \mathcal{L}_{ES} + \mathcal{L}_{CS} + \mathcal{L}_{int.}$$

Elementary Sector: SM fermions and gauge bosons

Composite Sector: Resonances and the pNGBs, including Higgs

Higgs couplings to SM from \mathcal{L}_{int} .

Integrating out resonances — form factors

Composite Higgs Models: MCHM SO(5)/SO(4)

Vector Resonances $SO(4) \sim SU(2)_L \times SU(2)_R$

Kinetic Mixing

$$\mathcal{L}_{\text{int.}}^{V} = \frac{1}{2} \frac{g}{g_{\rho}} W_{\mu\nu}^{a_{L}} \rho^{a_{L},\mu\nu} + \frac{1}{2} \frac{g'}{g_{\rho}} B_{\mu\nu} \rho^{3_{R},\mu\nu}$$

(equivalent to mass mixing)

Gauge Form Factor in MCHM

$$-\frac{\mathbf{p_h}}{\mathbf{p_2}} - \mathbf{q_V} \mathbf{p_2} = g_V M_V \kappa_\xi f_{VVh}(p_1, p_2)$$

$$\kappa_{\xi} = \sqrt{1 - v^2/f^2} = \sqrt{1 - \xi}$$

$$f_{VVh}(M_V^2, M_V^2) = 1$$

Fermion Form Factor in MCHM

Fermions Embed in incomplete 5 of SO(5) → MCHM₅

$$q_L^{\mathbf{5}} = \begin{pmatrix} -ib_l \\ -b_l \\ -it_l \\ t_l \\ 0 \end{pmatrix} \qquad t_r^{\mathbf{5}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ t_r \end{pmatrix} \qquad b_r^{\mathbf{5}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ b_r \end{pmatrix}.$$

Fermion Resonances 4 and 1 of SO(4)

$$\overline{q_L}$$
 ψ_4 $\overline{t_R}$ ψ_1 $\overline{q_L}$ ψ_2 ψ_4 ψ

Fermion Form Factor in MCHM

Integrating out fermion resonances

Momentum dependence in $\bar{t}th$ coupling

Fermion Form Factor in MCHM

$$= y_t \kappa_{\xi}^{\mathbf{5}} f_{\bar{t}th}(p_1, p_2)$$

$$\kappa_{\xi}^{5} = \frac{1 - 2\xi}{\sqrt{1 - \xi}}$$

$$f_{\bar{t}th}(m_t^2, m_t^2) = 1$$

Effects in MCHM

Mixing with a Scalar

Additional Scalar Doublet Hill, Machado, Thomsen, Turner (2019)

$$\mathcal{L} = |D_{\mu}H_{a}|^{2} + |D_{\mu}H_{b}|^{2} - M_{a}^{2}H_{a}^{\dagger}H_{a} - M_{b}^{2}H_{b}^{\dagger}H_{b} - \mu^{2}(H_{a}^{\dagger}H_{b} + h.c.)$$
$$-\frac{\lambda}{2}(H_{a}^{\dagger}H_{a} + H_{b}^{\dagger}H_{b})^{2} + \lambda'(H_{a}^{\dagger}H_{b}H_{b}^{\dagger}H_{a})$$

$$\Rightarrow f_{hVV}(q^2) = \frac{2M_V^2}{v} \left(1 - \frac{\mu^4}{M_b^4} \frac{q^2}{q^2 - M_b^2}\right)$$

Note: on shell deviation

$$f_{hVV}(m_h^2) = \frac{2M_V^2}{v} (1 + c_b \xi)$$

$$\xi = \frac{v^2}{M_b^2}$$

$$c_b = 2\lambda \frac{\mu^4}{M_b^4}$$

Mixing with a Scalar

$$M_b = 2 \text{ TeV}$$

Mixing with an Unparticle Scalar Sector

Scalar unparticle operator $\phi(x)$ of dimension d

1 < d < 2

Fox, Rajaraman, Shirman (2007)

Cacciapaglia, Marandella, Terning (2008)

2-point function with IR cutoff μ

$$\Delta(p,\mu,d) = \int d^4x \langle 0|\mathcal{T}\phi(x)\phi^{\dagger}(0)|0\rangle = \frac{A_d}{2\pi} \int_{\mu^2}^{\infty} ds (s-\mu^2)^{d-2} \frac{i}{p^2 - s + i\epsilon},$$

Non-local action

$$S_{\rm NL} = \int d^4x \left\{ \phi^{\dagger} (D^2 - \mu^2)^{2-d} \phi + \alpha |H|^2 \frac{|\phi|^2}{\Lambda^{2(d-1)}} \right\}$$

Form Factor from an Unparticle Scalar Sector

Results for $f_{hVV}(q^2)$ with off shell Higgs, on shell gauge bosons

$$\mu = 1 \text{ TeV}$$

Constraints from Higgs Production

If top line affected

bounds on form factor scale from $gg \to h \to \gamma\gamma, \ ZZ^*, \ WW^*$

$$gg \rightarrow h \rightarrow \gamma \gamma, ZZ^*, WW^*$$

Current ATLAS/CMS data compatible with $M>1.5~{
m TeV}$ for generic form factor

 MCHM_5 : $f > 1.5 \; \mathrm{TeV}$ if only top coupling affected

But need to perform full study including gauge boson form factor (may relax bound a bit)

Sensitivity of channels to different sources of momentum dependence

- 1. Momentum dependence in gauge boson or fermion lines coupled to Higgs
 - Example: CHMs. Vector and Fermion resonances
 - Channels:

E.g. $\overline{t}th$ in MCHM₅

2. Momentum dependence in Higgs line

E.g.
$$pp \to h^* \to 4\ell$$

Note: Destructive interference in SM

In $pp \to h^* \to 4\ell$

Scalar

Unparticle Scalar

ff suppression

Conclusions

•Sensitivity to momentum dependence in Higgs couplings important to test SM at the (HL-)LHC

Study feasibility of channels with (significantly) off shell Higgs couplings

Complementary Strategies:

Model-independent EFT approach: more general

Model dependent approach: full momentum dependent known, more amenable to study/simulate signals

• To Do

More models and their matching the the EFTs

Explore space-like off shell regions: Signals?