Kaons, Protons \& Antiprotons

(D)

Rick Field
University of Florida Outline of Talk

\Rightarrow PYTHIA 6.4 Tune Z1: Charged kaon, proton, and antiproton production in min-bias collisions.
\rightarrow PYTHIA 6.4 Tune Z1: Charged kaon, proton, and antiproton production in the underlying event.

Strange Particle Production

Jan Fiete Grosse-Oetringhaus LPCC MB\&UE Meeting

September 2010

\Rightarrow A lot more strange mesons at large \mathbf{p}_{T} than predicted by the Monte-Carlo Models!
$\Rightarrow K / \pi$ ratio fairly independent of the center-of-mass energy.

\Rightarrow Charged particle (direct, including leptons) pseudorapidity distribution, $\mathbf{d N} / \mathbf{d} \eta(N D)$, at 7 TeV for all $p_{T}, p_{T}>0.5 \mathrm{GeV} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}>1.0 \mathrm{GeV} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}>2.0 \mathrm{GeV} / \mathrm{c}$, and $\mathrm{p}_{\mathrm{T}}>3.0 \mathrm{GeV} / \mathrm{c}$ from Tune $\mathrm{Z1}$.

\Rightarrow Charged particle (direct, including leptons) pseudorapidity distribution, $\mathbf{d N} / \mathbf{d} \eta$ (ND), at 7 TeV for all $p_{T}, p_{T}>0.5 \mathrm{GeV} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}>1.0 \mathrm{GeV} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}>2.0 \mathrm{GeV} / \mathrm{c}$, and $\mathrm{p}_{\mathrm{T}}>3.0 \mathrm{GeV} / \mathrm{c}$ from Tune $\mathrm{Z1}$.
\Rightarrow Charged particle (direct, including leptons) pseudorapidity distribution, $\mathbf{d N} / \mathbf{d} \eta$, at 7 TeV for all $\mathbf{p}_{\mathbf{T}}$ from Tune Z1. Shows the individual contributions from ND, SD, DD, and INEL = ND + SD + DD.

Charged Particle dN/d 77 TeV

\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND}\right.$ all $\left.\mathbf{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right) /($all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+$ $\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\right.$ INEL $=\mathbf{N D}+\mathbf{S D}+$ DD all $\left.\mathbf{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged), $\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi+K^{+}+K^{-}+\mathbf{p}+$ pbar.

Charged Particle dN/d 77 TeV

\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathbf{N D}\right.$ all $\left.\mathbf{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right) /($all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+$ $\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+$ pbar.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND} \mathrm{p}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\right.$ $\left.\mathrm{K}^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.

Charged Particle dN/d 77 TeV

\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathbf{N D}\right.$ all $\left.\mathbf{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right) /($all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+$ $\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND} \mathrm{p}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\right.$ $\left.\mathrm{K}^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.
$\Rightarrow C h a r g e d$ particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND} \mathrm{p}_{\mathrm{T}}>1.0 \mathrm{GeV} / \mathrm{c}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\right.$ $\left.\mathrm{K}^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.

Charged Particle dN/d $\boldsymbol{7} 7 \mathrm{TeV}$

\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND}\right.$ all $\left.\mathbf{p}_{\mathbf{T}}\right)$. Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right) /($all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+$ $\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND} \mathrm{p}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\right.$ $\left.\mathrm{K}^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND} \mathrm{p}_{\mathrm{T}}>1.0 \mathrm{GeV} / \mathrm{c}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\right.$ $\left.\mathrm{K}^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.

Charged Particle Ratios

\Rightarrow Charged particle ratios versus p_{T} at $7 \mathrm{TeV}(\mathbf{N D}|\eta|<2)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right) /($all charged), $(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+$ pbar.
\Rightarrow Charged particle ratios versus $\mathbf{p}_{\mathbf{T}}$ at $7 \mathrm{TeV}(\mathbf{N D}|\eta|<0.8)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathbf{K}^{+}+\mathbf{K}^{-}\right.$ $) /($ all charged $),(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}$ + pbar.

Charged Particle Ratios

\Rightarrow Charged particle ratios versus p_{T} at $7 \mathrm{TeV}(\mathbf{N D}|\eta|<2)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $)$, ($\left.\mathbf{K}^{+}+\mathrm{K}^{-}\right) /($all charged), $(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+$ pbar.
\Rightarrow Charged particle ratios versus $\mathbf{p}_{\mathbf{T}}$ at $7 \mathrm{TeV}(\mathbf{N D}|\eta|<0.8)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathbf{K}^{+}+\mathbf{K}^{-}\right.$)/(all charged), $(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}$ + pbar.
\Rightarrow Charged particle ratios versus p_{T} at 7 TeV (INEL $\left.|\eta|<0.8\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathbf{K}^{+}+\mathbf{K}^{-}\right.$ $) /($ all charged $),(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}$ + pbar.

