Beamstrahlung in CAIN

Kaoru Yokoya 2022.01.12

1

ICFA Higgs Factories Focus Meeting: Beamstrahlung https://indico.cern.ch/event/1100734/

CAIN Versions

- ➢ Started in 1984, named ABEL, for beam-beam interaction in JLC
 - ✓ Pinch effect
 - ✓ Beamstrahlung
- Later, renamed to CAIN when beam-laser interaction was included for gamma-gamma colliders
- Latest version: not clear.
 - ✓ Perhaps, CAIN2.44b, but a beta version
 - ✓ CAIN2.43 is better
- ≻ Code
 - ✓ Written in FORTRAN90 since recursive calls were included
 - \checkmark Windows version and UNIX version
 - ✓ I have almost stopped revising the code.
 - $\checkmark\,$ Ask Tauchi san for UNIX version and compilation
- ➤ Manual available.
- ➢ Possible bugs
 - ✓ Sometimes a strange phenomena when too many macroparticles are used
 - \checkmark There can be lots of bugs in the routines which are used only rarely

Structure of the Code

All the particles (electron, positron, photon) are in one big array, containing the info of the space-time, energy-momentum, polarization, etc.

≻Fields

- ✓Beam-beam field
- External field (constant field, quadrupole field, laser field)

Commands

>Input data is a sequence of "commands"

- Math expression✓ SET, ARRAY
- ≻ Control :
 - ✓ DO, CYCLE, EXIT, ENDDO,
 - ✓ IF, ELSEIF, ELSE, ENDIF
- ≻ Output
 - ✓ WRITE, PRINT
 - ✓ PLOT (use very old software TOPDRAWER)
- ➢ Beam definition
 - ✓ BEAM
 - ✓ LASER

- Interaction control
 - ✓ BBFIELD beam-beam field
 - ✓ LASERQED
 - ✓ CFQED
 - beamstrahlung
 - coherent pair creation,
 - ✓ LUMINOSITY
 - ✓ PPINT (incoherent pair)
- Beamline definition
 - ✓ MAGNET, BEAMLINE, BLOPTICS, MATCHING
- Execution commands
 - ✓ PUSH, ENDPUSH
 - ✓ DRIFT
 - ✓ LORENTZ
 - ✓ TRANSPORT, ENDTRANSPORT

Polarization

- Spin of electron/positron and Stokes parameters of photons
- Treated as density matrix
- But not for all the interactions

		initial e^{\pm}	laser	final e^{\pm}	final γ
Beamstrahlung	$e^{\pm} \rightarrow e^{\pm} + \gamma$	LT	—	LT	LT
Linear laser-Compton	$e^{\pm} + laser \rightarrow e^{\pm} + \gamma$	LT	LT	LT	LT
Nonlinear laser-Compton	$e^{\pm} + n \cdot laser \rightarrow e^{\pm} + \gamma$	\mathbf{L}	L^*	\mathbf{L}	\mathbf{L}
	or	Ν	T^*	Ν	Т
		$\text{initial }\gamma$	laser	final e^{\pm}	
Coherent pair	$\gamma \rightarrow e^+ + e^-$	LT	—	LT	
Linear laser-Breit-Wheeler	$\gamma + \text{laser} \rightarrow e^+ + e^-$	LT	LT	LT	
Nonlinear laser-Breit-Wheeler	$\gamma + n \cdot \text{laser} \rightarrow e^+ + e^-$	\mathbf{L}	L^*	$\mathbf L$	
		initial	final p		
Incoherent Breit-Wheeler	$\gamma + \gamma \rightarrow e^+ + e^-$	\mathbf{L}	Ν		
Incoherent Bethe-Heitler	$\gamma + e \rightarrow e + e^+ + e^-$ $e + e \rightarrow e + e^+ + e^-$	Ν	Ν		
Incoherent Landau-Lifshitz	$e+e\rightarrow e+e+e^++e^-$	Ν	Ν		
		initial	final		
Bremsstrahlung	$e+e\rightarrow e+e+\gamma$	Ν	Ν		

- L : Longitudinal spin of electron/positron (or circular polarization of photon).
- > T : Transverse spin of electron/positron (or linear polarization of photon).
- \succ * : 100% polarization only
- > N2:02001 computed. (No change for existing particles, zero for created particles)
- BearreteeahungWS, Yokoya

Beam Definition

Courant-Snyder parameters: Following parameters can be used

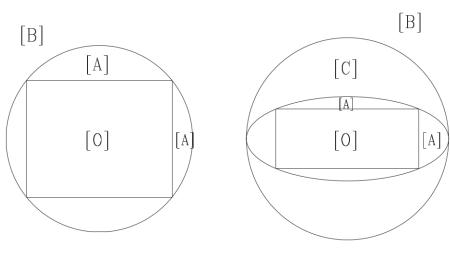
N (bunch-population), E, (t, x, y, s) (beam-center), $\beta_{x,y}, \alpha_{x,y}, \eta_{x,y}, \eta'_{x,y}, \sigma_t, \sigma_\epsilon,$ $\psi_{x,y}$ (crab-angle), $\theta_{x,y}$ (crossing-angle), $\phi_{x,y}$ (x-y role), $(\zeta_x, \zeta_y, \zeta_s)$ (spin), etc.

