LHCb: update on Minimum Bias results

Sebastian \bar{S} chleich on behalf of the LHCb collaboration

Minimum Bias and Underlying Event Working Group meeting 07.02.2011

SPONSORED BY THE

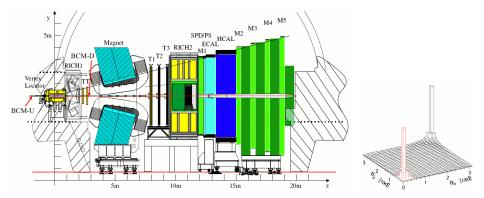
Federal Ministr of Education and Research Outline

Outline

1. The LHCb experiment

Phase space coverage PID system LHCb data

2. K_s^0 production

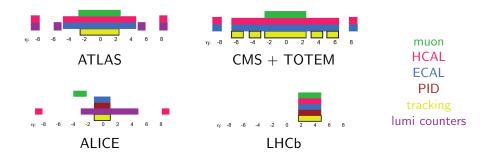

3. V0 ratios

- $\overline{\Lambda} \ / \ \Lambda$ ratio $\overline{\Lambda} \ / \ K^0_{\scriptscriptstyle S}$ ratio
- 4. \overline{p}/p ratio

5. ϕ production

Sebastian Schleich (TU Dortmund)

The LHCb experiment



- single arm forward spectrometer $1.9 < \eta < 4.9$
- aims at precision measurements of CP violation in the b sector
- excellent lifetime resolution:

VELO, 5 mm distance to beam, movable device

▶ $2 \cdot 10^4$ b-quarks per second

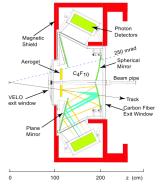
Phase space coverage

LHCb fully instrumented in the forward region

 \blacktriangleright studies in high- η and low- p_T region at unprecedented CM energy

PID system

dedicated PID system based on RICH detectors:

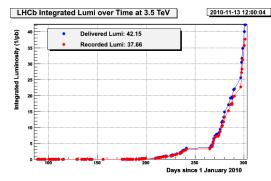

► RICH1:

- Aerogel $p < 10 \,\text{GeV}/c$
- $C_4 F_{10}$ $p < 60 \, \text{GeV}/c$

► RICH2:

• CF₄ 15

important ingredient e.g. to $p\bar{p}$ and ϕ studies


Recorded luminosity

luminosity

 $6.8 \ \mu \mathrm{b}^{-1}$

 0.3 nb^{-1}

 38 pb^{-1}

... 90% data taking efficiency!

in this talk:

year

2009

2010

2010

	$\sqrt{s} = 900 {\rm GeV}$	$\sqrt{s}=7~{ m TeV}$
K_{S}^{0} cross section	Х	
ϕ cross section		Х
V0 ratios	Х	Х
$p/\ \overline{p}$ ratio	Х	Х

 \sqrt{s} / TeV

0.9

0.9

7.0

Sebastian Schleich (TU Dortmund)

Trigger conditions

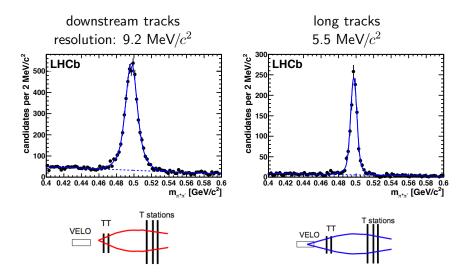
the LHCb trigger system

- Level 0: custom hardware (40 $MHz \rightarrow 1 MHz$)
- Higher Level Trigger: computing farm
 - Hlt1: (1 MHz \rightarrow 40 kHz)
 - Hlt2: (40 kHz \rightarrow 2 kHz)

first data:

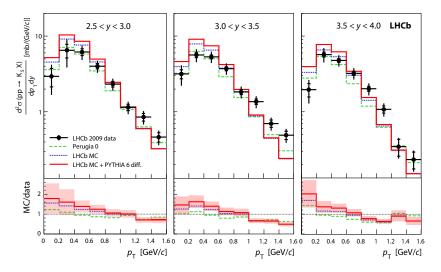
- started with Minimum Bias trigger (CALO or 1 track)
- commissioned full system with growing event rate

