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Purpose: The Flavour Problem

Understanding the origins of flavour in both quark and lepton sectors, i.e., of the patterns
of quark masses and mixing, and of the charged lepton and neutrino masses and of
neutrino mixing and of CP violation in the quark and lepton sector, is one of the most
challenging fundamental problems in contemporary particle physics.

“Asked what single mystery, if he could choose, he would like to see solved in his lifetime,
Weinberg doesnt have to think for long: he wants to be able to explain the observed
pattern of quark and lepton masses.”

From Model Physicist, CERN Courier, 13 October 2017.

The renewed attempts to seek new better solutions of the flavour problem than those
already proposed were stimulated primarily by the remarkable progress made in the studies
of neutrino oscillations, which began 24 years ago with the discovery of oscillations of
atmospheric v, and v, by SuperKamiokande experiment. This lead, in particular, to the
determination of the pattern of the 3-neutrino mixing, which turn out to consist of two
large and one small mixing angles.

In what follows we will discuss a new approach to the flavour problem within the three
family framework.
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The Lepton Flavour Problem

Consists of three basic elements (sub-problems), namely, understanding:

e why My, << Me,,r, Mgy ¢ = U,C,t, d,s,b (m, <05 ev, m>0511
MeV, m, & 2 MeV);

e The origins of the patterns of
i) neutrino mixing of 2 large and 1 small angles (¢!, = 33.65°, 6., = 47.1°, 6}, = 8.49°),
and of ii) Am?j, i.e., of Am3, < |Am3,|, Am3,/|Am3,| = 1/30.

e The origin of the hierarchical pattern of charged lepton masses:
Me << My, << M, me/my, = 1/200, my/m, £ 1/17.
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T he quark Flavour Problem

Consists of two basic elements (sub-problems), namely, understanding:

e The origin(s) of the observed patterns of up- and down-type quark masses character-
ized by strong hierachies.

Mg < ms < my, 2 =502x102, 2 =222%10"2, my, = 4.18 GeV:
Mg mp

My,

—17x10°3, I —73%x10%, my = 172.9 GeV:

me my

my K me <K my,

e The origin of the pattern of the quark mixing: the three quark mixing angles are small
and hierarchical, sinf{, < sin6j; < sinf], < 1, sin§], = 0.22.

Each of the considered sub-problems of the lepton and qaurk flavour problems is by itself
a formidable problem. As a consequence, solutions to each individual problem have been
proposed. However, a universal " elegant and convincing” solution, i.e., solution without
significant " drawbacks’”, to the lepton and quark flavour problems is still lacking.
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The Flavour Problem: Modular Invariance Approach

Modular invariance approach to the flavour problem was proposed in F. Feruglio,
arXiv:1706.08749 and has been intensively developed in the last four years.

In this approach the flavour (modular) symmetry is broken by the vacuum expectation
value (VEV) of a single scalar field - the modulus . The VEV of r can also be the only

source of violation of the CP symmetry.

Many (if not all) of the drawbacks of the widely studied alternative approaches are absent
in the modular invariance approach to the flavour problem.

The first phenomenologically viable “minimal” (in terms of fields, i.e., without flavons)
lepton flavour model based on modular symmetry appeared in June of 2018 (J.T. Penedo,
STP, arXiv:1806.11040). Since then various aspects of this approach were and continue
to be extensively studied — the number of publications on the topic exceeds 150.
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Matter Fields and Modular Forms

The matter(super)fields (charged Ilepton, neutrino, quark) transform under [ ~
PSL(2,2) = SL(2,2) /72, 7o = {I,—1} (I ~ SL(2,Z)) as "weighted” multiplets:

i L (er+d) R pi (), v €T (v €T,

b
w=§$—i§m= ‘;d ca,be,d€Z,ad—bc=1,Imr >0

k, is the weight of v; k, € Z (or rational number).

r(N) - principal congruence (normal) subgroup of SL(2,7Z).

p(¥) is a unitary representation of the inhomogeneous (homogeneous) finite modular group
Fy=T/T(N) (I, =T/ (N)), ¥ — representation of v in 'y (I})

F. Feruglio, arXiv:1706.08749; S. Ferrara et al., Phys.Lett. B233 (1989) 147, B225 (1989) 363

As we have indicated in brackets, one can consider also the case of ' and vy € N'(N). Then
p(v) will be a unitary representation of the homogeneous finite modular group .
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The Fundamental Domain of T shown for Imr < 2 (the red dots correspond to solutions
of the lepton flavour problem, see further).

P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933.
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Remarkably, for N < 5, the inhomogeneous finite modular groups [y are isomorphic to
non-Abelian discrete groups widely used in flavour model building:

[o~S3, T3~ A4, T4~54 and 5 ~ As.

["n is presented by two generators S and T satisfying:

S2=(ST)3=1TN=1.

The group theory of ', ~ S3, T3~ Az, 4~ 54 and 5 ~ A iS summarized, e.d., in P.P.
Novichkov et al., JHEP 07 (2019) 165, arXiv:1905.11970.

M~ SL(2,Z) — homogeneous modular group, (V) and the quotient groups Iy, = I'/T(N)
— homogeneous finite modular groups. For N = 3,4,5, I, are isomorphic to the double
covers of the corresponding non-Abelian discrete groups:

Mo~A,=T,T,~S5) and 'y ~ Ag.

I‘§V Is presented by two generators S and T satisfying:

S4=(ST)3=TN=171, 52T =T52 (S2=R).

The group theory of I'; ~ A), '), ~ S} and 'y ~ A for flavour model building was developed
in X.-G. Liu, G.-J. Ding, arXiv:1907.01488 (A4));
P.P. Novichkov et al., arXiv:2006.03058 (5,); C.-Y. Yao et al., arXiv:2011.03501 (A}).
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Relevant sub-groups of 'y and [y -

73" = {1, ST, (ST)?}

74 = {I1,T,(T)?, .., TN "1}

Myt 23 ={I,S}

Myt 27 ={I,S,52,83} (R>=1, Z% ={I,R}, RT = 1)

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Group | Number of elements | Generators | Irreducible representations
Sa 24 S, T (U) 1, 1,2, 3,3
S, 48 S, T(R) |1,1,2 /3 ,3,1,1, 2,3 3%
Ay 12 S, T 1, 1,17, 3
T’ 24 S, T (R) 1, 1,17, 2,22 3
As 60 S, T 1,3,3,4,5
Al 120 S, T 1,3,3,4,5 2, 2, 4,6.

Number of elements, generators and irreducible representations of Si, S), A4, A, =T, As
and A; discrete groups.
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Examples of symmetries: Ay, S, As.
From M. Tanimoto et al., arXiv:1003.3552
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Modular Forms

Within the considered framework the elements of the Yukawa coupling and fermion mass
matrices in the Lagrangian of the theory are expressed in terms of modular forms of a
certain level N and weight k;.

The modular forms are functions of a single complex scalar field — the modulus - — and
have specific transformation properties under the action of the modular group.

Both the Yukawa couplings and the matter fields (supermultiplets) are assumed to trans-
form in representations of an inhomogeneous (homogeneous) finite modular group I‘%).

Once T acquires a VEV, the modular forms and thus the Yukawa couplings and the form
of the mass matrices get fixed, and a certain flavour structure arises.

Quantitatively and barring fine-tuning, the magnitude of the values of the non-zero ele-
ments of the fermion mass matrices and therefore the fermion mass ratios are determined
by the modular form values (which in turn are functions of the 7’'s VEV).
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Modular Forms (contd.)

The key elements of the considered framework are modular forms f(r) of weight ks and
level N — holomorphic functions of r, which transform under I (I") as follows:

fOyr) = (er+ ) f(r), v eT(N) (y € M(N)),

In the case of I (I') non-trivial modular forms exist only for positive even integer (positive
integer) weight k;.

For given k, N (N is a natural number), the modular forms span a linear space of finite
dimension:

of weight k and level 3, M, (I’ ~ AY), is k + 1;

of weight & and level 4, M, (I ~ S, is 2k + 1;

of weight k and level 5, M (I ~ AY), is 5k + 1.

Thus, dimMq (I ~ A,) =2, dimMq (I, ~ S4) = 3, dimMq (I ~ A) = 6.

One can find a basis F(7) = (fi(7), f2(7),...)T in each of these spaces such that for any
v €T (v er), F(yr) belongs to the same space and transforms according to a unitary
irreducible representation r of 'y (I'):

F(yr) = (et + D pe(A)F(r), €T (yeT).

This result is at the basis of the modular invariance approach to the flavour problem
proposed in F. Feruglio, arXiv:1706.08749.
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Following arXiv:1706.08749, it was of highest priority and of crucial importance for model
building to find the basis of modular forms of the lowest weight 2 (weight 1) transforming
in irreps of Iy ().

Multiplets of 'y (I"y) of higher weight modular forms can be constructed from ten-
sor products of the lowest weight 2 (weigh 1) multiplets (they represent homogeneous
polynomials of the lowest weight modular forms).
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The modular forms of level N = 2,3 4 for 234 ~ S3, A4, 5S4 have been constructed first by
use of the (log derivatives of) Dedekind eta function, n(r),

n(r) = ¢1/%* E[ (1—q¢"), q=¢e?".

n=1

n(7) has the following g-expansion:

n(r) = ¢1/2% § (—1)" qn(3n=1)/2.

n——~oo
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For (I's ~ A,), the generating (basis) modular forms of weight 2 were shown to form a
3 of A; (expressed in terms of log derivatives of Dedekind n-function »n'/n of 4 different
arguments).

F. Feruglio, arXiv:1706.08749

For (I'; ~ S3), the two basis modular forms of weight 2 were shown to form a 2 of S3
(expressed in terms of n'/n of 3 different arguments).

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391

For (I"'y ~ S4), the 5 basis modular forms of weight 2 were shown to form a 2 and a 3’ of
Sa (expressed in terms of n'/n of 6 different arguments).

J. Penedo, STP, arXiv:1806.11040

For (I's ~ As), the 11 basis modular forms of weight 2 were shown to form a 3, a 3’ and
a 5 of As (expressed in terms of Jacobi theta function 03(z(7),t(7)) for 12 different sets
of z(7),t(1)).

P.P. Novichkov et al., arXiv:1812.02158; G.-J. Ding et al., arXiv:1903.12588

Multiplets of higher weight modular forms have been also constructed from tensor prod-
ucts of the lowest weight 2 multiplets:

i) for N = 4 (i.e., Si), multiplets of weight 4 (weight k£ < 10) were derived in
arXiv:1806.11040 (arXiv:1811.04933);

ii) for N =3 (i.e., Az) multiplets of weight k£ < 6 were found in arXiv:1706.08749;

iii) for N =5 (i.e., As), multiplets of weight k£ < 10 were derived in arXiv:1812.02158.
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More elegant constuction: modular forms for A}, S), AL, and As, S, As.

For (I'; ~ A), the generating (basis) modular forms of weight 1 were shown to form a 2
of AQL, expressed in terms of two functions of the Dedekind eta function:

5 =B _n(1/3)
n(r) n(r)

X.-G. Liu, G.-J. Ding, arXiv:1907.01488

For (I, ~ S,), the 3 basis modular forms of weight 1 were shown to form a 3 and of S,
expressed in terms of two Jacobi constant functions (which are related to the Dedekind
eta function, see further).