Beam data can also be read from files CAIN standard format, MATHEMATICA format, FORTRAN NAMELIST) Or, user-defined format (see Sec.3.5.2 of the manual)

Beam-Beam Field

➤Longitudinal slices

- ✓No interaction between different slices (Lorentz contraction)
- Longitudinal mesh size must be defined by the user


≻Interaction within each slice (2D)

- ✓Main part
 - Equal-space, rectangular mesh
 - Kernel potential averaged over each mesh
 - Fast computation by FFT
 - Size of the "main part" and the mesh size are decided by the input data, not automatically

Beam-Beam Field (continued)

✓Outside region

- Ignore the contribution of the particles outside the mesh region
- But the force from the main part to outside particles is included by
 - either direct Coulomb force
 - or by harmonic expansion

[O] mesh region[A] Direct Coulomb field[B] Harmonic expansion inpolar coordinate[C] Harmonic expansion inelliptic coordinate

Square (more or less) case

2022/1/12 BeamstrahlungWS, Yokoya Very flat case

Beamstrahlung

➤Use the formula in constant (within the slice) magnetic field

$$dW = \frac{\alpha m}{\sqrt{3}\pi\gamma} \left[Ki_{5/3}(z') + \frac{x^2}{1-x} K_{2/3}(z) \right] dx,$$
$$x \equiv \omega_{\gamma}/E_0, \qquad z \equiv \frac{2}{3\Upsilon} \frac{x}{1-x}, \qquad \Upsilon \equiv \gamma \frac{B}{B_{sch}}$$
$$B_{sch} = m^2/e = 4.4 \times 10^9 \text{ Tesla}$$
$$Ki_{\nu}(z) = \int_{z}^{\infty} K_{\nu}(z') dz'$$

Special functions such as $Ki_{5/3}$ and $K_{2/3}$ are approximated by appropriated polynomials

Polarization included as much as possible (see below)

- See the manual for the algorithm of event generation
 ✓ Cain244manual.pdf
 - ✓ uploaded in the indico site

Beamstrahlung (continued)

➤Emission angle is not taken into account

- ✓Effects of the angle is not large during the collision
- Emission angle causes 1-2 mm displacement at the beam dump window
- ✓Vertical angle should at least be included
- Horizontal angle cannot be consistently included in the "Constant Field Approximation"
- ✓I do not have a complete formula including the angle and polarization effect

Polarization Effects

- Electron/positron polarization can be tracked during beambeam interaction, including the precession and the spin-flip beamstrahlung
- Initial and final electron polarization (longitudinal and transverse) and the Stokes parameter of the final photon are included
- Included terms ζ: electron polarization vector, ξ: photon Stokes parameter suffix i/f : initial/final Terms involving 3 polarization operators are ignored

$$dW = \frac{\alpha dE_{\gamma}}{4\sqrt{3}\pi\gamma^{2}} \times \left\{ F_{00}(1+\boldsymbol{\zeta}_{i}\cdot\overline{\boldsymbol{\zeta}}_{f}) - xK_{1/3}(\boldsymbol{e}_{2}\cdot\boldsymbol{\zeta}_{i}) - \frac{x}{1-x}K_{1/3}(\boldsymbol{e}_{2}\cdot\overline{\boldsymbol{\zeta}}_{f}) - \frac{x^{2}}{1-x}\left[(\boldsymbol{e}_{v}\cdot\boldsymbol{\zeta}_{i})(\boldsymbol{e}_{v}\cdot\overline{\boldsymbol{\zeta}}_{f})K_{1/3} + (\boldsymbol{\zeta}_{i}\cdot\overline{\boldsymbol{\zeta}}_{f} - \boldsymbol{e}_{v}\cdot\boldsymbol{\zeta}_{i}\boldsymbol{e}_{v}\cdot\overline{\boldsymbol{\zeta}}_{f})K_{2/3}\right]$$

