

Thematic CERN School of Computing 2022

Charis Kleio Koraka charis.kleio.koraka@cern.ch

CMS EVENT RECONSTRUCTION

<u>Online</u> reconstruction at the HLT:

- Fast
- Runs on computing farm@CERN

Offline reconstruction :

- Can be more sophisticated
- Runs on computing centers worldwide

COMPUTING AT THE HL-HLC

- 2-3 times greater instantaneous luminosity compared to Run-2
- Up to ~200 PU interactions
- Much larger event processing rate

Unprecedented challenge for online and offline event reconstruction.

Imperative to take advantage of new hardware
technologies → Heterogeneous computing

- Use of different co-processors designed to handle specific tasks in parallel
- Current software should be adapted to run on such systems

Heterogeneous software has been already developed and will be used for HLT reconstruction in Run-3!

USE OF GPUS AT THE CMS HLT

 Pixel tracks (patatrack), ECAL & HCAL local reconstruction able to run on GPUs.

 Use of GPUs allows introduction of more computer intensive tasks using the same processing time.

 New track reconstruction@HLT showed significant improvement in the performance with respect to legacy pixel tracks.

GPUS @ THE WORLDWIDE LHC COMPUTING GRID

Offline event reconstruction:

- Can use more sophisticated algorithms → higher latency
- Enormous amount to data & simulated events expected to be reconstructed for the HL-LHC

Efforts are being made within CMS to adapt different parts of the reconstruction software to run on heterogeneous computing systems:

- ~20% of reconstruction software already ported → Goal to reach 70-80%
- My focus → Electron/photon reconstruction with GPUs

One of the first GPU clusters dedicated to CMS was set up at T2_US_Wisconson:

 Has been extensively tested and is now integrated with the LCG.

ELECTRON & PHOTON RECONSTRUCTION @ CMS - 1

Performed by a dedicated tracking algorithm (GSF) that takes into account energy losses due to bremsstrahlung:

 CPU-intensive → does not run on all reconstructed hits of the detector.

Instead → identification of a hit pattern that might lie
on an electron trajectory ("seeding"):

- ECAL-driven
- Tracker-driven

GSF tracking algo runs on all ECAL & tracker-driven seeds

Mustache Supercluster

ECAL-driven seeds

Offline GSF algo

Tracker-driven seeds

Generic tracks

ELECTRON & PHOTON RECONSTRUCTION @ CMS - 2

Electron & photon reconstruction takes up ~5-7% of total event reconstruction CPU time

Electron seeding modules have the largest contribution

Goal is to be able port the e/g reconstruction on GPUs while:

- Making sure that the performance & reconstruction efficiency is similar or better that the current CPU implementation
- The timing is improved

(PU~200)

SUMMARY

- HL-LHC will present an unprecedented challenge for both online and offline event reconstruction
 - The required processing power will be of orders of magnitude larger than today
 - Use solely of conventional CPUs will not be enough
- Heterogeneous computing systems can provide the solution
 - Need to explore/adapt current CMS software to run on GPUs
- CMS already deployed heterogeneous reconstruction of tracks at the HLT

Looking forward to learning about new concepts & tools for heterogeneous computing at the tCSC!

THANK YOU!!