P.P. Novichkov et al., arXiv:2006.03058

For (I ~ AL), the 6 basis modular forms of weight 1 were shown to form a 6 of Aj
and are expressed in term of two functions of r (which are related to the Dedekind eta
function).

C.-Y. Yao et al., arXiv:2011.03501

In each of three cases of A), S, and A; the lowest weight 1 modular forms, and thus all
higher weight modular forms, icluding those (of even weight) associated with A4, S, and
As, constructed from tensor products of the lowest weight 1 multiplets, were shown to
be expressed in terms of only two independent functions of 7 .

These pairs of functions are different for the three different groups; but they all are
related (in a different way) to the Dedekind eta function and have similar ¢g—expansions,
i.e., power series expansions in g = ™",
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The modular forms of level N = 2.3,4,5 for I, . ~ S3, A” s A" have been constructed
2,3,4,5 4 4 5

by use of the of Dedekind eta function, n(r).
O
_ 1/24 12
(M) =q¢"* T A—-q"), q=e°"".
n=1

In the cases of ') ~ AY) two “Jacobi theta constants” (functions of 7) are also used.
Modular forms of level N =4 for I, ~ S, (I's ~ S4) — in terms of 0(7) and &(7):

IR Ly = 2m7(47)
P2y — 23T s = a0

©,(7) and ©3(7) are the Jacobi theta constants, n(ar), a = 1,2,4, is the Dedekind eta.
Modular forms of level N =3 for I'; ~ A ('3 ~ As) — in terms of e; and éx:

_ G m/3)
n(r) n(r)

Modular forms of level N = 5 for I'; ~ A, (I's ~ Asz) — in terms of 65(7) and es5(7):
Os5(7) = exp(—1imw/10) @1_10’%(57') n=3/5(1), es(1) = exp(—i3w/10) @%’%(57) n=3/5(1).

0(t) =

= ©-(27).

e1
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In each of three cases of A}, S, and A; the lowest weight 1 modular forms, and thus all
higher weight modular forms, icluding those (of even weight) associated with A4, S, and
As, constructed from tensor products of the lowest weight 1 multiplets, were shown to
be expressed in terms of only two independent functions of 7.

These pairs of functions are different for the three different groups; but they all are
related (in different ways) to the Dedekind n-function (in the case of A, (4s5) - to two
Jacobi theta constants also) and have similar (fastly converging) ¢g—expansions, i.e., power
series expansions in g = 2™,

Thus, in the case of a flavour symmetry described by a finite modular group I’(’), N =
2,3,4,5, the elements of the matices of the Yukawa couplings in the considered approach
represent homogeneous polynomials of various degree of only two (holomorphic) functions
of 7. They include also a limited (relatively small) nhumber of constant parameters.
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. /
Example: S,
P.P. Novichkov, J.T. Penedo. S.T.P., arXiv:2006.03058
Weight 1 modular forms furnishing a 3 of Sy

V2¢e6
Yé(l)(T) = g2
— 02
Modular S; lowest-weight 2 multiplets furnish a 2 and a 3’ irreducible representations of
Ss4 (S;) and are given by: :

L (% — &t Y;

1 4 4 3

Y(z) (7-) = (2 (Q Te ) = n Y(2) (7-) = \/EEQ 63 ) = | Y
2 —/6262 Y> )’ ¥ 5 83 o v
_o¢ 5

At weight k£ = 3, a non-trivial singlet and two triplets exclusive to S) arise:
YP(r) =v3(c0°—<%0)

1 20+ c0° . 43363
294 6

v (r) = @(565 0 B 52) : Yg(/3)(7')=§ 96423454926

2—\/5(0 —560) —3ec0% —¢

At weight £ = 4 one again recovers the S; result: the modular forms furnish a 1, 2, 3
and 3’ irreducible representations of S5 (5).

1 (pn8 4 pa 8
w1 wa @, [ %(6°—10e%0% +£8)
Y) (T)—Q—\/g(e +14e70 +€)’ Yy (T)_( \/5(8206+€6(92) ’

1
(@) A S (4) ! ?@8_68) )
Y. (7-):— 6305—670 ) Y/ (T): 272 697+7€503 ’
3 2V2 ’ Y2

—e0" 4563

(7 305+ &7 0)

N

2
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The functions 6(7) and (7) are given by:

n°(2r) _ y = 2n7(47)
e — 930, s ==5s

©-(7) and ©3(7) are the Jacobi theta constants, n(ar), a = 1,2,4, is the Dedekind eta
function.

0(r) =

= ©2(27).

The functions 6(7) and (r) admit the following g-expansions - power series expansions
in g4 = exp(inT/2) (IM(7) >V3/2, |qa] < 0.26) :

2
0(t) = 1+22q§2k) =14+2q¢;+2¢°+...,
k=1

132
(1) =2) oV =2¢,+260 4267+

k=1

In the “large volume” limit Inr — o0, @ — 1, € — 0.
In this limit ¢ ~ 2¢4 and € can be used as an expansion parameter instead of 4.
Due to quadratic dependence in the exponents of ¢;, the g—expansion series converge

rapidly in the fundamental domain of the modular group, where Im(7) > +/3/2 and |¢4| <
exp(—mv/3/4) ~ 0.26.

Similar conclusions are valid for the pair of functions in terms of which the lowest weight
1 modular forms, and thus all higher weight modular forms of A, and A’5 are expressed.
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Example: Ag
C.-Y. Yao et al., arXiv:2011.03501

Weight 1 modular forms furnishing a 6 of Af:
1 T
YV(r) = (268 + 02,202 — €2, 56502, 5V2e2 02, — 522 02,554 05) .

The functions 6s5(7) and e5(7) are related to the Dedekind eta function and the Jacobi
theta constants and have the following g—expansions:

3 2 28
0 -1 ~ 5 < 10 =~ 15 e
5(7') + 5Q5 + >5 ds 125Q5 +
2 12 37 )
es(T) = gs (1 — gqg + Eqéo + +Eqé5 + ) , g5 = exp(i277/5).

In the “large volume” limit Im7 — oo, similar to the S, two functions, 95 — 1,

eg — O.

In this limit £5 ~~ 5 and £5 can be used as an expansion parameter instead of (5.
The ¢s—expansion series converde rapidly in the fundamental domain of the modular
group, where Im(7) > +/3/2 and |gs| < exp(—7v/3/5) ~ 0.34.
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T he Framework

N =1 rigid (global) SUSY, the matter action S reads:

S = [d*2d20d%0 K(r,7,%,%) + (/ d4z d20 W(r,¥) + h.c.) |

K is the Kahler potential, W is the superpotential, ¢ denotes a set of chiral supermultiplets
Yi, 6 and 0 are Grassmann variables;

7 is the modulus chiral superfield, whose lowest component is the complex scalar field
acquiring a VEV (we use in what follows the same notation r for the lowest complex
scalar component of the modulus superfield and call this component also “modulus’).
7 and 1; transform under the action of T (I") in a certain way (S. Ferrara et al., PL B225
(1989) 363 and B233 (1989) 147). Assuming that ¢, = ¢,;(x) transform in a certain irrep
r; of 'y (I'y), the transformations read:

: ( at + b
_ T — ,
v = zd clr (M) : 3 ct + d

i = (er + d) 7 pr,(7) Ui

v; iIs not a modular form multiplet, the integer (—%;) can be >0, <0, O.
Invariance of S under these transformations implies (global SUSY):
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W () = W (),
\K(Ta?awaa) — K(Ta?awaa) =+ fK(Taw) +E(T7@) .

The second line represents a Kahler transformation.
An example Kahler potential that is widely used in model building reads:

K (7,7, ¢,%) = —Aglog(—ir +i7) + X

Ao > 0 having mass dimension one.

More general K(7,7,,¢) and the possible consequences they can have for flavour model
building are discussed in

Mu-Chun Chen et al., arXiv:1909.06910 and 2108.02240; Y. Almumin et al.,
arXiv:2102.11286.
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W(r,¢) - W(r,v),

The superpotential can be expanded in powers of ;:

W(r, ) = ;: ;: ;: Gir cccines Viy cin,s () iy 00 )q

n {i1,..in} s

1 stands for an invariant singlet of 'y (I'y). For each set of n fields {v;,,...,%;}, the
index s labels the independent singlets. Each of these is accompanied by a coupling
constant g;, ;. s and is obtained using a modular multiplet Y;, ; s of the requisite weight.
To ensure invariance of W under 'y (I'y), Y;, ., s(7) must transform as:

Y(1) 5 (et + ) pry (1) Y (1),
ry is a representation of 'y (I')y), and ky and ry are such that
ky = ki, + -+ ki, , (1)
ry @r;, ®...0r; O1. (2)

Thus, Y, i s(7) represents a multiplet of weight ky and level N modular forms trans-
forming in the representation ry of 'y ().
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Mass Matrices
Consider the bilinear (i.e., mass term)

i M(7)ij 5,

where the superfields ¢y and ¢ transform as

v L (er+d) o (Y (), TV, N=2,3,4,5),
¢ B (e + )T L) v, (), T,

Modular invariance: M(7);; must be modular form of level N and weight K = k + k¢,

M(t) 5 M(y7) = (er + )X p°(7)* M (m)p()T.
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Inputs in the Analyses

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Lepton sector: reference 3-r mixing scheme

3
L= > Ujvj l=ep,r.
j=1

vi, m; = 0: Majorana particles (assumed).

Data: 3 vs are light: v 53, m;23 S 0.5 eV,
the value of min(m;) and the *“ordering” unknown.

The PMNS matrix U - 3 x 3 unitary: 615, 013, 0>3 -
known; CPV phases §, as1, @31 - unknown.

Thus, 5 known 4+ 4 unknown parameters 4+ MO.

“Known” = measured; “unknown” = not measured.

me, My, mr also known - used as input.
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Example: Lepton Flavour Models Based on S,
(Seesaw Models without Flavons)

P.P. Novichkov et al., arXiv:1811.04933

We assume that neutrino masses originate from the (supersymmetric) type I seesaw
mechanism.

The fields involved:
e two Higgs doublets H, and Hy;
e three lepton SU(2) doublets Li, L, Ls3;
e three neutral lepton gauge singlets N7, N5, N3;
e three charged lepton SU(2) singlets EY, ES, Ef.
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We work in a basis in which the S; generators S and T are represented by symmetric
matrices for all irreducible representations r. In this basis the triplet irreps of S and T to
be used read:

1 (1 2w2 2w (-1 2w Dw?
S = :|:§ 2w 2 —wi|, T= :|:§ 2w 2w? —1 |,
2w2 —w 2 2w?2 —1 2w

27T /3

W — . The plus (minus) corresponds to the irrep 3 (3') of S,.

In the employed basis we have:

1 0 O
ST =10 w2 0
O 0O w
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We assume that neutrino masses originate from the (supersymmetric) type I seesaw
mechanism. The superpotential in the lepton sector reads

W =a(ELHgfp(Y)); +9g(NLH.fn (Y)); + ANN°Nfu (Y)),

a sum over all independent invariant singlets with the coefficients o = (o,d/,...), g =
(9,9,...) and A = (A,N,...) is implied. fg n (YY) denote the modular form multiplets
required to ensure modular invariance.