$$+ \frac{x}{1-x}K_{1/3}(\boldsymbol{e}_{1}\cdot\boldsymbol{\zeta}_{i})\overline{\xi}_{1} - \frac{x(2-x)}{2(1-x)}K_{2/3}(\boldsymbol{e}_{v}\cdot\boldsymbol{\zeta}_{i})\overline{\xi}_{2} + \left[K_{2/3} - \frac{x}{1-x}K_{1/3}(\boldsymbol{e}_{2}\cdot\boldsymbol{\zeta}_{i})\right]\overline{\xi}_{3}\right\}$$

$$(5.152)$$

Coherent Pair Creation

➤Constant field formula

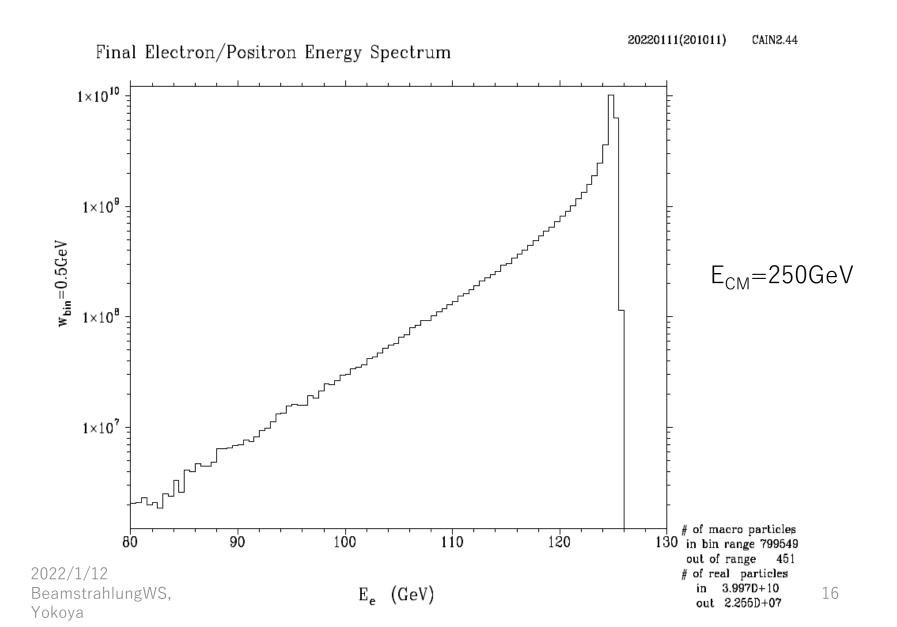
Yokoya

Application to ILC

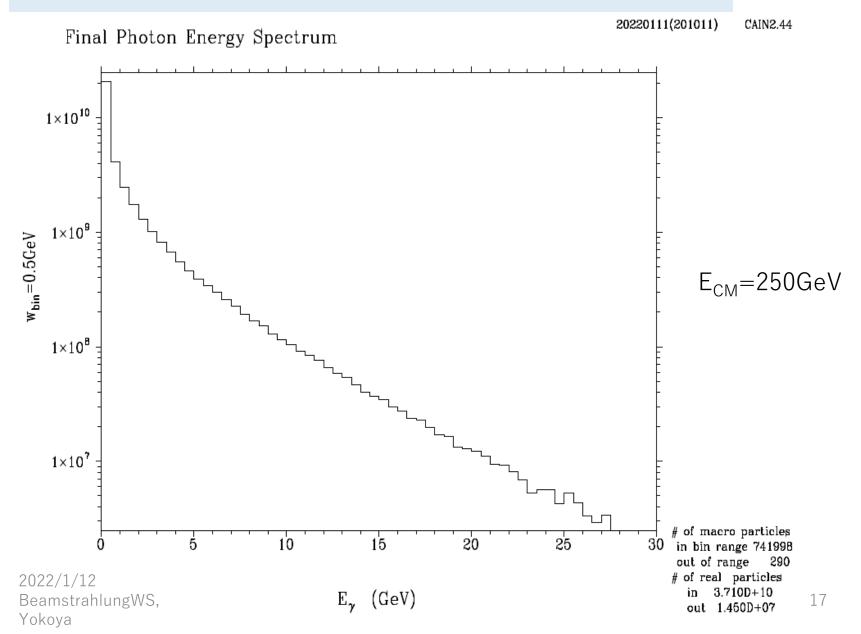
Characteristics of the beam-beam interaction in ILC

