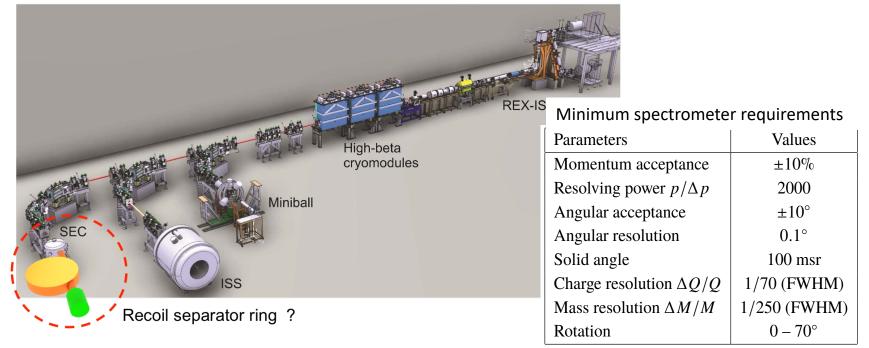


Design and Beam Dynamics Studies of the ISRS: Requirements for the magnets

Javier Resta-López (ICMUV, University of Valencia, Spain), Arnaud Pascal Foussat, Glyn Kirby (CERN, Geneva, CH), Ismael Martel (University of Huelva, Spain) Volodymyr Rodin (The University of Liverpool, Liverpool; Cockcroft Institute, Warrington, UK)


ISRS Workshop 6th January, 2022

Introduction

The HIE-ISOLDE facility at CERN

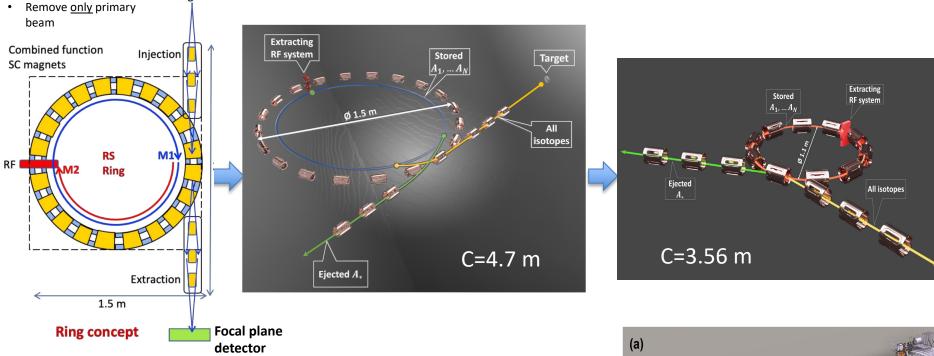
- Very large range of radioactive beams from ${}^{6}\text{He} {}^{234}\text{Ra}$
- 1000 isotopes, > 70 elements
- Wide energy range 0.45 10 MeV/u (depending on A/Q)

A compact recoil separator can bring new and exciting possibilities to the HIE-ISOLDE physics program