We assume further:
e Higgs doublets H, and H; transform trivially under 4, p, = ps~ 1, and k, = k; = 0;

e lepton SU(2) doublets L1, L,, L3 furnish a 3-dim. irrep of Y, i.e., p, ~ 3 or 3/, and
carry weight £, = 2;

e neutral lepton gauge singlets N{, N5, N{ transform as a triplet of 4, py ~ 3 or 3,
and carry weight ky = 0;

e charged lepton SU(2) singlets E{, ES, Ef transform as singlets of 4, p123~1',1,1’
and carry weights k1,3 =0,2,2.

With these assumptions, we can rewrite the superpotential as

3
W= ai (B Lfr () Hat g (N°L fx ()1 Hu + A (N°N° fir (V)
=1
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By specifying the weights of the matter fields one obtains the weights of the relevent

modular forms.
After modular symmmetry breaking, the matrices of charged lepton and neutrino Yukawa
couplings, XA and )Y, as well as the Majorana mass matrix M for heavy neutrinos, are

generated:

C C 1 C C
W:)\ijEz- Lde+yijNi LjHu+§Misz’ Nj’

a sum over 7,5 = 1,2,3 is assumed. After integrating out N¢ and after EWS Dbreaking,
the charged lepton mass matrix M. and the light neutrino Majorana mass matrix M, are
generated (we work in the L-R convention for the charged lepton mass term and the
R-L convention for the light and heavy neutrino Majorana mass terms):

M, = vg AT, vy =vev(HY),
M, =—-v2YT'M 1y, v, =vev(H?).
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The Majorana mass term for heavy neutrinos

Assume kp = 0, i.e., no non-trivial modular forms are present in A (N°N¢ fy (Y)),, kn =0,
and for both py ~ 3 or py ~ 3

(N°N®); = Ny Ny + N; N3+ N3 N;,

leading to the following mass matrix for heavy neutrinos:
1 0 O

M=2AN{0 0 1), for kn=0.
O 1 O

The spectrum of heavy neutrino masses is degenerate; the only free parameter is the
overall scale A, which can be rendered real. The Majorana mass term conserves a “non-
standard” lepton charge and two of the three heavy Majorana neutrinos with definite
mass form a Dirac pair.

C.N. Leung, STP, 1983
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The neutrino Yukawa couplings

The lowest non-trivial weight, k; = 2, leads to

g (N°LY,?) CH,+g (N°L vy?) H,y.

There are 4 possible assignments of py and p; we consider.
on = pr, ~ 3 and py = pr ~ 3’ give the following form of ):

0O Y1 Y q 0 Ys —Y
y:g Yi. Y5 0] + =1 -Ys 0] Y5 , for k, + Ky =2 and PN = pPL .
Y 0 Y g

Two of them, namely

Y, —-Y3 0
The two remaining combinations, (py,pr) ~ (3,3") and (3/,3), lead to:
0 -Y1 YO q 2Ys —-Ys5 —-Y;u
Y=g -V Y5 0 + =1 -Ys 2, -Y3 , for k;, +ky =2 and PN 75 PL -
Y> 0 -Y: 9 \-Ys -Y3 2Y5

In both cases, up to an overall factor, the matrix )V depends on one complex parameter
¢'/g and the VEV of 7, vev(r).

1 L (94 — 64) Y3
Y (r) = (fz_f/e;:;;;)) _ (Y1> | Y2 (r) = V2
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The charged lepton Yukawa couplings

In the minimal (in terms of weights) viable possibility for L; >3 furnishing a 3-dim. irrep
of S4, i.e., p;, ~ 3 or 3, and carrying a weight k;, = 2, and E§,2,3 transforming as singlets of
M4, p123~1,1,1 (up to permutations) and carrying weights k123 = 0,2,2, the relevant
part of W, W,., can take 6 different forms which lead to the same matrix U. diagonalising
MeM;L = vfi AfA, and thus do not lead to new results for the PMNS matrix. We give just
one of these 6 forms corresponding to p;, =3, p1 =1, po=1, p3=1"

o (B LYy)) Ha+ B (BESLY,Y) Ha+~ (E5LYyY) Hy.

This leads leads to

aYs aYs aYs
A= [ B(ViYa— YaYs) B(ViYs—YaYa) B(YiYs— YaY3) | |
vy (Y1Ys + YoYs) ~(Y1Yz 4+ YoYs) ~(Y1Ys + YoY3)

In this “minimal”’ example the matrix A depends on 3 free parameters, «, 8 and ~, which
can be rendered real by re-phasing of the charged lepton fields.

We recall that

M, = vg A1, vy =vev(HY),
M, = —-v2YT'M 1y, v, =vev(H?).

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Parameters of the model: «, 3, v, ¢g°/A — real; ¢ and VEV of - — complex, i.e., 6 real
parameters + 2 phases for description of 12 observables (3 charged lepton masses, 3
neutrino masses, 3 mixing angles and 3 CPV phases). Excellent description of the data
is obtained also for real ¢’ (i.e., 6 real parameters 4+ 1 phase, employing gCP).

The 3 real parameters v, 3/, v/a — fixed by fitting m., m, and m-.
The remaining 3 real parameters and 2 (1) phases — v2g°%/A, |¢'/g|, |7| and arg(q¢’'/g), argr
(arg ) — describe the 9 v observables, 3 v masses, 3 mixing angles and 3 CPV phases.

The model considered leads to testable predictions for min(m;) (Zimi)’ type of the v
mass spectrum (NO or I0), the CPV Dirac and Majorana phases, |(m)|, the range of 6,3,
as well as of correlations between different observables.

Seven real parameters (5 real couplings 4+ the complex VEV of r) — is the minimal
number of parameters in the constructed so far phenomenologically viable lepton flavour
models with massive Majorana neutrinos based on modular invariance.

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Numerical Analysis

Each model depends on a set of dimensionless parameters

pi:(Ta 5/057 ’7/057 gl/ga "°7/\///\7 )7

which determine dimensionless observables (mass ratios, mixing angles and phases), and
two overall mass scales: v;a for M. and v2 g?/A for M,. Phenomenologically viable models
are those that lead to values of observables which are in close agreement with the
experimental results summarized in the Table below. We assume also to be in a regime
in which the running of neutrino parameters is negligible.
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Observable Best fit value and 1o range
me/my 0.0048 4 0.0002
my/ms 0.0565 4+ 0.0045

NO IO
om?/(107° eV?) 7.34104]
|Am?| /(1073 eV?) 2.4551003> 2.44110033
r = 6m?/|Am?| 0.0299 4+ 0.0008  0.0301 + 0.0008
sin? 012 0.304F9014 0.303%091%
sin? 613 0.02147F 03597 0.02187F 03052
sin? 023 0.55110073 0.557 1004
5/ 1.321073 1.52%012

Best fit values and 10 ranges for neutrino oscillation parameters, obtained in the global
analysis of F. Capozzi et al., arXiv:1804.09678, and for charged-lepton mass ratios,
given at the scale 2 x 10® GeVv with the tang averaging described in F. Feruglio,
arXiv:1706.08749 obtained from G.G. Ross and M. Serna, arXiv:0704.1248. The pa-
rameters entering the definition of r are §m? = m3 —m?7 and Am? = m3 — (m? 4+ m3)/2. The
best fit value and 10 range of § did not drive the numerical searches here reported.
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| Best fit value

20 range

30 range

Rer +0.1045 +(0.09597 — 0.1101)  +(0.09378 — 0.1128)
Imr 1.01 1.006 — 1.018 1.004 — 1.018
B/a 9.465 8.247 —11.14 7.693 — 12.39
v/ 0.002205 0.002032 — 0.002382 0.001941 — 0.002472
Reg'/g 0.233 —0.02383 — 0.387 —0.02544 — 0.4417
Img'/g +0.4924 +(—0.592 — 0.5587) +(—0.6046 — 0.5751)
vga [MeV] 53.19
v2 g2 /N [eV] 0.00933
me/my 0.004802 0.004418 — 0.005178  0.00422 — 0.005383
my/m: 0.0565 0.048 — 0.06494 0.04317 — 0.06961
r 0.02989 0.02836 — 0.03148 0.02759 — 0.03224
om? [107° eV?] 7.339 7.074 — 7.596 6.935 — 7.712
|Am?| [1073 eV?] 2.455 2.413 — 2.494 2.392 — 2.513
sin? 615 0.305 0.2795 — 0.3313 0.2656 — 0.3449
sin? 013 0.02125 0.01988 — 0.02298 0.01912 — 0.02383
sin? 623 0.551 0.4846 — 0.5846 0.4838 — 0.5999
Ordering NO
m1 [eV] 0.01746 0.01196 — 0.02045 0.01185 — 0.02143
mo [eV] 0.01945 0.01477 — 0.02216 0.01473 — 0.02307
m3 [eV] 0.05288 0.05099 — 0.05405 0.05075 — 0.05452
> m; [eV] 0.0898 0.07774 — 0.09661 0.07735 — 0.09887
[(m)] [eV] 0.01699 0.01188 — 0.01917 0.01177 — 0.02002
§/m +1.314 +(1.266 — 1.95) +(1.249 — 1.961)
Qo1 /T +0.302 +(0.2821 — 0.3612) +(0.2748 — 0.3708)
azy/m +0.8716 +(0.8162 — 1.617) +(0.7973 — 1.635)
No 0.02005

Best fit values along with 20 and 30 ranges of the parameters and observables in cases A and

A*, (which refer to (ka,ky) = (0,2) and 7 = £0.1045 +¢1.01).
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| Best fit value

20 range

30 range

Rer 70.109 7(0.1051 — 0.1172) 7(0.103 - 0.1197)
Imr 1.005 0.9998 — 1.007 0.9988 — 1.008
B/a 0.03306 0.02799 — 0.03811 0.02529 — 0.04074
v/ 0.0001307 0.0001091 — 0.0001538 0.0000982 — 0.0001663
Reg'/g 0.4097 0.3513 - 0.5714 0.3241 — 0.5989
Img'/g T0.5745 7(0.5557 — 0.5932) 7(0.5436 — 0.5944)
vga [MeV] 893.2
v2 g2 /N [eV] 0.008028
me/my 0.004802 0.004425 — 0.005175 0.004211 — 0.005384
my/my 0.05649 0.04785 — 0.06506 0.04318 — 0.06962
r 0.0299 0.02838 — 0.03144 0.02757 — 0.03223
om? [107° eV?] 7.34 7.078 — 7.59 6.932 —7.71
|Am?| [1073 eV?] 2.455 2.414 — 2.494 2.393 — 2.514
sin? 61 0.305 0.2795 — 0.3314 0.2662 — 0.3455
sin? 613 0.02125 0.0199 — 0.02302 0.01914 — 0.02383
sin? 023 0.551 0.4503 — 0.5852 0.4322 — 0.601
Ordering NO
m1 [eV] 0.02074 0.01969 — 0.02374 0.01918 — 0.02428
mo [eV] 0.02244 0.02148 — 0.02522 0.02101 — 0.02574
m3 [eV] 0.05406 0.05345 — 0.05541 0.05314 — 0.05577
> m; [eV] 0.09724 0.09473 — 0.1043 0.0935 — 0.1056
|(m)| [eV] 0.01983 0.01889 — 0.02229 0.01847 — 0.02275
§/m +1.919 +(1.895 — 1.968) +(1.882 — 1.977)
ao1/m +1.704 +(1.689 — 1.716) +(1.681 — 1.722)
az1/m +1.539 +(1.502 — 1.605) +(1.484 — 1.618)
No 0.02435

Best fit values along with 20 and 30 ranges of the parameters and observables in cases B and
B*, (which refer to (ka,ky) = (0,2) and 7 = +0.109 + ¢1.005).
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CP Symmetry in Modular Invariant Flavour Models

The formalism of combined finite modular and generalised CP (gCP) symmetries for
theories of flavour was developed in P.P. Novichkov et al., arXiv:1905.11970.

gCP invariance was shown to imply that the constants g, which accompany each invariant
singlet in the superpotential, must be real (in a symmetric basis of S and T and at least
for Fg\’,), N < 5). Thus, the number of free parameters in modular-invariant models which
also enjoy a gCP symmetry gets reduced, leading to “minimal”’ models which have higher
predictive power.