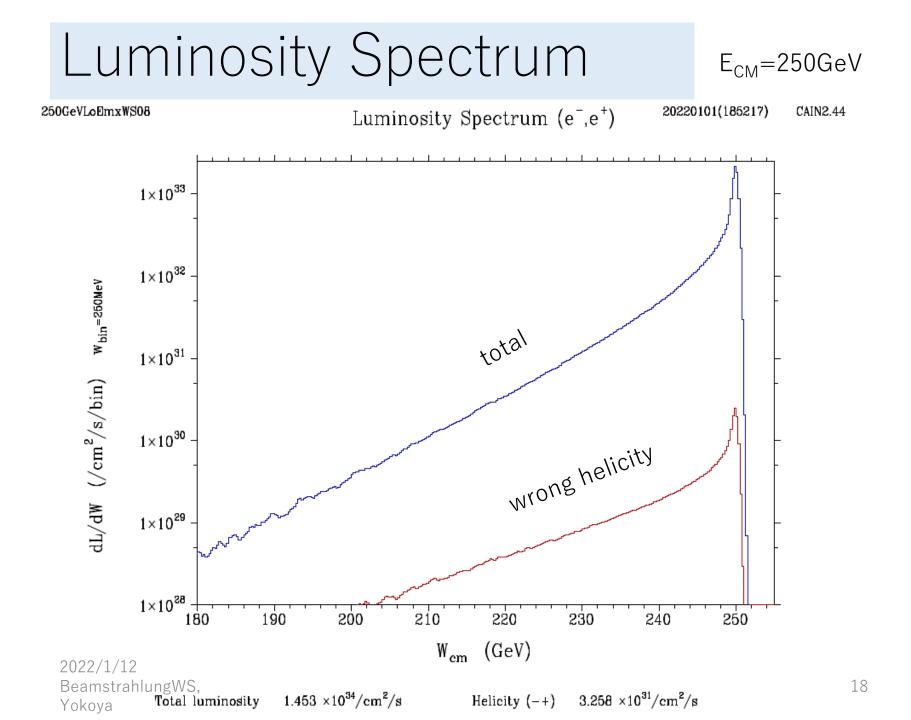
- ✓Very large disruption parameter
 - Dy = 25 35
 - Accurate simulation is hard
 - Luminosity fluctuation a few % with 400k particles
- Beamstrahlung is moderate (compared with CLIC)
 - $n_{\gamma} \sim 2.0$, $\delta_{E} = 2.5$ (Z-pole, 500GeV) ~ 10 (1TeV)%

Parameters used here


		ILC	ILC(TDR)	ILC(TDR,B)	CLIC ^(*)
Basic parameters					
Ecm	GeV	250	500	1000	3000
Bunch population	e10	2	2	1.737	0.372
Number of bunches		1312	1312	2450	312
Repetition rate	Hz	5	5	4	50
RMS bunch length	mm	0.3	0.3	0.225	0.044
IP parameters					
Electron energy spread	e-3	1.88	1.24	0.85	3.4
Positron energy spread	e-3	1.5	0.7	0.47	3.4
Horizontal emittance	e-6	5	5	5	1.1
Vertical emittance	e-9	35	35	30	54
Beta-x	mm	13	22	22	6.9
Beta-y	mm	0.41	0.48	0.23	0.068
sigma-x	nm	515	474	335	50.8
sigma-y	nm	7.659	5.860	2.656	1.118
Disruption param (x)		0.51	0.30	0.20	0.12
Disruption param (y)		34.5	24.6	25.1	5.41
Upsilon average		0.0283	0.0616	0.203	4.33

(*) CLIC parameters here are based on CDR but not exactly the same because the beam deformation in the BDS is included in the CDR


		ILC	ILC(TDR)	ILC(TDR,B)	CLIC ^(*)
Ecm	GeV	250	500	1000	3000
Luminosity					
Lum e+e- (geometric)	e34	0.529	0.751	2.643	3.021
Lum e+e-	e34	1.453	1.823	5.272	5.845
Lum e-g	e34	0.728	0.981	3.270	4.393
Lum at top 1%	%	70.1	62.7	46.3	33.3
Beamstrahlung					
n-gamma		1.928	1.856	2.077	1.977
delta_E	%	2.62	4.24	10.01	28.1
Depolarization					
e- (total)	%	1.412	1.522	2.675	9.436
e+ (total)	%	1.406	1.511	2.664	9.423
e- (precession)	%	1.293	1.219	1.310	3.798
e+ (precession)	%	1.289	1.213	1.305	3.813
e- (spin flip)	%	0.119	0.303	1.365	5.638
e+ (spin flip)	%	0.117	0.298	1.359	5.610


(Only one random number set was used for each. For demonstration only)

Final Electron/Positron Energy Spectrum

Photon Energy Spectrum

- ➤CAIN has been used since mid 1980's for beam-beam interaction in linear colliders
- Beamstrahlung has been included since the first version
- >Angle of photon emission is not included
- Polarization effects due to both the precession and the spin-flip beamstrahlung are included