Charged Particle Ratios

\Rightarrow Charged particl charged), $(\mathbf{p}+\mathrm{p}$ pbar.

\Rightarrow Charged particle ratios versus p_{T} at $7 \mathrm{TeV}(\mathbf{N D}|\eta|<0.8)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right.$ $) /($ all charged $),(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged $)$, where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}$ + pbar.
\Rightarrow Charged particle ratios versus p_{T} at 7 TeV (INEL $\left.|\eta|<0.8\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathbf{K}^{+}+\mathbf{K}^{-}\right.$ $) /($ all charged $),(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged $)$, where sum $=\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}$ + pbar.

\Rightarrow Charged particle (direct, including leptons) pseudorapidity distribution, $\mathbf{d N} / \mathbf{d} \boldsymbol{\eta}$ ($\mathbf{N D}$ all $\mathbf{p T}$), at 7 TeV and 900 GeV from Tune $\mathrm{Z1}$.
\Rightarrow Charged particle ratios versus η at $900 \mathrm{GeV}\left(\mathrm{ND}\right.$ all $\left.\mathbf{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right.$)/(all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum = $\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.

Charged Particle Ratios

\Rightarrow Charged particle (direct, including leptons) pseudorapidity distribution, $\mathbf{d N} / \mathbf{d} \eta$ (ND all pT), at 7 $\mathbf{T e V}$ and 900 GeV from Tune $\mathbf{Z 1}$.
\Rightarrow Charged particle ratios versus η at $900 \mathrm{GeV}\left(\mathrm{ND}\right.$ all $\left.\mathrm{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right.$)/(all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum = $\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND}\right.$ all $\left.\mathbf{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right) /($all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+$ $\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.

Charged Particle Ratios

\Rightarrow Charged particle ratios versus η at $900 \mathrm{GeV}\left(\mathrm{ND}\right.$ all $\left.\mathrm{p}_{\mathrm{T}}\right)$. Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathrm{K}^{+}+\mathrm{K}^{-}\right.$)/(all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum = $\pi^{+}+\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.
\Rightarrow Charged particle ratios versus η at $7 \mathbf{T e V}\left(\mathbf{N D}\right.$ all $\left.\mathbf{p}_{\mathbf{T}}\right)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathbf{K}^{+}+\mathrm{K}^{-}\right) /($all charged), proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+$ $\pi^{-}+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+\mathbf{p b a r}$.

Strange Particle Production

\Rightarrow A lot more strange mesons at large p_{T} than predicted by the Monte-Carlo Models and a different shape of the curve!

PYTHIA Fragmentation
 Parameters

\Rightarrow PARJ $(1):(D=0.10)$ is $\mathbf{P}(\mathbf{q q}) / \mathbf{P}(\mathbf{q})$, the suppression of diquark-antidiquark pair production in the colour field, compared with quark-antiquark production.
$\Rightarrow \operatorname{PARJ}(2):(\mathrm{D}=0.30)$ is $\mathbf{P}(\mathbf{s}) / \mathbf{P}(\mathbf{u})$, the suppression of s quark pair production in the field compared with u or d pair production.
$\Rightarrow \operatorname{PARJ}(3):(\mathrm{D}=0.4)$ is $(\mathrm{P}(\mathrm{us}) / \mathbf{P}(\mathrm{ud})) /(\mathbf{P}(\mathbf{s}) / \mathrm{P}(V$, the extra suppression of strange diquark production compared with the normal suppr ion of strange quarks.
\Rightarrow PARJ(4): $(\mathrm{D}=0.05)$ is $(1 / 3) P(\mathbf{u d 1}) / \mathrm{P}(\mathrm{ud} 0)$, the su ssion of spin 1 diquarks compared with spin 0 ones (excluding the factor 3 coming from spin nting).

Look at the affect of changing PARJ(2) from 0.3 to 0.5 !

Charged Particle Ratios

\Rightarrow Charged particle (direct, including leptons) pseudorapidity distribution, $\mathbf{d N} / \mathbf{d} \eta$ ($\mathbf{N D}$ all $\mathbf{p T}$), at 7 TeV for $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.3$ (default) and $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.5$ from Tune Z1.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND}\right.$ all $\left.\mathrm{p}_{\mathrm{T}}\right)$ with $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.3$ (default) and PARJ $(2)=s / u=0.5$ from Tune Z1. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(K^{+}+K^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+K^{+}+$ $K^{-}+\mathbf{p}+$ pbar.