The ISOLDE Superconducting Recoil Separator (ISRS) – new initiative since 2019

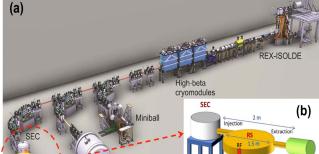
Preliminary studies

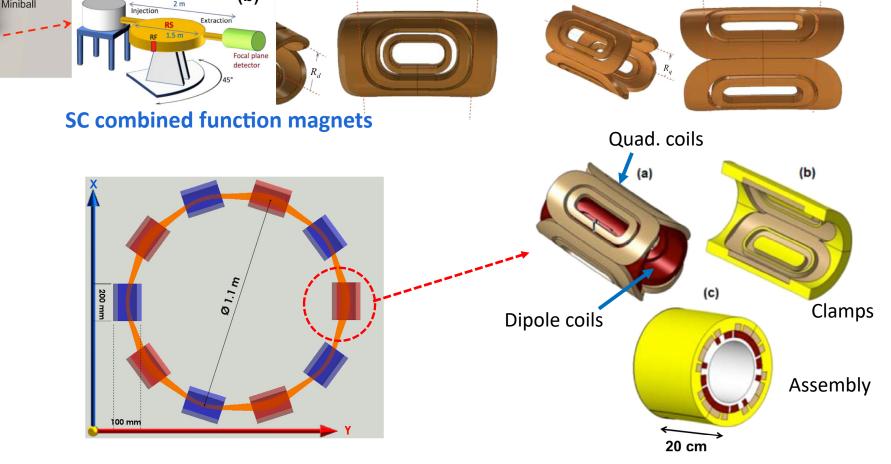
Target


Conceptual design

I. Martel. 84th ICC meeting. CERN, March 2019.

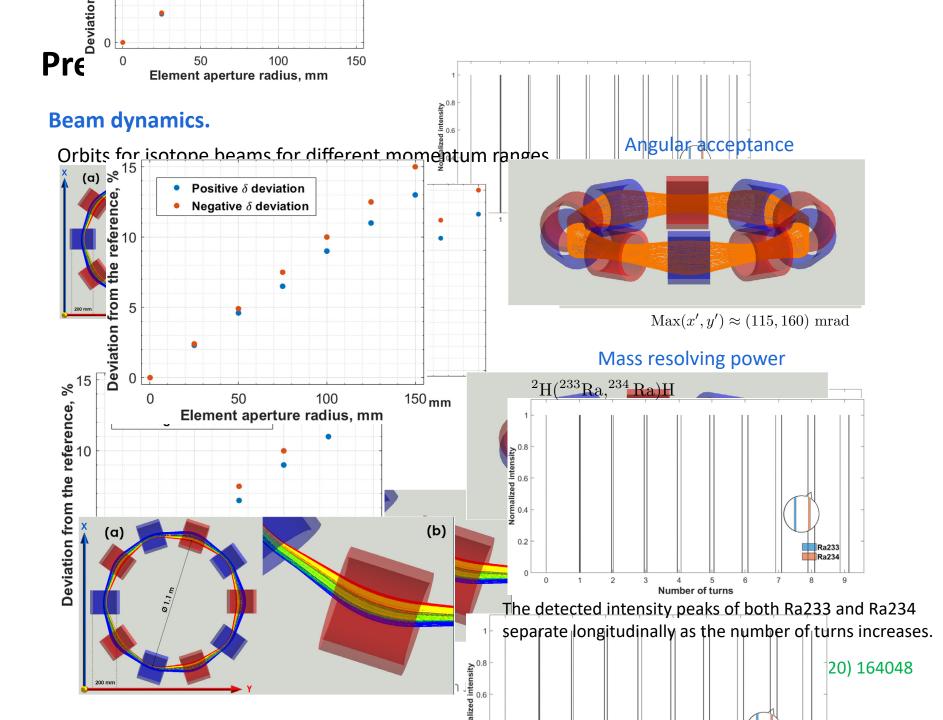
3D G4beamline model (20 multifunction magnets)


First optimization (10 multifunction magnets)

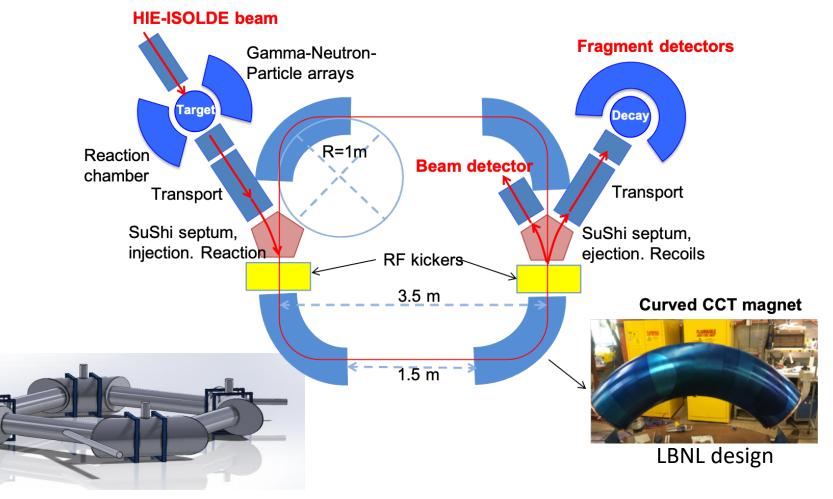

C. Bontoiu et al., NIMA 969 (2020) 164048

Based on combined function magnets: dipolar and qua Maximum magnetic field ~ 6 T

ISRS CCT, 6th January 2021

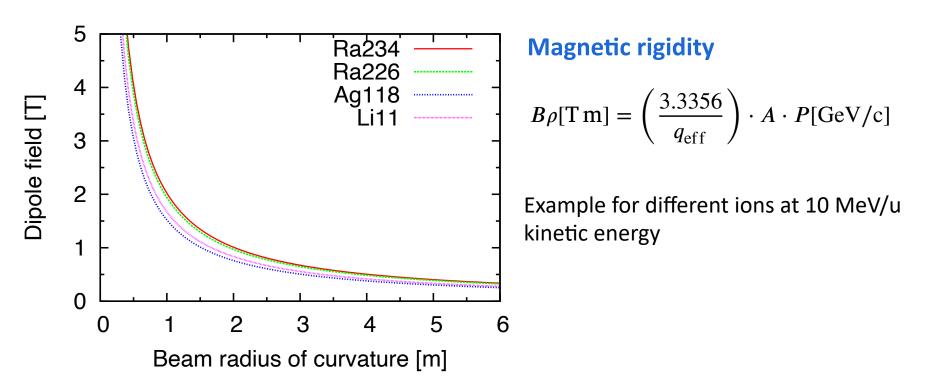


Summary of magnet parameters for operation mode with light isotopes (e.g.¹¹Li) and heavy isotopes (e.g.¹¹⁸Ag and ^{226,234}Ra nuclides).


