ATLAS invisible Higgs searches

Introduction

Overview of the two most recent ATLAS results and the conf on Run1+2 combination

- Mono-Z(H →invisible)
- VBF $H \rightarrow invisible + \gamma$

 Preliminary Run1 + 2 combination

Mono-Z(H \rightarrow invisible)

arXiv:2111.08372

Luigi Sabetta | 30 November 2021 | ATLAS invisible Higgs searches

Dedicated 4l CR

- 1. $ZZ(\rightarrow ll + invisible)$
- **2.** WZ($\rightarrow ll$ + invisible)
- 3. Z + Jets
- 4. Non-resonant Backgrounds (WW, $t\bar{t}$, single top, $Z \rightarrow \tau\tau$)
- **5.** Others (tribosons prod., $t\bar{t} + V$, ZZ $\rightarrow 4l$)

- 1. $ZZ(\rightarrow ll + invisible)$
- **2.** WZ($\rightarrow ll$ + invisible)
- 3. Z + Jets
- 4. Non-resonant Backgrounds (WW, $t\bar{t}$, single top, $Z \rightarrow \tau\tau$)
- **5.** Others (tribosons prod., $t\bar{t} + V$, ZZ $\rightarrow 4l$)

Dedicated 3l CR

One lepton missed in reconstruction

- 1. $ZZ(\rightarrow ll + invisible)$
- **2.** WZ($\rightarrow ll$ + invisible)
- 3. Z + Jets
- 4. Non-resonant Backgrounds (WW, $t\bar{t}$, single top, $Z \rightarrow \tau\tau$)
- **5.** Others (tribosons prod., $t\bar{t} + V$, ZZ $\rightarrow 4l$)

• E_T^{miss} Arises mostly from Jets mismeasurements

Constrained through MC Predictions verified in a $S_{E_T^{miss}} < 9$ region and through a γ +Jets sample (similar production diagram)

- 1. $ZZ(\rightarrow ll + invisible)$
- **2.** WZ($\rightarrow ll$ + invisible)
- 3. Z + Jets
- 4. Non-resonant Backgrounds (WW, $t\bar{t}$, single top, $Z \rightarrow \tau\tau$)
- **5.** Others (tribosons prod., $t\bar{t} + V$, ZZ $\rightarrow 4l$)

Dedicated $e\mu$ CR

Same as SR, but two different lepton flavor

- 1. $ZZ(\rightarrow ll + invisible)$
- **2.** WZ($\rightarrow ll$ + invisible)
- 3. Z + Jets
- 4. Non-resonant Backgrounds (WW, $t\bar{t}$, single top, $Z \rightarrow \tau \tau$)
- **5.** Others (tribosons prod., $t\overline{t} + V$, ZZ $\rightarrow 4l$)

Uncertainties

Uncertainty source	$\Delta \mathcal{B}$ [%]
Statistical uncertainty	5.1
Systematic uncertainties	7.4
Theory uncertainties	4.9
Signal modelling	0.4
ZZ modelling	4.4
Non-ZZ background modelling	2.1
Experimental uncertainties (excl. MC stat.)	4.6
Luminosity, pile-up	1.5
Jets, $E_{\rm T}^{\rm miss}$	4.0
Flavour tagging	0.4
Electrons, muons	1.2
MC statistical uncertainty	1.6
Total uncertainty	9.0

- Uncertainties impact evaluated fixing the corresponding NP to their best-fit values, and subtracting the square of the resulting uncertainty from the square of the total uncertainty to evaluate
- Among Theoretical Unc. ZZ modelling dominates

Among Experimental Unc. JES and JER dominates

Scalar σ_{WIMP-N} : down to $10^{-45} cm^2$

Fermion Majorana σ_{WIMP-N} : down to $10^{-46} cm^2$

arXiv:2109.00925

VBF $H \rightarrow invisible + \gamma$

Luigi Sabetta | 30 November 2021 | ATLAS invisible Higgs searches

Dominant Backgrounds

- $pp \rightarrow Z(\rightarrow \nu\nu) + \gamma + jets$
- $pp \rightarrow W(\rightarrow l\nu) + \gamma + jets$

• Dominant irreducible background:

 $Z(\rightarrow v\bar{v}) + jets + \gamma$

• SM MC predictions constrained using orthogonal CRs

- $pp \rightarrow Z(\rightarrow \nu\nu) + \gamma + jets$
- $pp \rightarrow W(\rightarrow l\nu) + \gamma + jets$
- $pp \rightarrow Z(\rightarrow \nu\nu) + jets$
- $pp \rightarrow W(\rightarrow ev) + jets$
- $pp \rightarrow \gamma + jets$

Jet faking photon

One of the jets is reconstructed as a photon.