In these models, the only source of both modular symmetry breaking and CP violation
is the VEV of the modulus .

The “minimal”’” phenomenologically viable modular-invariant flavour models with gCP
symmetry constructed so far

— of the lepton sector with massive Majorana neutrinos (12 observables) contain > 7 real
parameters — 5 real couplings 4+ the complex = (6 real constants + 1 phase);

— of the quark sector contain > 9 real parameters — 7 real coulplings 4+ the complex 7;
— while the models of lepton and quark flavours (22 observables) have > 15 real param-
eters - 13 real couplings 4+ the complex .

See, e.g., B.-Y. Qu et al., arXiv:2106.11659
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Under the CP transformatoion,

r <P

P.P. Novichkov et al., 1905.11970; A. Baur et al., 1901.03251 and 1908.00805

It was further demonstrated that CP is conserved for

Rer=+1/2; r=¢Y, 0 =[n/3,27/3];Rer =0, Imr > 1.

i.e., for the values of r's VEV at the boundary of the fundamental domain and on the
imaginary axis.

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Residual Symmetries

The breakdown of modular symmetry is parameterised by the VEV of r.

There is no value of r's VEV which preserves the full symmetry r® (r').

At certain “symmetric points” 7 = 7tgym, O (I‘g\’,)) is only partially broken, with the
unbroken generators giving rise to residual symmetries.

The R = S? generator (I‘%)) is unbroken for any value of 7, thus a Zf symmetry is always
preserved.

There are only 3 inequivalent symmetric points in D:

® Tsym — ’iOO, invariant under T, preserving Z%,

® Tsym ’i, invariant under S, preserving Zg (ZS, Sz — R),

W = eXp(27TZ/3) y invariant under ST, preserving ZgT
P.P. Novichkov et al., arXiv:1811.04933 and arXiv:2006.03058

® Tsym

These symmetric values of r preserve the CP (ng) symmetry of a CP- and modular-
invariant theory (e.g. a modular theory where the couplings satisfy a reality condition).

P.P. Novichkov et al., arXiv:1911.04933 and arXiv:2006.03058

The CP (ZQCP) symmetry is preserved for Rer = 0 or for 7 lying on the border of the
fundamental domain D, but is broken at generic values of r.

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022
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Re 7

The fundamental domain D of the modular group ' and its three symmetric points
Tsym = 100,%,w. At the solid and dotted lines (which include the three points) CP is
also preserved. The value of r can always be restricted to D by a suitable modular
transformation.

Figure from P.P. Novichkov et al., arXiv:2006.03058
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Fermion Mass Hierarchies without Fine-Tuning

The [— and ¢g— mass hierarchies in practically all modular flavour models proposed in the
literarture before arXiv:2102.07488 — obtained with fine-tuning.

Fine-tuning:
i) high sensitivity of observables to model parameters, and/or
ii) unjustified hierarchies between model’s parameters.

The flavour structure of the fermion mass matrices My can be severely constrained by
the residual symmetries present at each of the 3 symmetry points,

TSYM = 1,

Tsym = w = exp(i27/3) = —1/2 4+ iv/3/2, and

TSym = 100.

residual symmetries may enforce the presence of multiple zeros in Mpg.

The posibility to build viable flavour models with observed charged lepton (quark) mass
hirarchies in the vicinity of the symmetry points was studied in H. Okada, M. Tani-
moto, 2009.14242, 2012.0188; F. Feruglio et al., 2101.08718 (see also G-J. Ding et al.,
1910.03460).

As 7 moves away from rsym, the zero entries in My will become non-zero. Their mag-
nitude will be controlled by the size of the departure € from Tsym and by the field
transformation properties under the residual symmetry group.

Thus, fine-tuning might be avoided in the vicinity of rgym as [— and ¢g— mass hierarchies
would follow from the properties of the modular forms present in the corresponding Mp
rather than being determined by the values of the accompanying constants also present
in Mpg.

P.P. Novichkov, J.T. Penedo, STP, arXiv:2102.07488.
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Mass Matrices

Consider the bilinear (i.e., mass term)

Yy M(T)i5%;,

where the superfields ¢y and ¢° transform as

v L (er+d) Fpr(Dy (o), T, N=2,3,4,5),
¢ L (er +d) Fple(v) v, (p°(), T,

Modular invariance: M (7);; must be modular form of level N and weight K =k + k¢,

M(r) L M(yr) = (er + DE () M () p(7)T.

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Tsym = 100
At 7sym = ico we have Z), symmetry (rsym = ico is invariant under 7).
Consider T-diagonal basis for the group generators S and 7.
In this basis p©(T) = diag(p”).
By setting v =T in the equation for M (y7) one finds
M (T'T) = (pip;)" Mij(T) .
M;; is a function of ¢ = exp (2miT/N) (recall the g—expansions) and
€= gl = p—2mIm7/N
parameterises the deviation of r from the symmetric point.
The entries M;;(¢q) depend analytically on ¢q. Further,
g5 ¢q (Tr =7+ 1), with ¢ = exp (27i/N). Thus, in terms of ¢,
M;;(Cq) = (pipi)*Mij(q) -
Expanding both sides in powers of g, one finds
¢"MEM(0) = (pip;)* MEP(0), (3)
M is the n-th derivative of M;; with respect to ¢. This means that 1/”(0) can only be
non-zero for values of n such that (pfp;)* = (¢".
In the symmetric limit ¢ — 0, e.g., M;; = M’(0)# 0 only if pip; = 1.

More generally, if (p5p;)* = ¢! with 0 <1 < N,
Mij(q) =aoqd +a1¢" T +ar Nt 4.
in the vicinity of the symmetric point.
Thus, the entry M;; is expected to be O(¢!) whenever Im 7 is large.

The power [ only depends on how the representations of ¢y and ¢ decompose under the
residual symmetry group Z1.

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Summary

Tsym — 100, Z%, symmetry: for (pSp;)* = ¢! with 0 <1< N, ¢ = exp (27i/N)
Mij(¢) = aogd' + a1 ¢ "+ ax T+, gy = e MV = ¢ eg. |qa] < 0.26,

in the vicinity of the symmetric point.

The entry M;;~O(¢") whenever Imr is large; | = 0,1,2; 3; 4 for Ag’); Si’); Aé’).

The power [ only depends on how the representations of ¢ and ¢y decompose under the
residual symmetry group Zf,. Thus, we can have, forexample:

my i my - ma ~ (1,¢ €2) for AV, my i my imi~ (1€ €3) for SA(]./)'

Tsym — 1, zi symmetry: for (i*i*pip;)* = (-1)", n=0,1,2,..,,

MZ?}(O) # 0, M;j~O0(E), m=0,1, e=|s|, s=(r—1)/(r +1i). Not sufficient to reproduce the
[— and g— mass hierarchies!

The power m = 0,1 depends on how the representations of v and ¢ decompose under
Z3 and on their respective weights k¢ and k°.

Tsym — W, w = exp(i27/3), z3T symmetry: for (w*piwkp;)* = w?", w3 =1,

Mj(0) # 0, M;~O(e™), m=0,1,2, e= |u|, u= (7 —w)/(7 — w?).

The power m = 0,1,2 depends on how the representations of ¢y and ¢ decompose under
z5" and on their respective weights k¢ and k°. In this case we can have:

mr :my mi ~ (1,¢€2) for Ag’), Si’) and Ag’).
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Decomposition under Residual Symmetries

As 7 departs from 7gym, the entries M;; of My are of O(¢), where ¢ parameterises the
deviation of 7 from 7gym-

The powers | are extracted from products of factors which, correspond to representations
of the residual symmetry group.

One can systematically identify these residual symmetry representations for the different
possible choices of I, representations of matter fields. This knowledge can be exploited
to construct hierarchical Mg via controlled corrections to entries which are zero in the
symmetric limit.

The matter fields + furnish ‘weighted’ representations (r,k) of I'’y.

When a residual symmetry is preserved by the value of T,

1») decompose into unitary representations of the residual symmetry group.

Modulo a possible Z% factor, these groups are Z%, Z7, and Z5T.

A cyclic group Z, = (a|a™ = 1) has n inequivalent 1-dimensional irreps 1, £k =0,...,n—1
iIs sometimes referred to as a “charge’”. The group generator a is represented by one of
the n-th roots of unity,

k
1, :  p(a) = exp (2771'—) )
n
For odd n, the only real irrep of Z, is the trivial one, 1p; for even n, there is one more
real irrep, 1,/2- All other irreps are complex, and split into pairs of conjugated irreps:
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Consider as an example a (3,k) triplet ¢ of S.
It transforms under the unbroken v = ST at r =w as

ST B
i 2= (—w —1)7F p3(ST)ij 5 = whps(ST)ij ;-

The eigenvalues of p3(ST) are 1, w and w?.

So, Iin a ST-diagonal basis the transformation rule explicitly reads

o7 1 0 O wk 0 0
v 25 W0 w 0 )y=1|0 wt? 0 |,
0 0 w? 0 0 wht2

Thus, ¢ decomposes as ) ~ 1 @ 1y41 & 144 under Z37.

One can find the residual symmetry representations for any other multiplet of a finite
modular group in a similar way. For a given level N, the decompositions of fields under
a certain residual symmetry group only depend on the pair (r,k).

