Thematic CERN School of Computing STUDENTS LIGHTNING TALK

Checkerboard Metropolis Algorithm for Large Size Lattice Simulations in GPU

Aravind T S

Tata Institute of Fundamental Research, Mumbai, India

Outline

" The Problem " The Problem Markov Chain Monte-Carlo Checkerboard Metropolis Algorithm Implementation Results

"The Problem "

• The Lagrangian of the ϕ^4 theory is described as

// A Scalar field theory

$$\mathcal{L} = -\frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{1}{4!} \lambda \phi^{4}$$

• Dynamics / Physics of the system is given by the integral over the path defined from a point in phase space q' to q"

$$egin{aligned} &\langle q',t_2 \mid q'',t_1
angle = \int [dq] \exp\left\{ i \mathcal{S}
ight\} \ &\mathcal{S} = \int \mathcal{L} d^4 q \end{aligned}$$

• The integral can be calculated by discitizing the path and doing Monte-Carlo integration of the discretized *lattice*

The Problem

• $\phi^4 \rightarrow \text{is a function of (t, x, y, z)} \Rightarrow \text{The integral is from q'} \rightarrow (t', x', y', z') \text{ to q''} \rightarrow (t'', x'', y'', z'')$

$$S_E = i \sum_{n} \left(\sum_{\hat{\mu}} \frac{1}{2} \phi(n) \left(2\phi(n) - \phi(n - \hat{\mu}) - \phi(n + \hat{\mu}) \right) + \frac{m^2}{2} \phi(n)^2 + \frac{\lambda}{4!} \phi(n)^4 \right)$$

- After discretization we get a 4 dimensional lattice of scalar ϕ
 - \circ Each lattice point with the value of ϕ at (t , x , y , z)
 - Lagrangian is Local
 - Observables has to be calculated from the lattice
 - weighted according to the negative exponential of action
 - Equivalent to doing a *importance sampling* of the lattice configurations according to same weights
 - Perform Monte-Carlo integration on the lattice configurations

 $\langle q', t_2 \mid q'', t_1 \rangle = \int [dq] \exp\{i\mathcal{S}\}$

Markov-Chain Monte Carlo

- Markov Chain
 - A sequence of states $\{\mu_t\}$ with $P(\mu_t \rightarrow \mu_{t+1})$ is independent of the $\{\mu_{t-1}\}$
 - An Ergodic markov chain is proven to have a unique stationary state.
 - Further imposition of time reversal symmetry precisely gives us the transition probabilities in this case

5

Markov-Chain Monte Carlo

- Given a lattice configuration (μ_t) we generate a new configuration (ν) as a perturbation to the current configuration
 - \circ Perturb each site on the lattice at a time : O(L⁴) scaling
 - New configuration is accepted with a probability
 - 1 Sweep = L^4 site probes
 - O(L⁴) scaling : Double the lattice Dimension \Rightarrow Order of magnitude increase in time

6

 $min(1, e^{-\beta\delta E})$

Markov-Chain Monte Carlo

- Sequence of the lattice configurations generated have auto-correlation
 - Quantified by the autocorrelation time of the generated observables
- For integrations we require independent sampling of the lattice phase-space
 - $\circ \rightarrow$ Large number of Sweeps needs to be realized

Checkerboard Metropolis Algorithm

- Given a lattice configuration (μ_t) we generate a new configuration (v) as a perturbation to the current configuration
- A better parallelizable logic for this update?
 - Divide the lattice in to odd-even meshes
 - Update each mesh parallely
 - Suitable for a GPU implementation
 - Locality of Lagrangian
 - Ergodic $! \rightarrow$ guaranteed correctness

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

8

Implementation

- Targeted NVIDIA GPUs with CUDA Cores
- For lattices fitting in the GPU Memory
 - Fixed memory for lattice/observable in the GPU
- Mapping of the Lattice sites to DRAM such that the neighbours are close to each other in memory physically
 - A coarse grain implementation // Could be improved further
- Use of *curand* for large throughput random number generation
- Minimal data and control transfers between GPU and CPU

9

Results and Summary

• The scalability of the implementation to large lattices was better

Lattice Length	Lattice Size	Time for 10^3 NCLC	Throughput (Hz)
4	256	4501.61	222.14
8	4096	12263.4	81.54
10	10000	16183.9	61.79
14	38416	18830.7	53.10
16	65536	20074.4	49.81

- Definite improvements possible
 - memory access patterns ??
 - Hope to learn thighs properly here
- Supposed to be a part of the ML pipeline for a reinforcement learning project. [<u>1</u>,<u>2</u>]

Thank you !

More detailed report

gitHub repo with the implementation