Charged Particle Ratios

\Rightarrow Charged particle (direct, including leptons) pseudorapidity distribution, $\mathbf{d N} / \mathbf{d} \eta$ ($\mathbf{N D}$ all $\mathbf{p T}$), at 7 TeV for $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.3$ (default) and $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.5$ from Tune Z1.
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND}\right.$ all $\left.\mathrm{p}_{\mathrm{T}}\right)$ with $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.3$ (default) and $\operatorname{PARJ}(2)=s / u=0.5$ from Tune Z1. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(K^{+}+K^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+K^{+}+$ $K^{-}+\mathbf{p}+$ pbar.
\Rightarrow Charged particle ratios versus p_{T} at $7 \mathrm{TeV}(\mathrm{ND}|\eta|<0.8)$ with PARJ(2) $=\mathrm{s} / \mathrm{u}=0.3$ (default) and PARJ $(2)=s / u=0.5$ from Tune Z1. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(K^{+}+K^{-}\right) /($all charged $),(p+$ pbar)/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+$ pbar.

Charged Particle Ratios

\Rightarrow Charged particl TeV for PARJ (2

(ND all pT), at 7
\Rightarrow Charged particle ratios versus η at $7 \mathrm{TeV}\left(\mathrm{ND}\right.$ all $\left.\mathrm{p}_{\mathrm{T}}\right)$ with $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.3$ (default) and $\operatorname{PARJ}(2)=s / u=0.5$ from Tune Z1. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(K^{+}+K^{-}\right) /($all charged $)$, proton/(all charged), antiproton/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi^{-}+K^{+}+$ $K^{-}+\mathbf{p}+$ pbar.
\Rightarrow Charged particle ratios versus p_{T} at $7 \mathrm{TeV}(\mathrm{ND}|\eta|<0.8)$ with $\operatorname{PARJ}(2)=\mathrm{s} / \mathrm{u}=0.3$ (default) and PARJ $(2)=s / u=0.5$ from Tune Z1. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(K^{+}+K^{-}\right) /($all charged $),(p+$ pbar)/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+$ pbar.

Strange Particle Production
 Not good!

\Rightarrow A lot more strange mesons at large \mathbf{p}_{T} than predicted by the Monte-Carlo Models and a different shape of the curve!

Protons \& Antiprotons

\Rightarrow Tune $\mathbf{Z 1}$ (ND) does not get this right either and this curve does not depend on PARJ(2)!

\Rightarrow ALICE preliminary data at 900 GeV and 7 TeV on the "transverse" charged particle density, $\mathrm{dN} / \mathrm{d} \eta \mathrm{d} \phi$, as defined by the leading charged particle (PTmax) for charged particles with $p_{T}>0.5 \mathrm{GeV} / \mathrm{c}$ and $|\eta|<0.8$. The data are corrected and compared with PYTHIA Tune Z 1 at the generator level.

\Rightarrow ALICE preliminary data at 900 GeV and 7 TeV on the "transverse" charged particle density, $\mathrm{dN} / \mathrm{d} \eta \mathrm{d} \phi$, as defined by the leading charged particle (PTmax) for charged particles with $p_{T}>0.5 \mathrm{GeV} / \mathrm{c}$ and $|\eta|<0.8$. The data are corrected and compared with PYTHIA Tune Z1 at the generator level.

\Rightarrow ATLAS preliminary data at 900 GeV and 7 TeV on the "transverse" charged PTsum density, dPT/d $\eta \mathrm{d} \phi$, as defined by the leading charged particle (PTmax) for charged particles with $p_{T}>0.5 \mathrm{GeV} / \mathrm{c}$ and $|\eta|<2.5$. The data are corrected and compared with PYTHIA Tune Z1 at the generrator level.

"Transverse" Particle Ratios

\Rightarrow Leading charged particle ratios versus \mathbf{p}_{T} at $7 \mathrm{TeV}(|\eta|<2.0)$. Shows $\left(\pi^{+}+\pi\right) /($ all charged $),\left(\mathrm{K}^{+}+\right.$ $\left.\mathbf{K}^{-}\right) /($all charged $),(\mathbf{p}+\mathbf{p b a r}) /($ all charged $)$, and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+$ p + pbar.
\Rightarrow Charged particle ratios in the "transverse" region ($p_{T}>0.5 \mathrm{GeV} / \mathrm{c},|\eta|<2.0$) versus the leading charged particle, PTmax, at 7 TeV . Shows $\left(\pi^{+}+\pi^{-}\right) /($all charged $),\left(\mathbf{K}^{+}+\mathbf{K}^{-}\right) /($all charged $),(\mathbf{p}+$ pbar)/(all charged), and sum/(all charged), where sum $=\pi^{+}+\pi+\mathbf{K}^{+}+\mathbf{K}^{-}+\mathbf{p}+$ pbar.
\Rightarrow So far no luck at fitting the min-bias charged kaon to charged pion ratio. Increasing s/u produces more strange particles, but the shape of the curve versus $\mathbf{p}_{\mathbf{T}}$ is different! But I am just getting started at this!
\Rightarrow Also not getting the protons + antiprotons right. Changing PARJ(2) does nothing here! Must check out some of the other parameters
\Rightarrow The Monte-Carlo models are constrained by LEP data. Must make sure that I do not destroy the agreement with the LEP data!
\Rightarrow We need a better understanding and modeling of diffraction!