The decompositions of the weighted representations of I, (N < 5) under the three
residual symmetry groups, i.e. the residual decompositions of the irreps of ', ~ S,
r~A, =17, T, ~ 8, = SL(2,Z4), and 'y ~ A; = SL(2,Zs) are listed in Tables 6—9 of
Appendix A in P.P. Novichkov et al., arXiv:2102.07488.
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N My Pattern Sym. point Viable r ® r¢

2 S3 (1l,6,€?) T~w 201V [1e1" @1/
T~ w [1.01.01,]®[1, 1, ® 1]]
34, (Lee) . SO
T ™~ 00 [1. 21D 1] ® [1, © 1, © 1] with 1, 7 (1;)*
(1,6,62) 71~w 84, or 2010, or 201V ® [1, B 1, @ 1))
4 S’ / / / / /
4 3201, orl1plal], 3201, or1dl @1,

(1,6,¢3) T ioo

2@l orieial], 3201, orlal @1
5 Ag (1,6,€*) T ~ioco 33

Hierarchical mass patterns which can be realised in the vicinity of symmetric points.
These patterns are unaffected by the exchange r + r and may only be viable for certain
weights. Subscripts run over irreps of a certain dimension. Primes in parenthesis are

uncorrelated.
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Leading-order mass spectra patterns of bilinears ¥ in the vicinity of the symmetric
points w and ico, for 3d multiplets ¢ ~ (r, k) and ¢ ~ (r% k°) of the finite modular groups
My, N=2,3,4,5, i.e., for S3, A, S}, and Ag is given in Tables 10 - 13 of Appendix B in
P.P. Novichkov et al., arXiv:2102.07488.

The number of cases which can lead to viable hierechical charged lepton or quark mass
mass patterns is extremely limitted.
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Table 10. Leading-order mass spectra patterns of bilinears ¢/ in the vicinity of the

symmetric point w for 3d multiplets ¢ ~ (r,k) and vy° ~

3 ~ S3. Spectra are insensitive to transposition,

relations for k£ + k¢ are modulo 3 (“flavour blind” k., k¢ considered).

r e T W

k+ k= k4 k¢ = k4 k=

2d1 2d1 (1,1,1) (1,1,1) (1,1,1)
2d1 2@ 1 (1,1,1) (1,1,1) (1,1,1)
241 241 (1,1,1) (1,1,1) (1,1,1)
241 1’11 (1,€,€?) (1,€,€) (1,€,€?)
291 'l a1 (1,€,€2) (1,€,€2) (1,¢,€2)
291 111 (1,€,€2) (1,€,€2) (1,¢,€2)
241/ 11 d1 (1,€,€2) (1,€,€2) (1,€,€2)
241 10141 (1,€,€?) (1,€,€?) (1,€,€?)
291 el ol (1,€,€2) (1,€, €2) (1,¢,€2)
291 1191 (1,€,€2) (1,€, €2) (1,¢,€2)
241/ 11 a1 (1,€,€2) (1,6,62) (1,¢,€2)
1'glel 1ole1 (1,1,1) (€2, €2, €?) (e, € €)
111 el a1 (1,1,1) (€2, 62 2) (e,€,¢€)
'eple1l 1Tolol (1,1,1) (e?,€2,€?) (e,€,¢€)
1e1a1 1'p1e1 (1,1,1) (€2,€2,€?) (e, €, €)
1911 Vel ol (1,1,1) (€2, €2, €?) (e, € €)
'plel 191l (1,1,1) (e2,€2,€?) (e,€,¢€)
1'pl'®l1l 1Velaol (1,1,1) (€2,€2,€?) (e, €, ¢€)
19191 10141 (1,1,1) (€2, €2, €?) (e, € €)
1191 el ol (1,1,1) (€2, €2, €?) (e,€,¢€)
'l el 1Tolal (1,1,1) (e2,€2,€?) (e,€,¢€)

(r¢, k°) of the finite modular group
i.e. to the exchange ¢ « °.

Congruence

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Table 11. Leading-order mass spectra patterns of bilinears ) in the vicinity of the
symmetric points w and ioco, for 3d multiplets v ~ (r,k) and ¢° ~ (r% k) of the finite
modular group I, ~ A). Spectra are insensitive to transposition, i.e. to the exchange

Y+ Y°. Congruence relations for k 4 k¢ are modulo 3.

T X W

g g k+ ke = k4 ke = k4 ke = T e
3 3 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3 el ol (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3 relal (1,1, €2) (1,1,€2) (1,1,e2) (1,1, €2)
3 o1e1 (1,1,¢) (1,1,€) (1,1,¢) (1,1,¢)
3 el el (1,1,¢) (1,1,¢) (1,1,¢) (1,1,¢)
3 e1l”®1  (1,1,62) (1,1,62) (1,1,62) (1,1,62)
3 Velel  (1,1,&) (1,1,€2) (1,1,€2) (1,1, €2)
3 a1"el  (1,1,6) (1,1,€) (1,1,¢) (1,1,
3 1191 (1,€,€2) (1,¢,€2) (1,€,€2) (1,€,€2)
3 1ol al (1,€,€2) (1,¢,€2) (1,€,€2) (1,€,€2)
3 171" 1” (1,€,€2) (1,€,€2) (1,€,€2) (1,€,€2)
"a1el 1alael (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Volel 1"eloel (1,1,62) (1,1,62) (1,1,¢2) (1,1,62)
relel 1"elal (1,1, (1,1,€) (1,1,¢) (1,1,
relel 1"elal (1,1,¢) (1,1,¢) (1,1,¢) (1,1,¢)
elel 1761"el  (1,1,6) (1,1,62) (1,1,62) (1,1,62)
elel 1"elel (1,1, (1,1,¢2) (1,1,¢2) (1,1,62)
rel’ol 17eolel (1,16 (1,1,¢) (1,1,¢) (1,1,¢)
10141 1”1 31 (1,€,€?) (1,€,€2) (1,€,€2) (1,€, €?)
'elol 1Uolel (1,1,¢) (1, €2, ) (1,1,¢) (1,1,¢)
Volel 1"7e¢lel (1,1,1) (1,¢,€2) (1,¢, €2) (1,1,1)
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T~XW

r r b+ ke = k4 ke = k4 ke = T ™~ 100
11 1l @1 (1,€,€?) (1,€,€?) (1,1,1) (1,€,€?)
'dplal 1”7®1"®1 (1,1,¢) (1,1,¢€) (1,€2,€2) (1,1,¢€)
1'dpl1a1 17191 (1,62, €2) (1,1,¢) (1,1,¢) (1, €2, €2)
11l 191”91 (1,€,€2) (1,1,1) (1,€,€2) (1,€,€2)
1”®1¢1 1"®p1d1 (1,1,€2) (1,1,€2) (1,€,¢€) (1,1,€2)
'l a1l 1”®d1¢1 (1,1,€2) (1,€,¢€) (1,1,€2) (1,1,€2)
1"d101 171" 1 (1,€, €2) (1,1,1) (1,€,€2) (1,€, €?)
1”191 1"l el (1,€,€2) (1,¢,€2) (1,1,1) (1,€, €2)
1”101 1"0l1"¢l (1,€,¢€) (1,1,€2) (1,1,€2) (1,€,¢€)
1l @1 el a1 (1,¢,¢) (1,1,€2) (1,1,€2) (1,¢,¢)
1l 1"¢1"¢1 (1,1,1) (1,€,€?) (1,¢,€2) (1,1,1)
1'1®1 1”91 (1,€,€2) (1,1,1) (1,€,€2) (1,€,€2)
1’1l 101"l (1,1,€2) (1,1,€2) (1,€,¢€) (1,1,€2)
1l o1’ 171 @1 (1,€, €2) (1,¢,€2) (1,€,€2) (1,€, €2)
1”11 1"¢1"a1” (1,€, €2) (1,¢,€2) (1,€,€2) (1,€,€2)
1”1”1 1"¢1"e1 (1,€2,€2) (1,1,€) (1,1,€) (1,€2,€2)
1”711 1"¢1"¢1 (1,1,¢) (1, €2, €2) (1,1,¢) (1,1,¢)
1”"e1"®1 1"gl"gl (1,¢,€?) (1,€,€?) (1,1,1) (1,¢,€?)
1”101 1"elael (1,1,¢€) (1,1,¢€) (1,€2,€2) (1,1,¢€)
"1l 101”01 (1,1,1) (1,¢,€?) (1,¢,€2) (1,1,1)
1”1”1 1"el"al (1,1,€2) (1,€,¢€) (1,1,€2) (1,1,€2)
1191 'el1o1l (1,1,€2) (e, €2, €?) (1,¢,¢) (1,1,€%)
10191 1”191 (1,1,¢) (1,62, €?) (e,€,€2) (1,1,¢)
1141 1l @1 (1,€2,€2) (e, €, €2) (1,1,¢) (1,€2,€2)
1191 171" 1 (1,¢,¢) (1,1,€2) (e, €2, €2) (1,¢,¢)
1191 17191 (e, €2, €2) (1,¢,¢) (1,1,62) (e, €2, €2)
111 171" 1’ (e,e,ez) (1,1,¢) (1,€2,€2) (6,6,62)
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T~XW

r r k4 ke = k4 ke = k4 ke = Tl
1'd1a1 el el (e, €2, €2) (1,¢,¢) (1,1,€2) (e, €2, €2)
1'dpl1a1 11" 1" (1,¢,¢) (1,1,€2) (e, €2, €2) (1,¢,¢)
11 el 1”161 (1,62, €2) (e, €, €2) (1,1,6) (1, €2, €2)
1”711 171" 1” (e, €, €2) (1,1,¢) (1, €2, €?) (e, €, €2)
1l a1 el el (e, €, €2) (1,1,¢) (1,€2,€2) (e, €, €2)
relel 1elel” (1,16 (1,2, €2) (c,c,e?) (1,1,¢)
1'plel 191”731 (1,1,€2) (e,€2,€2) (1,€,€) (1,1,€2)
1”711 191" 1” (e, 62 €?) (1,6,6) (1,1,€2) (e, 62 L €2)
1l ol 171 91 (1,¢,¢) (1,1,€2) (e, €2, €2) (1,¢,¢)
'e1el 1"61"e1 (1.1, (1, €2, €2) (c.c.€?) (1.1,
"1l 101”01 (1,1,€2) (e, €2, €2) (1,€,€) (1,1,€2)
1”1”1 1"01"@1” (1,€2,€2) (6,6,62) (1,1,¢) (1,€2,€2)
10191 10191 (1,1,1) (€2, €2, €?) (e,€,¢) (1,1,1)
10191 el al (e?,€2,€?) (e,¢,¢€) (1,1,1) (e2,€2,€?)
111 171" 1” (e, €,¢) (1,1,1) (€2, €2, €?) (e, €,¢)
1l o1’ el el (e,€,€) (1,1,1) (€2, €2, €?) (e,€,€)
relel 1ol el  (1,1,1) (2,62, ¢2) (c,¢,€) (1,1,1)
1//@1//@1// 1//@1//@1// (62,62,62) (6, €, 6) (1,1’1) (62,62,62)
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Table 12. Leading-order mass spectra patterns of bilinears ¢/ in the vicinity of the
symmetric points w and ico, for 3d multiplets ¢ ~ (r,k) and ¢ ~ (r¢ k) of the finite
modular group [/, ~ S). Spectra are insensitive to transposition, i.e. to the exchange
Y+ Y°. Congruence relations for k 4 k¢ are modulo 3.

