Review of BI specs for TT21/22/23/24/25

F.M. Velotti, V. Kain, Y. Dutheil, M. Fraser

Previous documents and specs

- Initial specifications for TT20 and other primary lines covered already a large part of the new instrumentation needed
- After 2021 startup, and in the context of the review of the issues had, it was decided to review our requests
 - Original request: https://edms.cern.ch/document/2113420/0.1
 - This document was discussed already in the context of the SLAWG with BI colleagues – proposed changes included already feedback on what could be done and to not explode in terms of cost
- We are now summarising all the changes that <u>ideally</u> we would do to these lines

Beam parameters assumed

- For the specification we have used the assumptions in the tables on the side
- It was agreed in the NA meetings that clear numbers taking into account also possible future projects, should be provided – <u>they</u> <u>are not these ones!</u>
- Brennan and Gianluigi will follow this up

Parameter	Value	Unit	Comment
Particle type	protons		
Nominal pulse intensity	~ 3 - 4 × 10 ¹³	p/spill	Typical operational intensity
Set-up pulse intensity	~ 2 × 10 ¹²	p/spill	Low intensity used for beam set-up
Extraction rate fluctuations ⁽¹⁾	3x average nominal rate		Detector should be resilient to short spikes in rate (~20 ms) at start and end of spill.
Pulse (spill) length	1 - 10	S	BDF and MD spills can be as short as 1 s spill, but up to 10 s should remain possible for NA
Pulse structure ⁽²⁾	D.C.	-	Baseline is a DC beam: there may be future scenarios with bunched extraction (200 MHz)
Repetition period	> 7.2	s	Minimum cycle length with a 1.2 s flat-top
Integrated extracted intensity (POT)	< 5 × 10 ¹⁹	p/year	Maximum annual flux foreseen with BDF operation
Circulating beam size (rms)	~ 1 × 1 [H × V]	mm	Along LSS2: Gaussian distribution
Extracted beam size at electrostatic septa (ZS) (total)	~ 10 - 20 [H]	mm	H: non-Gaussian distribution, V: beam size same as circulating beam

Parameter	Value	Unit	Comment
Particle type	²⁰⁸ Pb ₈₂		Xe also used
Pulse intensity	~ 4 × 10 ⁸	charges/spill	
Pulse length	< 10	S	
Pulse structure	D.C.	-	Baseline is a DC beam
Repetition period	16.8 - 25.2	S	

Changes already in place

- The different monitors in the TT20 lines are now PPM
- We access to data on the different BSPs, BSGs and BSIs in time along the spill with sampling rate of 20 ms
- Six additional BLMs have been installed along TT20 during YETS 17/18
- Two new diamond BLMs have been installed in LSS2 and start of TT20, although they have not been commissioned yet
- A longitudinal BLM has been installed (refurbished) but it is not been commissioned yet

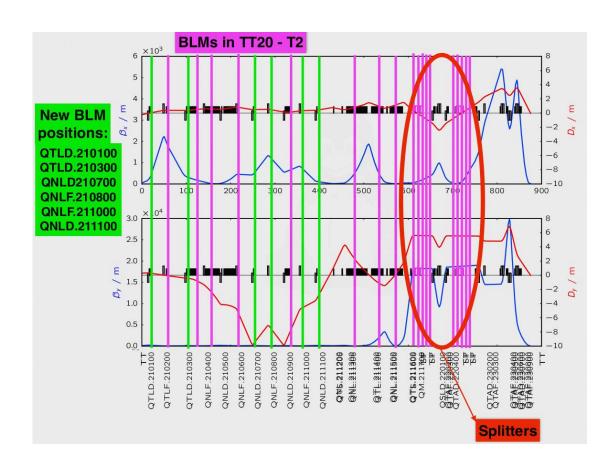
Requests for new instrumentation - position

- Available BSPs in TT20 lines are very difficult to use for any optics measurements
 - Position measurement becomes unreliable as soon too far off from center
 - Not reliable for non-symmetric distribution
- Requests to have devices to measure accurately position at all locations of BSPs => replace BSPs with BPMs or BSGs or equivalent
 - Are BPMs an option? 200 MHz and 40 kHz still present in the first part of the extraction could this be used for BPM?
 - We could define an operational scenario with RF on, like move to amplitude extraction to be able to extract bunched beams with not too high losses
 - Exhange should be performed in TT21/22/23/24/25
 - Higher priority for TT22/23/24/25

Line	Number or BSPs
TT21	19
TT22	3
TT23	4
TT24	4
TT25	5

Requests for new instrumentation – beam size

- Large coverage with BSG provided already in vertical, but quite a few key locations missing in horizontal
- We need to increase the horizontal coverage especially after the splitters and before the targets
 - Request to have at least 3 BSG per plane per line (see table for what is missing)
- Replace 3 BSPs with BSGs as in specification document (see also <u>here</u>) for TT21
- Refurbish BTVs in 2116 (~ 20 m upstream first MSSB), 2117 (~20 m downstream first MSSB) and 2204 (~20 m upstream of second MSSB) and provide resolution of 1-2 mm
- Single-shot beam profiles before and after the extraction septa (ZS, MST, MSE) are requested with a resolution approaching 0.1 – 0.2 mm
- If possible, add FISKs in the line for accurate beam profile measurements and time-resolved


Line	Number of BSGHs to add	Number of BSGVs to add
TT22	2	-
TT23	2	-
TT24	2	1
TT25	-	-

Requests for new instrumentation – intensity

- BCT exploiting remanent harmonics in spill? Or again exploit special operation mode to allow extraction of bunched beam for calibration
- High-bandwidth spill monitor needed to assess harmonic content of extracted spill
 - It is needed to be able to resolve 43 kHz (revolution frequency) and twice that (86 kHz as 2 batches)
 - Up to 200 MHz (RF frequency) would be ideal for accurate measurements of spill quality
 - Ensure low noise first BSI in TT20 for accurate noise compensation (high BW not needed for this)
 - Future experiments are requesting knowledge of the beam harmonics up to 10 GHz
 - Spill monitor should be sensitive enough to allow measurements with ions too
- For long term prospects (post-LS3), it was proposed to investigate a possibility to measure beam intensity at %-level
- For now, working on procedure to calibrate BSIs in TT20

Requests for new instrumentation – losses

- TT23/24/25 not equipped with BLMs: request to add 1 BLM per quadrupole in these 3 lines (lines from splitters to primary targets)
- LHC BLMs available in LSS2, but in non-PPM mode: request to have them in the SPS timing system to be able to simplify readings and integrate with standard tools

Summary

Specification for primary line to NA completed with all unrestrained desires

ASAP:

- High BW spill monitor and low noise spill monitor
- Highest priority items:
 - Add BSGs in TT22/23/24 to achieve at least 3 BSG per plane per line
 - Replace all BSPs with BPMs/BSGs or any other position device to improve measurement quality and range
 - Refurbish BTVs at splitter location for real beam size measurements
 - Add 1 BLM per quadrupole in TT23/24/25