Parameters	¹¹ Li	¹¹⁸ Ag	²²⁶ Ra	²³⁴ Ra
Effective charge $q_{\rm eff}$	2.999	35.457	52.883	52.879
Rigidity $B\rho$ [T m]	1.67	1.52	1.94	2.02
Deflection angle [deg]	36	36	36	36
Dipolar magnetic field B_{y} [T]	5.26	4.77	6.13	6.35
Quadrupolar strength KL [m ⁻¹]	5	5	5	5
Quadrupolar gradient G [T/m]	41.86	37.98	48.77	50.5

Magnets originally designed for a SC gantry for hadrontherapy

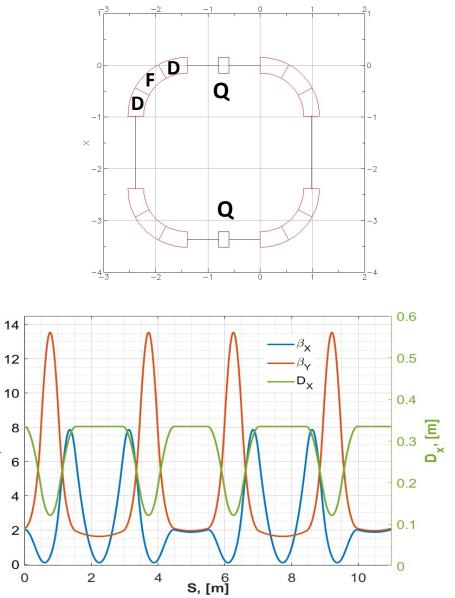
C. Bontoiu et al., IPAC2015, TUPWI014C. Bontoiu et al., IPAC2015, WEPMN051C. Bontoiu et al., NIMA 969 (2020) 164048



ISRS conceptual design. Recent studies

• 4 Curved Canted-Cosine-Theta (CCT) magnets

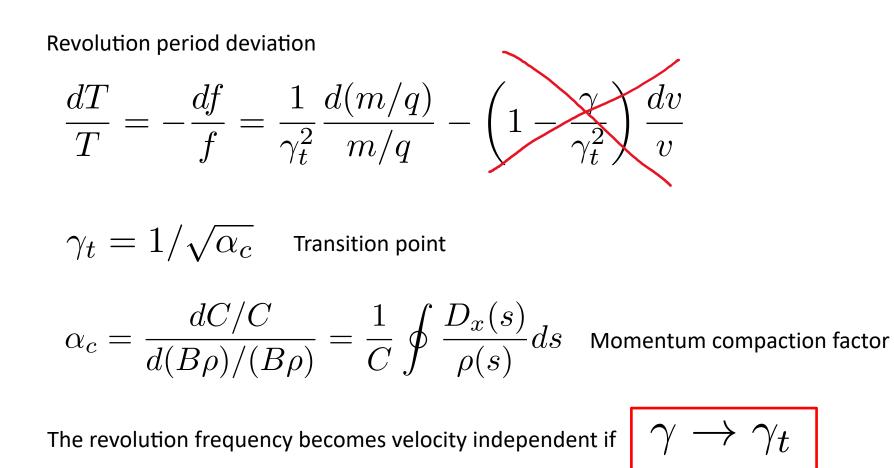
Dipole field


Parameters	¹¹ Li	¹¹⁸ Ag	²²⁶ Ra	²³⁴ Ra
Effective charge $q_{\rm eff}$	2.999	35.457	52.883	52.879
Rigidity $B\rho$ [T m]	1.67	1.52	1.94	2.02

High momentum acceptance mode

- FDF optics for non-scaling FFAG
- Lattice with sbend magnets. BMAD code

Beam	²³⁴ Ra			
Kinetic energy	10 MeV/u			
Rigidity, <i>Bρ</i> [T m]	2			
Maximum beta functions, $\beta_{x,y}$ [m]	7.8, 13.5			
Maximum dispersion, D_x [m]	0.32			
F magnet				
Effective length [m]	0.497			
Dipole field [T]	2.0			
Quadrupole gradient [T/m]	12.3			
D magnet				
Effective length [m]	0.55			
Dipole field [T]	2.11			
Quadrupole gradient [T/m]	-13.1			