T X W

' v k+k=0 k+k= k+ k=2 T
3 3 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3 3/ (1,1,1) (1,1,1) (1,1,1) (1,1,€2)
3 3 (1,1,1) (1,1,1) (1,1,1) (1,1,¢3)
3 3/ (1,1,1) (1,1,1) (1,1,1) (1,1,¢)
3/ 3/ (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3/ 3/ (1,1,1) (1,1,1) (1,1,1) (1,1,€3)
3 3/ (1,1,1) (1,1,1) (1,1,1) (1,1,¢)
3 3 (1,1,1) (1,1,1) (1,1,1) (1,1,€)
3 3/ (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3/ 3 (1,1,1) (1,1,1) (1,1,1) (1,1,€2)
3 201 (1,1,1) (1,1,1) (1,1,1) (1,¢,¢€3)
3 21 (1,1,1) (1,1,1) (1,1,1) (1,¢,¢)
3 291 (1,1,1) (1,1,1) (1,1,1) (1,1,€3)
3 21/ (1,1,1) (1,1,1) (1,1,1) (1,1,¢)
3/ 21 (1,1,1) (1,1,1) (1,1,1) (1,€,¢€)
3/ 21 (1,1,1) (1,1,1) (1,1,1) (1,¢,¢€3)
3/ 21 (1,1,1) (1,1,1) (1,1,1) (1,1,¢)
3/ 21 (1,1,1) (1,1,1) (1,1,1) (1,1,€3)
3 291 (1,1,1) (1,1,1) (1,1,1) (1,1,€3)
3 201 (1,1,1) (1,1,1) (1,1,1) (1,1,¢)
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T~XW

' ' k4 ke = k4 ke = k4 ke = 7o

3 231 (1,1,1) (1,1,1) (1,1,1) (1,€,¢€)
3 2@ 1 (1,1,1) (1,1,1) (1,1,1) (1,¢,€3)
3 261 (1,1,1) (1,1,1) (1,1,1) (1,1,¢)
3 2@ 1/ (1,1,1) (1,1,1) (1,1,1) (1,1,€3)
3 2¢p1 (1,1,1) (1,1,1) (1,1,1) (1,€,€3)
3/ 21 (1,1,1) (1,1,1) (1,1,1) (1,€,¢€)
231 231 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
231 201 (1,1,1) (1,1,1) (1,1,1) (1,1,€2)
241 231 (1,1,1) (1,1,1) (1,1,1) (e, € €)
241 231 (1,1,1) (1,1,1) (1,1,1) (e, €, €3)
2@ 1 2@ 1/ (1,1,1) (1,1,1) (1,1,1) (1,1,1)
241 231 (1,1,1) (1,1,1) (1,1,1) (¢, ¢, €3)
241 21 (1,1,1) (1,1,1) (1,1,1) (¢, ¢, €)
3 1ol 1 (1,€,€?) (1,€, €) (1,€,€?) (1,€,€3)

3 1l a1 (1,€,€2) (1,€,€?) (1,¢,€2) (1,¢,¢)
3 I'piol (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,€3)

3 'l el (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,¢)
3 111 (1,€,€2) (1,€,€?) (1,¢,€2) (1,¢,¢)
3 1l a1 (1,€,€?) (1,€,€) (1,€,€?) (1,€,€3)
3 'piol (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,¢)
3 'eloel (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,€3)
3 1191 (1,€,€2) (1,€,€?) (1,¢,€2) (e, €2, €3)
3 11l (1,€,€2) (1,€,€?) (1,¢,€2) (1,€,€3)
3 ioieil (1,€,€2) (1,€,€?) (1,¢,€2) (1,€2,€3)
3 el el (1,€,€?) (1,€,€2) (1,€,€?) (1,€,€2)
3 1191 (1,€,€2) (1,€,€?) (1,¢,€2) (1,€,€3)
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T~XW

r r k+ ke = k+ ke = k+ ke = T
3 1l a1’ (1,€,€?) (1,€,€) (1,€,€2) (e,€2, €3)
3 ioleil (1,€,€2) (1,€,€?) (1,¢,€2) (1,€,€2)
3 T e (1,€,€2) (1,€,€?) (1,¢,€2) (1,€2,€3)
2p1 2¢p1 (1,1,1) (1,1,1) (1,1,1) (1,1,€2)
21 201 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
201 291 (1,1,1) (1,1,1) (1,1,1) (1,1,€2)
3 1ol 1 (1,€,€2) (1,€,€?) (1,€,€2) (1,1,€3)
3 el a1l (1,¢, €2) (1,€,€2) (1€, €2) (1,1,¢)
3 I'piol (1,€,€?) (1,€,€) (1,€,€?) (1,¢,¢)
3 el el (1,€,€2) (1,€,€?) (1,¢,€2) (1,€,€3)
3/ 'el1a1l (1,€,€2) (1,€,€2) (1,€,€2) (1,1,¢)
3 1l a1 (1,€,€2) (1,€,€?) (1,€,€2) (1,1,€3)
3 I'piol (1,€,€2) (1,€,€?) (1,¢,€2) (1,€,€3)
3 el ol (1,€,€?) (1,€ €) (1,€,€?) (1,¢,¢)
3 19191 (1,€,€2) (1,€,€?) (1,¢,€2) (1,€2,€3)
3 1l l (1,€,€2) (1,€,€?) (1,¢,€2) (1,€,€2)
3 ioleil (1,€,€2) (1,€,€?) (1,¢,€2) (1,€,€3)
3 el el (1,€,€2) (1,€,€?) (1,¢,€2) (e, €2, €3)
3 1911 (1,€,€?) (1,€ €) (1,€,€2) (1,€,€2)
3 1l a1 (1,€,€2) (1,€,€?) (1,¢,€2) (1,€2,€3)
3 ioieil (1,€,€2) (1,€,€?) (1,¢,€2) (e, €2, €3)
3 el el (1,€,€?) (1,€,€) (1,€,€2) (1,€,€3)
291 1191 (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,1)
291 1l a1 (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,€2)
291 I'piol (1,€,€2) (1,€, €) (1,€,€?) (€,€,¢)
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T~XW

g g k4 ke = k4 ke = k4 ke = TEee
291 el ol (1,€,€2) (1,€,€?) (1,¢,€2) (e, €, €3)
291 1191 (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,€2)
201 1plal (1,€,€2) (1,¢,€2) (1,€,€2) (1,1,1)
291 'piol (1,€,€2) (1,€,€?) (1,¢,€2) (e, €, €3)
201 1Toeloil (1,€,€?) (1,€, €) (1,€,€?) (€, €,¢)
291 1191 (1,€,€2) (1,€,€?) (1,¢,€2) (1,1,€2)
291 1:691:69;[’ (1,€,€2) (1,€,€?) (1,¢,€?) (1,€2,€2)
291 Al@;l@lA (1,€,€2) (1,€,€?) (1,¢,€2) (e, €, €3)
201 110l (1,€,€2) (1,€,€?) (1,¢,€2) (e,€3,€3)
201 19141 (1,€,€2) (1,€,€) (1,€,€?) (1, €2, €?)
291 1:691:69;[’ (1,€,€?) (1,¢,€2) (1,¢,€2) (1,1,€2)
21’ 1olel (1,€,€2) (1,€ €) (1,€,€2) (e, €3, €3)
%@1: 111 (1,6,62) (1,6,62) (1,€,€2) (e,€,€3)
291 1’11 (1,¢,¢%) (1,¢,¢%) (1,€,€) (e, €,€)
?@i 1A’€BlA’€BA1 (1,€,€2) (1,€,€?) (1,¢,€2) (e, €, €3)
241 1’11 (1,€,€?) (1,¢,€2) (1,€,€2) (1,1,€2)
291 eleil (1,¢,€2) (1,¢,€?) (1,¢,€?) (1,1,1)
21 1’11 (1,€,€?) (1,¢,€2) (1,€,€2) (e,€,€3)
201 1ola1 (1,€,€?) (1,¢,€2) (1,€,€) (e, ¢€,€)
?@i’ Ai’EBAiEBiA (1,€,€?) (1,¢,€2) (1,€,€2) (1,1,1)
201 1ol al (1,€,€?) (1,€,€2) (1,€,€) (1,1,€2)
2p1 1911 (1,€,€?) (1,€,€) (1,€,€2) (e, ¢, €3)
201 vTolol (1,€,€2) (1,€,€?) (1,¢,€2) (e,€3,€3)
291 ioleil (1,€,€?) (1,¢,€2) (1,€,€2) (1,€2,€?)
201 1olel (1,€,€?) (1,¢,€2) (1,€,€2) (1,1,€2)
21 1911 (1,€,€?) (1,€,€2) (1,€,€2) (e,€3,€3)
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T~XW

r r b+ ke = k4 ke = k4 ke = T ™~ 100
201 1olol (1,€,€2) (1,€,€?) (1,¢,€2) (e, €, €3)
291 ioleil (1,¢,€2) (1,¢,€?) (1,¢,€?) (1,1,€2)
201 1olol (1,€,€2) (1,€,€?) (1,¢,€2) (1,€2,€2)

111l 1191 (1,1,1) (€2, €2, €?) (€,€,€) (1,1,1)
1'd1a1 1]691]69;[ (1,1,1) (€2, 62 €2) (e,€,¢) (1,1,€2)
1'elel 1'plel (1,1,1) (€2, €2, €?) (e, €, €) (e, ¢, ¢€)

1'd1a1 el el (1,1,1) (€2, €2, €?) (e,€,¢) (e, €, €3)
11’1 10l a1 (1,1,1) (€2, €2, €?) (€, €,¢) (1,1,1)
1l @1 I'piol (1,1,1) (€2, €2, €?) (e,€,¢) (e, €, €3)
'plel 1Teloeil (1,1,1) (€2, €2, €?) (e, ¢,€) (¢,¢,¢€)

1¢1e1 'dpla1l (1,1,1) (€2, €2, €?) (e, € €) (1,1,€2)
1191 1]691]691 (1,1,1) (€2, €2, €?) (e,€,¢) (1,62, €2)
19191 I'piol (1,1,1) (€2, €2, €?) (e, ¢,€) (e,¢,€3)
1191 el el (1,1,1) (€2, €2, €?) (e,€,¢) (e, 63 €3)
111l 1l el (1,1,1) (€2, €2, €?) (e, €, €) (1, 62 €?)
'eplel 1Telel (1,1,1) (€2, €2, €?) (e,€,¢) (e,€3,€3)
1'ple1 1ol al (1,1,1) (€2, €2, €?) (€,€,€) (1,1,62)
'elel 1elel (1,1,1) (€2, €2, €?) (e,€,¢) (e, €, €3)
'l 1eloel (1,1,1) (€2, €2, €2) (e, ¢,¢€) (e, 63 €3)
w1l 1eloel (1,1,1) (€2, €2, €?) (e,€,¢) (e, €, 63)
111 111 (1,1,1) (€2, €2, €?) (€, €,¢) (1,1,1)
1911 1Veolel (1,1,1) (€2, €2, €2) (e, €, €) (€2, €2, €?)
10191 lolel (1,1,1) (€2, €2, €?) (e, ¢,¢€) (e, €, ¢€)