Estimated through data using an ABCD method: three background regions and one signal regions are defined in the photon isolationtightness plane.

~1.56 % of the total Hinv SR Bkg with an 80-90% syst. unc.

- $pp \rightarrow Z(\rightarrow \nu\nu) + \gamma + jets$
- $pp \rightarrow W(\rightarrow lv) + \gamma + jets$
- $pp \rightarrow Z(\rightarrow \nu\nu) + jets$

• $pp \rightarrow W(\rightarrow ev) + jets$

• $pp \rightarrow \gamma + jets$

Electron faking photon

When the electron is reconstructed as a photon.

Data driven estimation. Determined from a comparison of the rate of Z boson reconstruction in the $e^{\pm}\gamma$ and e^+e^- final states. The full Run 2 dataset is used to select $Z \rightarrow ee$ events in which the electron pairs in the final state are reconstructed either as an e^+e^- pair or misreconstructed as an $e^{\pm}\gamma$ pair. (mis-reconstruction rate between 1.5% and 9%)

~6.5 % (30%) of the total Hinv ($H \rightarrow \gamma \gamma_d$) SR Bkg with a 15-30% syst. unc.

Luigi Sabetta | 30 November 2021 | ATLAS invisible Higgs searches

MultiJet

Minor background since these events do not have intrinsic E_T^{miss} .

MC sample stat enhanced by a factor of 20 through jet smearing (smeared quantities: E_{jet} , η_{jet} , φ_{jet})

~0.5 % of the total Hinv SR Bkg with a 94% syst. unc.

Uncertainties

Source	1 - Uncortainty on P	monoz analysis
Source	10 Uncertainty on \mathcal{D}_{inv}	
Jet scale and resolution	0.045	Second highest contribut
$V\gamma$ + jets theory	0.044	
pile-up	0.021	
Photon	0.031	
$e \rightarrow \gamma$, jet $\rightarrow e, \gamma$ Bkg.	0.034	
Lepton	0.003	
$E_{ m T}^{ m miss}$	0.018	
Signal theory shape	_	
Signal theory acceptance	-	
Data stats.	0.11	- Dominated by Data stats.
$W\gamma$ + jets/ $Z\gamma$ + jets Norm.	0.013	
MC stats.	0.046	
Total	0.15	

- Uncertainties impact evaluated as in the 7
- ntribution

 Simultaneous likelihood fit to *DNN score* distribution in CR + SR to improve background estimation

No significant excess is observed.

Observed (expected) 95% CL limit: $BR_{H \to inv.} \longrightarrow 0.37(0.34^{+0.15}_{-0.10})$

$H \rightarrow inv.$ combination

Run2 analysis:

• ttH

• **VBF** $H \rightarrow invisible$

Combination of Run1+2 set a limit on the $BR_{H \rightarrow inv}$ = 0.11

Scalar σ_{WIMP-N} : down to less than $10^{-45} cm^2$ Fermion Majorana σ_{WIMP-N} : down to $10^{-47} cm^2$

Conclusion

- Mono-Z presented! <u>arXiv:2111.08372</u>
- VBF+ MET + γ ! <u>arXiv:2109.00925</u>
- Run1+2 combination! <u>ATLAS-CONF-2020-052</u>

- ..and more to come
- VBF + MET
- Mono-V(had)
- Complete combination

Backup

monoZ SR selection efficiencies

Signal	$A imes \epsilon$	Events
ZH ightarrow ll + inv.	8%	120
DM model $(m_{\chi}=1~Gev,m_{med}=900~GeV)$	20 %	145
2HDM+a ($tan\beta = 1.0$, $sin\theta = 0.7$ $m_A = 600 \ GeV$, $m_a = 400 \ GeV$, $m_\chi = 10 \ GeV$)	32%	182

2HDM + a

- More complex model
- Implements
 2 Higgs doublets
 (5 Higgs bosons)
- More parameters

 $\{m_A, m_a, m_\chi, \tan\beta, \sin\theta\}$

For the 2HDM+a interpretation, the profile likelihood uses the $m_T\,$ of the dominant ZZ background for all SR and CR

The hashed red area indicates that the width of one of the Higgs bosons is larger than 20% of its mass

ATLAS-CONF-2021-004

VBF $H \rightarrow invisible + \gamma$

Discriminating variables for the final fit

The analysis aims to find an excess in the DNN score spectum for the invisible decay, in the m_T spectrum for the $\gamma \gamma_d$ decay

• Simultaneous likelihood fit to m_{jj} distribution in CR + SR to improve background estimation

• Simultaneous likelihood fit to m_T distribution in CR + SR to improve background estimation