$K_{\scriptscriptstyle S}^0$ production


Physics Letters B 693 (2010) pp. 69-80 arXiv:1008.3105v2

- $\blacktriangleright~K^0_{\scriptscriptstyle S}$ reconstructed in $K^0_{\scriptscriptstyle S}\to\pi^+\pi^-$
- analyzed data from pilot run 2009
- Iow requirements on reconstruction, no PID...
 - ideal 'first physics' channel
 - testing ground for detector understanding/calibration
- K_s^0 decay far away from primary vertex
- two separate analyses done (with/without VELO information)

key systematics:luminosity12%tracking efficiency10%

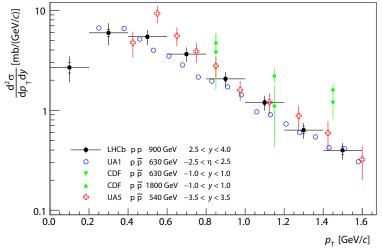

 K_S^0 production

K_s^0 production

 K_S^0 production

 $K_s^0 p_T$ spectra at $\sqrt{s} = 900$ GeV

• harder p_T spectrum in data than MC


Sebastian Schleich (TU Dortmund)

LHCb: update on Minimum Bias results

07.02.2011 10 / 24

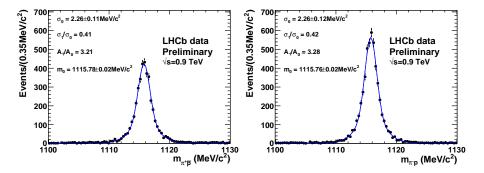
 K_S^0 production

Comparison with other experiments

- first measurement at $\sqrt{s} = 900 \text{ GeV}$
- y and p_T range extended

Sebastian Schleich (TU Dortmund)

V0 ratios

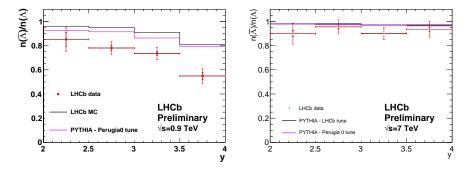

V0 ratios

identification:

- $\begin{array}{cc} \Lambda & \Lambda \rightarrow p \; \pi^- \\ \overline{\Lambda} & \overline{\Lambda} \rightarrow \overline{p} \; \pi^+ \\ K^0_S & K^0_S \rightarrow \pi^+ \; \pi^- \end{array}$
 - $\blacktriangleright~K^0_{\scriptscriptstyle S}$ and \varLambda selection based on impact parameters
 - independent from luminosity
 - low systematic uncertainties (cancel partially)

V0 ratios $\overline{\Lambda} / \Lambda$ ratio

 $\overline{\Lambda}$ / Λ mass peaks at $\sqrt{s} = 900$ GeV

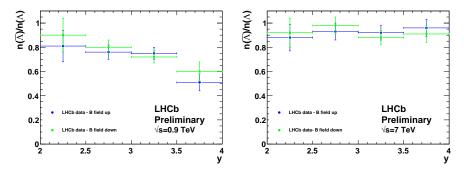

Sebastian Schleich (TU Dortmund)

LHCb: update on Minimum Bias results

07.02.2011 13 / 24

V0 ratios \overline{A} / A ratio

 $\overline{\Lambda} / \Lambda$ ratio

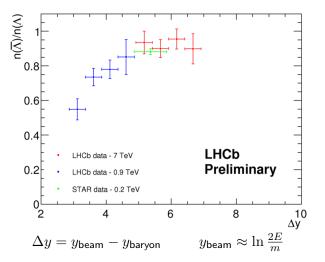


 \Rightarrow energy dependence:

- ratio overestimated by MC at $\sqrt{s} = 900 \text{ GeV}$
- better agreement at $\sqrt{s} = 7$ TeV, but data still on the low side

V0 ratios $\overline{\Lambda} / \Lambda$ ratio

 \overline{A} / A ratio – LHCb magnet polarity comparison

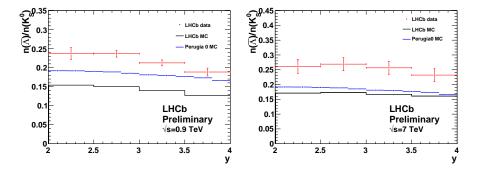

no polarity dependence. OK!