111 1ol el (1,1,1) (€2, €2, €?) (e,€,¢) (3, €3, €3)
relel 1elel  (1,1,1) (2,62, ¢2) (c,¢,€) (1,1,1)
w1l 1elael (1,1,1) (€2, €2, €?) (e,€,¢) (e, €, €)
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T~XW

g g k+ ke = k4 ke = k4 ke = Teee
'plol 'plol (1,1,1) (€2, €2, €?) (e,€,¢) (1,1,€2)
el I'epl'el (1,1,1) (€2, €2, ¢€?) (€, €,¢) (1,1,1)
el 1Tolol (1,1,1) (€2, €2, €?) (e,€,¢) (1,1,€2)
igigil 1’11 (1,1,1) (€2, €2, €?) (e, ¢,¢€) (e, ¢, €3)
loliel 1l @1 (1,1,1) (€2, €2, €?) (e,€,¢) (e, 63 €3)
i@i@i ;l’@;i@i (1,1,1) (€2, €2, €?) (e,€,¢) (1,62, €?)
lolol 1elol (1,1,1) (€2, €2, ¢€?) (€,€,€) (1,1,€2)
1’1l 1010l (1,1,1) (€2, €2, €?) (e, €,€) (1,1,€2)
'elel 1elel (1,1,1) (€2, €2, €?) (e, ¢,€) (1,€2,€2)
igigil 11l (1,1,1) (€2, €2, €?) (e, ¢,¢€) (€3, €3, €3)
igigil igigil (1,1,1) (€2, €2, €?) (e, ¢€,€) (€2, €2, €?)
loiel 1Telel (1,1,1) (€2, €2, ¢€?) (€, €,¢) (1,1,1)
elel 1olel (1,1,1) (€2, €2, €?) (e,€,¢) (€2, €2, €?)
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Table 13. Leading-order mass spectra patterns of bilinears ¢/ in the vicinity of the
symmetric points w and ico, for 3d multiplets ¢ ~ (r,k) and ¢ ~ (r¢ k) of the finite
modular group 'y ~ A.. Spectra are insensitive to transposition, i.e. to the exchange
Y+ Y°. Congruence relations for k 4 k¢ are modulo 3.

T~ W

r r k4 k¢ = k4 k¢ = k4 ke = T e
3 3 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3 3’ (1,1,1) (1,1,1) (1,1,1) (1,e¢*)
3’ 3’ (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3 1101 (1,€,€2) (1,¢,€2) (1,¢,€2) (1,¢,€%)
3’ 1101 (1,€,€2) (1,¢,€2) (1,¢,€2) (1,€%,€3)
1191 19191 (1,1,1) (€2, €2, €?) (€,€,¢) (1,1,1)
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AL Model with L ~ 3, E¢~ 3/, N¢~ 2

L~ 3k, =3), EC~ (8, kg =1), N°~ (2, ky = 2); vicinity of T — 7200.

We consider first the most ‘structured’ series of hierarchical models, i.e. the case with
both fields L, E° furnishing complete irreps of the finite modular group.

At level N =5 the only such possibility arises in the vicinity of - = ico when L and E¢ are
different triplets of A:.

For neutrino masses generated via a type I seesaw, we have considered gauge-singlets
N¢ furnishing a complete irrep of dimension 2 or 3.

We performed a detailed search for a model which

i) is phenomenologically viable in the regime of interest,

ii) produces a charged-lepton spectrum which is not fine-tuned,
iii) involvs at most 8 effective parameters (including 7).

An observable O is typically considered fine-tuned with respect to some parameter p if
BG = [0In0/dInp| > 10.

G. Giudice and R. Barbieri, 1987
Found one model satisfying these requirements:

L~ 3,k =23), EC~ (3, kp=1), N°~ (2, ky = 2).
The charged-lepton mass matrix has the following structure:

1 €* ¢

MJN €3 €2 et

, €~qgs, qs=exp(i2n7/5).

The predicted charged-lepton mass pattern is (m.,m,,m.) ~ (1,¢,€%).
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S} Model with L ~2@®1, EC~ 3/, N°~ 3

LeCoilk,=2), EC~ (8, kp = 2), N¢~ (3,ky = 1); vicinity of T — 100.

In the second most ‘structured’ case, one of the fields L, E€ is an irreducible triplet, while
the other decomposes into a doublet and a singlet of the finite modular group.

This possibility is realised at level N = 4 in the vicinity of 7 = ico.

For definiteness, we take L = Li> @ Lz with Lio ~ (2,k.), Lz~ (1,kz), and E° ~ (3, kg).

We have performed a systematic scan restricting ourselves to models involving at most
8 effective parameters (including 7) with no no limit on modular form weights.

Models predicting m. = 0 are rejected.

N¢ (when present) furnish a complete irrep of dimension 2 or 3.

Out of the 60 models thus identified, we have selected the only one which

i) is viable in the regime of interest and

ii) produces a charged-lepton spectrum which is not fine-tuned.

This model turns out to be consistent with the experimental bound on the Dirac CPV
phase. It corresponds to ki, = kg =2 and N°¢~ (3,1).

Using as expansion parameter ¢ = ¢/60 ~ 2q, q = exp(in7/2), M;L is approximately given by:

2 . 3 2 (&2+\/§)6 (762—V3) 3
\/§ . 2~\F6 2\{6
Mi~wvg |1 € e ] Mi~ 7%10419 —% %63 %6 , Go(3z) = ag(3)/o1-
€2 € e3 &362 —%e %63

The charged-lepton mass pattern is predicted to be (m,,m,,m.) ~ (1,¢,¢3).
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One can also find approximate expressions for the charged-lepton mass ratios:

33(a3 — 3))|
Mme ~ 18\/§ ‘043 2
my 62| ((82 + v/3)? + 1243)

el

m, 3@+ V3)% 4 12&]

m, \| 2 | o

€]

These expressions isolate viable (e-independent) regions in the plane of &51 = a1/az and
az/ar = az/as.

These regions are shown in the next figure including contours quantifying the degree of
fine-tuning involved in the relation between [— mass ratios and constant parameters.
The model best-fit point corresponds to a small value of max(BG) ~ 0.74.
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-2.0

—0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
(!’;;,”l’_kg

Values of the charged-lepton Yukawa couplings of the S, model with “large” Im(7) which
allow to reproduce charged-lepton mass ratios at 10 C.L. (green). The red regions are
not accessible due to an upper limit on |¢|] within the fundamental domain. Contours
refer to the Barbieri-Giudice measure of fine-tuning. The yellow star shows the location
of the best-fit point for this model.
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Model Al A S
Rer —0.4713 07 0.023577 50,7 —0.4967 0%
Imr 3.111928 2.65190 0.87712 9923
az/a1 1.3370-20 ~7.431270 —
asz/on 3.07107 2.761227 2.4510 %%
as/a — — —2.3770:3°
as/a — - 1'011_8..866
92/ 91 —0.0781700%%  —0.407 0005 157007
g3/ 91 0.57F 0 001r 0.321790%, 2.22°07
vga1, GeV 0.4047173%3 1.73%]5 4.61%] 32
v2 g1/, eV 0.778%3,2 42,5125 0.2687J2°7
(1) 0.09987092¢7 0.03131050%] 0.01867 9925
CL mass pattern (1,6,€) (1,¢,€3) (1,¢,€)
max(BG) 5.579 0.738 0.848
Me /M, 0.004747098092  0.0047970950%8  0.0047570 95023
my,/m. 0.05731291 1 0.057412 9117 0.055610913%
r 0.0297 10901 0.029812 5012 0.029817.90136
sm?, 107° eV? 7.3319° 7.38700) 7.3870%
|Am2|, 1073 eV? 2.47T90% 2.48700 2.48700
sin? 61 0.3061303° 0.30112934 0.3041293
sin? 613 0.022212.9921 0.022312 5017 0.022112.9019
sin? 6>3 0.557 9 %07 0.548109> 0.53912 0522
mi, eV 0.04937050% % 0.0204 7055052 0
ma, eV 0.051099% 0.0221 790093 0.0086 9209
ms, eV 0 0.0542F 9099 0.0502F9309+°
>imi, eV 0.099379290%%  0.0967T0%  0.05887 0 5%
[(m)], eV 0.01971 5%, 0.0181105%%4  0.00144175093>
5/ 1.88%0! 1.44700¢ 1+0(107°)
Qo1 /T 0.9112028 1771301 0
az1/m 0 1.867902 1+0(107%)
No 0.431 0.649 0.563
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Large Mixing Angles without Fine-tuning
Viable PMNS matrix in the symmetric limit

Modular-symmetric model of lepton flavour with hierarchical charged-lepton masses is
expected to be free of fine-tuning,

i.e., it is possible to have a PMNS matrix which is close to the observed one even in the
symmetric limit, i.e., such that either none of its entries vanish, or only the (13) entry
vanishes as ¢ — 0O,

if it satisfies at least one of the four conditions:

1. L~19101, E€~1&r, where 1 is some real singlet of the flavour symmetry, and r
iIs some (possibly reducible) representation such that » » 1;

2. L~191¢1%, E°~ 1*Dr, where 1 is some complex singlet of the flavour symmetry, 1*
is its conjugate, and r is some (possibly reducible) representation such that r 5 1, 1*.

3. all charged-lepton masses vanish in the symmetric limit, i.e. the corresponding hier-
archical pattern involves only positive powers of ¢, e.d. (e €2, €3);

4. all light neutrino masses vanish in the symmetric limit, i.e. L decomposes into three
(possibly identical) complex singlets none of which are conjugated to each other.

P.P. Novichkov et al., arXiv:2102.07488

The first two of the conditions were formulated earlier in Y. Reyimuaji and A. Romanino,
arXiv:1801.10530 (JHEP 03 (2018) 067) for arbitrary flavour symmetry groups.

One of the main conclusions: only a limited number of flavour symmetry representation
choices for L and E° give rise to a PMNS matrix which is viable in the symmetric limit
(as defined above).
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S; Models with 7~ w

The most ‘structured’ lepton flavour models without fine-tuning:

these arise at level N = 4 in the vicinity of - = w and correspond to E€ and L being a triplet
(of weight 4) and the direct sum of three singlets (of weights 2) of the finite modular
group S,, respectively. The charged-lepton mass pattern is (m,,m,,m.) ~ (1,¢,€2).

M,: sessaw, N¢~ (3',1); mi1 = 0.

The model: 7 real coupling constants + 7.

P.P. Novichkov et al., arXiv:2102.07488

In this model the b.f.v. and 30 ranges of 7 read:

— +0.009 : 4+0.0023. T W

SUGRA potential:vm,n(T, %) y T, TN Z O integers, modular- and CP- invariant.
M. Cvetic et al., Nucl. Phys. B361 (1991) 194; E. Gonzalo et al., arXiv:1812.06520

. 0.0145 .
V : Umnmin = e~ 27/9 — preaks modular and CP symmetries:
O,m Min = 190625 y

|umin ‘— from “Mexican hat’ -like potential.
P.P. Novichkov, J.T. Penedo, STP, arXiv:2201.02020

Voo ! Umin 222 v 10 = — 0.492 +70.875

) 2+ 0.0625
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0.89}
3/9F |
D (1,00¢
(e 0.88}
k- . -
B L KX3ey. =1
'_E. P {m,n) {0,n e S é (.2’ 0°
(m,0) (1m, 0" 087k (3,0)
1/2F ]
/ 0.86}
—1/2 0 1/2 051 050 049 048 0.47
Re 7 Re 7

Global minima of the potentials V(7,7),,,. Note that points on the right half of the unit
arc, which are CP-conjugates of the (m,n) minima, are excluded as they lie outside the
fundamental domain. The right panel shows the series (m,0) in the vicinity of the left
cusp in more detail.