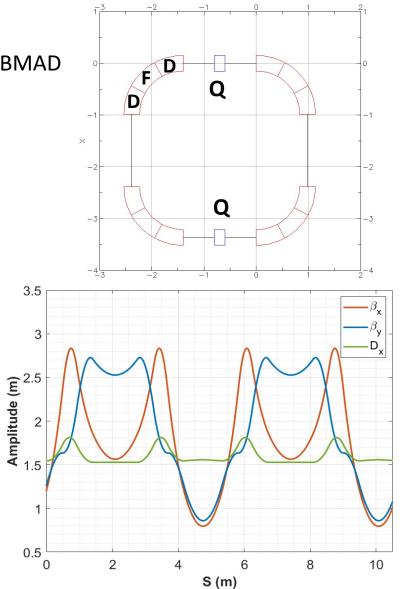


ISRS CCT, 6th January 2021

 $eta_{\mathbf{X},\mathbf{Y}}$, [m]

Isochronous condition

Isochronous mode

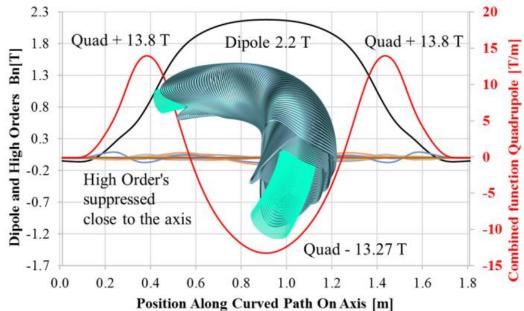

- DFD optics for non-scaling FFAG
- Matching with two additional quads. (Q). BMAD

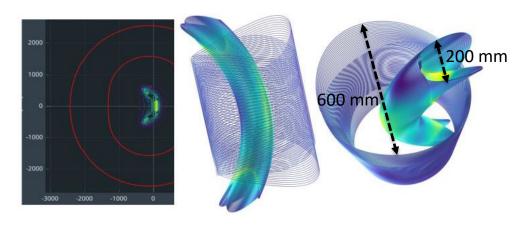
 $\alpha_c = 0.98 \quad \gamma_t = 1.0102$

 $\gamma = 1.0107~(^{234}\mathrm{Ra}$ at 10 MeV/u)

Beam	²³⁴ Ra			
Kinetic energy	10 MeV/u			
Rigidity, <i>Bρ</i> [T m]	2			
Maximum beta functions, $\beta_{x,y}[m]$	2.85, 2.72			
Maximum dispersion, <i>D_x</i> [m]	1.8			
F magnet				
Effective length [m]	0.55			
Dipole field [T]	2.45			
Quadrupole gradient [T/m]	2.531			
D magnet				
Effective length [m]	0.497			
Dipole field [T]	2.133			
Quadrupole gradient [T/m]	-2.967			
Additional quads. Q				
Quadrupole gradient [T/m]	0.423			

Expected max. momentum acceptance: $\Delta p/p=+/-5.5$ %




ISRS CCT, 6th January 2021

Magnets

- Bent CCT nested dipole and quad. magnet
- Synergy with CCT magnets for gantries
- 200 mm beam aperture
- Curvature of 1 m
- 90 deg. bend
- Two layer coil has both 2.2 T dipole and ~ 14 T/m (maximum) quad. in a single conductor pack
- The quad. consists of three sections rotated by +/- 45 deg. to make a FDF (DFD) triplet focusing/defocusing configuration
- Stray field shield that replaces the classic iron yoke

G. Kirby, MT27 Conference, 2021 G. Kirby, This Workshop

Outlook

- A new concept of compact recoil separator is proposed: The Isolde Superconducting Recoil Separator (ISRS)
- It will significantly increase the number of accessible exotic nuclei for critical studies with sufficient precision using the beam intensities and energies available at the HIE-ISOLDE
- Optics layout based on innovative CCT curved magnets (strong synergies with medical gantries); non-scaling FFAG ring
- Versatile optics, different operation modes: isochronous, high momentum acceptance, etc.
- Fine tuning of the magnets and the FFAG optics will provide very large solid angles > 100 msr and momentum acceptances $\Delta p/p > 20\%$ (high momentum acceptance mode).
- Ongoing studies to get a better balance between isochronicity and momentum acceptance.
- Injection/extraction are very challenging for heavy isotopes in such a compact lattice. Under investigation.