Sebastian Schleich (TU Dortmund)

LHCb: update on Minimum Bias results

07.02.2011 15 / 24

Baryon transport $\overline{\Lambda}$ / Λ



 \blacktriangleright consistency between $\sqrt{s}=900$ GeV, 7 TeV and previous measurement

Sebastian Schleich (TU Dortmund)

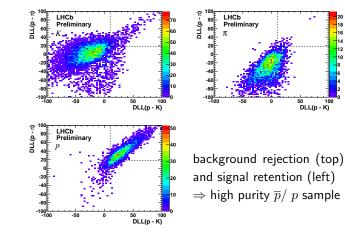
V0 ratios $\overline{\Lambda} / K_S^0$ ratio

 $\overline{\Lambda} \ / \ K^0_{\scriptscriptstyle S}$ ratio

ratio underestimated by MC at both beam energies

Sebastian Schleich (TU Dortmund)

LHCb: update on Minimum Bias results

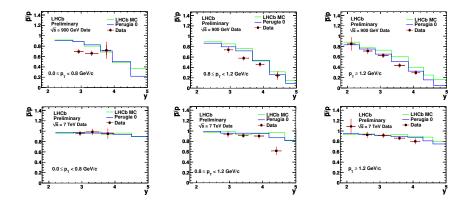

07.02.2011 17 / 24

\overline{p}/p ratio

\overline{p}/p ratio – PID

- analysis strongly depends on PID system
- PID calibrated on data:
 - π and p from $K^0_s \to \pi^+\pi^-$ and $\Lambda \to p\pi$

• K from
$$\phi \to KK$$

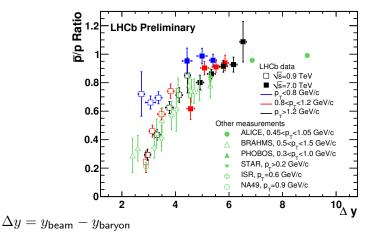


12

100

 \overline{p}/p ratio

\overline{p}/p ratio


 \blacktriangleright ratio overestimated at $\sqrt{s}=900~{\rm GeV}$

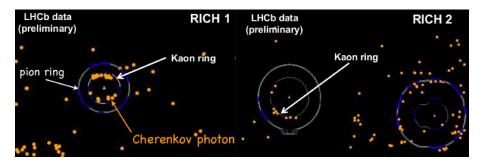
• good MC-data agreement at $\sqrt{s} = 7 \text{ TeV}$

Sebastian Schleich (TU Dortmund)

 \overline{p}/p ratio

Baryon transport \overline{p}/p

\blacktriangleright consistency with other measurements, better at high p_T .


Sebastian Schleich (TU Dortmund)

 ϕ production

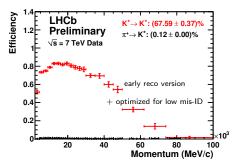
ϕ production

two fold purpose:

- extremely good test for strangeness production (100% strange final state)
- study RICH PID system

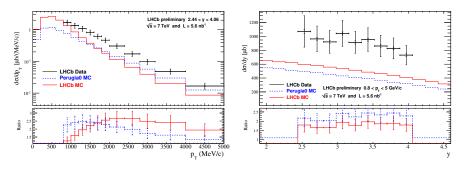
Sebastian Schleich (TU Dortmund)

 ϕ production


ϕ production

• ϕ production cross section measured in bins of transverse momentum p_T and rapidity y

only reconstruction efficiency relies on MC


RICH PID cut efficiency determined on data (tag&probe)

- apply PID cut on at least one kaon
- subsequently cut on the second kaon
- deduce PID cut efficiency

 ϕ production

ϕ cross section projections

error bars show total uncertainties, including correlated systematics

- harder p_T spectrum as compared to MC

Conclusions

Conclusions

LHCb delivers splendid input to MB physics in the high- η region

- ▶ K_s^0 production at $\sqrt{s} = 900$ GeV harder p_T spectrum as compared to MC
- $\blacktriangleright~\overline{\Lambda}/\Lambda$ ratios at $\sqrt{s}=900~{\rm GeV}$ lower than MC, y dependence differs
- $\blacktriangleright~\overline{\Lambda}/\Lambda$ ratios at $\sqrt{s}=7~{\rm TeV}$ slightly on the low side
- *Ā*/K⁰_s ratio at √s = 900 GeV and √s = 7 TeV: predicted baryon suppression is too high
- $\blacktriangleright~\bar{p}/p$ ratio overestimated by MC at $\sqrt{s}=900~{\rm GeV}$
- ϕ production at $\sqrt{s} = 7$ TeV production above MC in the considered kinematical range

(comparing LHCb data to PYTHIA 6.4 with Perugia0)