P.P. Novichkov et al., arXiv:2201.02020
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n=20 n=1 n =2 n=3

m =20 0.000 + 1.235% 0.000 + 1.000s2 0.000 + 1.000s2 0.000 + 1.000s2
m=1 +0.484 4 0.884i —0.23840.971: —0.190+4 0.982¢ —0.163 4 0.9871¢
m =2 F0.492 + 0.8751 —0.286 + 0.958¢7 —0.239+0.971:¢ —-0.211+ 0.978¢
m=3 F70.495 + 0.8721 —-0.312+40.950: —-0.267 4+ 0.9647: —0.239+4 0.971¢

Values of the modulus 7 at the global minima of the potential V,, ,(r,7) for various m and
n. T he values of 7 in red are CP-violating, those in blue are CP-conserving.

The minima of Vyo(7,7), Vi1(7r,7) and Vp3(r,7) — considered in M. Cvetic et al., Nucl.
Phys. B361 (1991) 194. M. Cvetic et al. conjectured: all minima of V,,,(7,7) lie on the
border of D or on the imaginary axis in D (CP-conserving).

Not the case for V,,o(7,7).

P.P. Novichkov et al., arXiv:2201.02020
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G(r,7) = —x*N%log(2 Im 1) + log [*W (7)|” ,

k? = 8w/M3, Mp being the Planck mass, Ak is a scale (mass dimension one),

Ay is @ mass scale so that H(7) is dimensionless.
Following M. Cvetic et al., Nucl. Phys. B361 (1991) 194 and E. Gonzalo et al.,
arXiv:1812.06520 (the most general H without singularities in the fundamental domain),

H(r) = (j(r) —1728)"™? j(r)"/3,

The Klein j function is invariant under the action of the modular group SL(2,7Z). Here,
m and n are non-negative integers.

2(2Im )2

_3|H(7_)|2 ) 11:3,

iH'(r) + 5= H(r)Ga(7,7)

N
VT = G [

1 ~
Ny = (;@2/\%,) /4 is the mass scale of the potential, and G5 is the non-holomorphic Eisenstein
function of weight 2 given by

~ T
Go(7,7) = Go(1) — ——,
ImTr
where G5 is its holomorphic counterpart. GG»> can be related to the Dedekind function via
n'(T) i
= —G )
()~ an 2

The potential V(7,7) is modular- and CP- invariant.
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Bottom-up modular invariance approaches to the lepton flavour problem have been ex-
ploited first using the finite modular groups
s~ As (F. Feruglio, 1706.08479; J.C. Criado, F. Feruglio, 1807.01125);

>~ S3 (T. Kobayashi et al., 1803.10391);
4 ~S,s (J.T. Penedo, S.T. Petcov, 1806.11040, minimal, no flavons).

After these first studies, the interest in the approach grew significantly and models based
on these and othere groups have been constructed and extensively studied:

|_4 ~ S4
(Novichkov:2018ovf,Kobayashi:2019mna,Okada:2019lzv,Kobayashi:2019xvz, Gui-
JunDing:2019wap,Wang:2019ovr,Wang:2020dbp,Gehrlein:2020jnr);

|_5 ~ A5

(P.P. Novichkov et al., 1812.02158; Ding:2019xna,Gehrlein:2020jnr);

|_3 ~ A4

(Kobayashi:2018scp, Novichkov:2018yse, Nomura:2019jxj, Nomura:2019yft,

Ding:2019zxk, Okada:2019mjf, Nomura:2019Inr, Asaka:2019vev, Gui-JunDing:2019wap,
Zhang:2019ngf, Nomura:2019xsb, Kobayashi:2019gtp, Wang:2019xbo, Abbas:2020vuy,
Okada:2020dmb, Ding:2020yen, Behera:2020sfe, Nomura:2020o0pk, Nomura:2020cog,
Behera:2020Ilpd, Asaka:2020tmo, Nagao:2020snm, Hutauruk:2020xtk);

N> ~ S3 (Okada:2019xqgk,Mishra:2020gxg);

7 ~ PSL(2,77) (G.-J. Ding et al., 2004.12662).

Similarly, attempts have been made to construct viable models of
quark flavour and of quark-lepton unification (including based on GUTS):
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(H.Okada, M. Tanimoto, 1812.09677, 1905.13421; T. Kobayashi et al., 1906.10341;
Kobayashi:2018wkl,Lu:2019vgm,Abbas:2020qzc,
Okada:2020rjb,Du:2020ylIx,Zhao:2021jxg,Chen:2021zty,Ding:2021eva,Ding:2021zbg).

The formalism of the interplay of modular and gCP symmetries has been developed and
first applications made

(P.P. Novichkov et al., 1905.11970);

it was further extensively explored
(Kobayashi:2019uyt,Okada:2020brs,Yao0:2020qyy,Wang:2021mkw,Qu:2021jdy),

as was the possibility of coexistence of multiple moduli

(P.P. Novichkov et al.,, 1811.04933 and 1812.11289 (pheno); deMedeiros-
Varzielas:2019cyj,King:2019vhv,deMedeirosVarzielas:2020kji, Ding:2020zxw).

Modular invariant theories of flavour with more than one modulus, based on simplectic
modular groups were also developed
(G.-J. Ding et al., 2010.07952 and 2102.06716).

The formalism of double covers '), has been developed and viable flavour models con-
structed for the cases of

M~T,r,~S, and 'y ~ Ag

(X.-G. Liu, G.-J. Ding, 1907.01488 (7"); P.P. Novichkov et al., 2006.03058 (S;): X.
Wang et al., 2010.10159 (A7); Liu:2020akv, Yao:2020zml);

the formalism of metaplectic (two-fold) cover group of the modular group SL(2,7Z), in-
volving half-integral (rational) weigth modular forms, has also been developed (X.-G. Liu
et al., 2007.137006).

It was also realised that there esist three fixed (symmetry) points of the VEV of T,
Tsym = w(= —1/24+1iv/3/2), ico, i (in the mod. group fund. domain), at which the flavour
(=finite modular) symmetry "y ([};) is broken to non-trivial residual symmetries, Z57, Z1
and 75 (Z3 x Z%)

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



(P.P. Novichkov et al., 1811.04933 (2006.03058));

this fact was further exploited in flavour model building
(Novichkov:2018yse,Novichkov:2018nkm,Okada:2020brs)

and especially in connection with the posibility to build viable flavour models with observed
charged lepton (quark) mass hirarchies in the vicinity of the symmetry points

(H. Okada, M. Tanimoto, 2009.14242, 2012.0188; F. Feruglio et al., 2101.08718)
even without fine-tuning (P.P. Novichkov et al., 2102.07488).

It was shown also that one can have successful leptogeneis in theories with modular
flavour symmetries

(T. Asaka et al., 1909.06520; X. Wnag, S. Zhou, 1910.09473; H. Okada et al.,
2105.14292).

The bottom-up analyses are expected to eventually connect with the results of the top-
down approach based on ultraviolet-complete theories
(Kobayashi:2018rad,Kobayashi:2018bff,deAnda:2018ecu,Baur:2019kwii,
Kariyazono:2019ehj,Baur:2019iai,Nilles:2020nnc,Kobayashi:2020hoc,
Abe:2020vmv,OhKki:2020bpo,Kobayashi:2020uaj,Nilles:2020kgo, Kikuchi:2020frp,
Nilles:2020tdp, Kikuchi:2020nxn,Baur:2020jwc,Ishiguro:2020nuf,Nilles:2020gvu,
Ishiguro:2020tmo,Hoshiya:2020hki,Baur:2020yjl,Kikuchi:2021ogn).

The presented list of publications is not exhaustive.
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Instead of Conclusions

To summarise, there is still very important work to be done in the field of the modular
invariance approach to the flavour problem. The stakes are high and worth the efforts:
we are trying to develop The Theory of Flavour using the power and the beauty of the

modular invariance. Supporting Slides
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Lepton and Quark Masses and Mixing

The observed patterns of the masses of up- and down-type quarks and of the charged
leptons of the three families of SM are characterized by strong hierarchies:

Mg < ms < my, % =502x102, 2 =222x10"2, my =4.18 GeV:
Mg mp
M € e < M, 4 =17%x103, 2 =73%x10"3, m; = 172.9 GeV:
me myt
Me < my < my, £ =48x10"3, ™ =5095x 1072, m, = 1776.86 MeV.
my m,

The three quark mixing angles are small and hierarchical,

«9‘{2 = 12.96°, eg3 = 2.42°, «9‘{3 = 0.022°,
while the lepton mixing is characterized by two large and one small angles,
0\, = 33.65°, 03 =8.49°, 05, = 47.1° (45° within 1.50).
The quoted values correspond to the standard” parametrisations of Vcxm and Uppns- T he
Dirac CPV phases in CKM and PMNS matrices read:

0 =(73.5-51+4.2)°, 6 =(1.37-0.1640.18) x 180°(?).
F. Capozzi et al. (Bari Group), arXiv:1804.09678.

Quark observables: RG running must be accounted for after one chooses the scale of
modular symmetry (the RG running of the lepton observables is relatively small).

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



o

: T rd | |
|
i ¢ &
| 0w t
2 :
g v i e o
i i Sl ¢
| e ud
: o090
: i | |

i

meV eJV MeV GeV

Mass

TeV

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



u_ ) 6_.. I_
C M...
t 00N

Figures by P. Novichkov

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



Considered Solutions to the Lepton and Quark
Flavour Problems

e My; <<< Me,p,m, Mgy ¢ = U,Ct, d,s,b:

seesaw mechanism, Weinberg operator, radiative r mass generation, extra dimensions.
However, additional input (symmetries) needed to explain the pattern of lepton mixing
and to get specific testable predictions.

e The origin of the hierarchical pattern of charged lepton and quark masses.

The best qualitative explanation is arguably provided by the Frogatt-Nielsen mechanism
based on U(1)ry flavour symmetry and its generalisations.

Problems: predictions suffer from uncertainties; most naturally accomodates small mix-
ing angles, while two lepton mixing angles are large.

e The origins of the patterns of neutrino mixing of 2 large and 1 small angles.

Arguably the most elegant and natural explanation is obtained within the non-Abelian
discrete flavour symmetry approach to the problem.

However, the symmetry breaking in the lepton and quark flavour models based on non-
Abelian discrete symmetries is impressively cumbersome: it requires the introduction of
a plethora of “flavon” scalar fields having elaborate potentials, which in turn require the
introduction of a number of “driving fields” and large shaping symmetries to ensure the
requisite breaking of the symmetry leading to correct mass and mixing patterns.

Combining the proposed individual “solutions’” of the related sub-problems it is difficult,
if not impossible, to avoid the drawbacks of each of the "ingredient” sub-problem ‘so-
lutions” . In some cases this can be achieved at the cost of severe fine-tuning.

S.T. Petcov, FLASY 2022, Lisbon, 28/06/2022



