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Neutrino masses

SM neutrino v flavour oscillations
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Explained

small SM neutrino masses m,

Generated by

right-chiral (sterile) neutrinos N
Dirac mass
CD == —mDUN, mp =vy
Majorana mass
1 N

Ly = —EMMNCN
Majorana mass vanishes only if
lepton-number L is conserved

Neutrino oscillation pattern requires
at least two massive neutrinos
Majorana contribution causes
neutrinoless double B decay

Coupling parameter

6= mD/l\/IM




Seesaws

Neutrino mass matrix from two sterile neutrinos
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Viable seesaw models

High scale

02 <1\ M < Moyt
Small coupling

L<1
Symmetry protected

Low scale

Neutrino masses are small for

= small mp
= large M

= symmetry ensuring cancellation

Heavy neutral leptons (HNLs) at experiments
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Lepton number-like symmetry ensures

= small neutrino masses

= small mass splitting between heavy neutrinos

Prediction: pseudo-Dirac HNL

Almost mass degenerate pair of Majorana HNLs



Are HNLs Majoran or Dirac Fermions?

r Light neutrino Tv

Dirac Majorana

= Tiny Yukawa couplings : = Neutrinoless
= No collider observables double B decay

VIABLE LOW
SCALE SEESAW
= Unable to generate = Large symmetry breaking = |nsufficient to describe
SM neutrino masses = HNL oscillations = = Too heavy SM Neutrinos SM neutrino oscillations

Dirac Pseudo-Dirac Large mass splitting Single Majorana

L Majorana pairJ

1

Heavy neutral lepton

Neither Majorana nor Dirac HNLs are pseudo-Dirac HNLs have unique phenomenology

= expected to be found at colliders « Varying Ry, = M

Nine

= insufficient benchmark points = Oscillations between mass eigenstates




Oscillations

Oscillations
between LNC and LNV decays

Mass splitting AM

governs size of oscillations at leading order

Short oscillation length Long oscillation length
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= Oscillations not resolvable f§f = AM/I ~ O(1) = LNV contribution not de-
= Integrated effect = Oscillations measurable tectable

Riy = Ninv/Nine = 1 = LNV strongly suppressed
= Majorana limit = Dirac limit




Symmetry protected seesaw

Symmetric limit In the symmetry protected limit y, < 1

‘CZ};:;S = _N_chmaj Ny — ﬁTN_flayal + h.c., A’C’}S/SSIS = —ﬁTN_flayaz +hc +...,

Neutrino mass matrix Basis Other new fields
contains seesaw information (v, Ng, Ns) contribute further terms
Symmetric limit Mild symmetry breaking Large symmetry breaking
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= Massless neutrinos = pseudo-Dirac HNL = 2 Majorana HNLs with large
= Dirac HNL = phenomenology governed by AM

small parameters p = Large M or tiny mp




Consequences of small parameters u, u', u”

Generic seesaw Neutrinos
All u's are nonzero light and proportional the u's

SpeC|a| cases

Linear seesaw p Inverse seesaw u' Seesaw independent term u”

0 mp my 0 0 mp O
0 M,=|m, un' M
M 0 M 0o M 0

m T m, = 0 at tree level
m, oc ' MD mDmD v

m, o




Heavy neutrino oscillations at the LHC

Production, oscillation, and decay Process

p I+ .l = Production of interaction eigenstates N or N
* > B = Mass splitting induced AM oscillations be-

tween N and Ns
= LNC decay into /= or LNV decay into /™

Idea
Observe heavy neutrino oscillations in long-lived
decays

Simulation

= Model implementation in FEYNRULES
= Event generation in MADGRAPH
= CMS Detector simulation in DELPHES




Heavy neutrino oscillations at the LHC

Production, oscillation, and decay Process

p I+ . | = Production of interaction eigenstates N or N
* > B = Mass splitting induced AM oscillations be-
tween N and Ns
= LNC decay into /= or LNV decay into /™

Idea

Observe heavy neutrino oscillations in long-lived
Lab frame
decays

Simulation

= Model implementation in FEYNRULES
= Event generation in MADGRAPH
= CMS Detector simulation in DELPHES

Observations
= No oscillations in the lab frame
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Heavy neutrino oscillations at the LHC

Production, oscillation, and decay
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Process

= Production of interaction eigenstates N or N

= Mass splitting induced AM oscillations be-
tween N and Ns

= LNC decay into /= or LNV decay into /™

Idea

Observe heavy neutrino oscillations in long-lived
decays

Simulation

= Model implementation in FEYNRULES
= Event generation in MADGRAPH
= CMS Detector simulation in DELPHES

Observations

= No oscillations in the lab frame

= Oscillations appear in proper time frame

= |t is crucial to reconstruct the boost factor y
= Only processes without final neutrinos useful




Preliminary results

Event number for semi hadronic decays Example of oscillation reconstruction
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Expected pattern for long lived particle searches




Preliminary results

= Large parts of the accessible parameter space are already excluded by LHC
= HL-LHC can measure some heavy neutrino oscillations with 5o
= Strong dependence on oscillation length

Significance as function of luminosity Significance as function of oscillation length
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Conclusion

Low scale seesaw model predict pseudo-Dirac HNLs
pseudo-Dirac HNLs oscillate between LNC and LNV decays

Displaced HNL oscillations are resolvable at the HL-LHC

The symmetry protected seesaw captures the relevant physics in a simple model

Future collider will probe considerable more of the parameter space




