Capture and Cooling Working Group
Summary and Progress

C. T. Rogers
ISIS
Rutherford Appleton Laboratory
Reminder – muon collider facility (proton-based)

- Protons on target in high-field solenoid → pions, muons et al.
- **Clean up beam impurities**
- **Capture muons longitudinally**
- **Transverse and longitudinal cooling**
- Acceleration
- Collider ring

Capture and cooling
Working group
Job List

- Get hold of lattices
 - Check they run and we can reproduce results
 - Establish where lattices are missing or incomplete
- Develop and maintain hardware requirements
 - Liaise with magnet and RF teams as required
- Work on improving performance and developing new concepts
 - Especially final cooling
- Identify technical issues/risks
- Work on mitigating risk
 - MICE Results
 - Demonstrator design work
- Cost optimisation
 - E.g. rings
- **Please let me know if you would like to help!**
This talk

- Update on final cooling simulations (Bernd, Elena)
- Update on demonstrator simulations
- Comment on MICE analyses
Challenge is to get very tight focussing to get low emittance

Go to higher fields and lower momenta
 - Causes more longitudinal emittance growth
 - Chromatic aberrations introduce challenges
 - Elaborate phase rotation required to keep energy spread small
 - Move to low RF frequency to manage time spread
Now attempting to recreate and extend H. Sayed’s lattice

- Transverse optics is quite fiddly – very low β
- Getting a handle on tracking through single cells...
Beam matching (E. Fol)

- Build a periodic solenoid lattice in ICOOL
- Uses “realistic” model for solenoids
 - Based on sum over infinitely thin cylindrical current sheets
 - Extensive fringe fields
 - Include adjacent cell to get periodic solenoid field
- Developed matching algorithm
 - Produces okay results
 - Still some mismatch at the beginning (z=0)
 - Maybe need more than one adjacent cell(!)
 - Some emittance growth
 - With initial $\varepsilon_L = 0$
Single absorber simulation to cross-check ICOOL (Fano)
 - ICOOL tends to under estimate scattering compared to PDG
 - This is consistent with e.g. Moliere and MICE measurements in LiH

Heating effect in windows assuming β for 50 T
 - $\beta = 6$ mm for 10 MeV
 - $\beta = 4$ mm for 4 MeV
Transverse cooling (B. Stechauner)

- Emittance change looks promising
 - Need to extend to lower emittances
 - Add in longitudinal phase space...
Lattice cooling (E. Fol)

- Started looking at chaining cells
 - No RF
- Energy spread already looking interesting
 - More cells → worse
- Working through layout for demonstrator
- Basic lattice for the cooling section shown previously
- Would like to understand collimation system
 - What is the muon rate?
 - What target is required?
 - What diagnostics can be used?
 - Can the demonstrator be compatible with e.g. nuSTORM?
Collimation System

- **Concept**
 - Dipole to do a first momentum selection
 - Not simulated
 - Collimation and RF to do phase rotation
 - Second dipole to do a second momentum selection
Lattice

- 1 m cell length
 - 0.5 T solenoids, 50 mm radius pipe
 - 0.125 m, 650 MHz RF cavities
 - 4 cavities per cell (and 4 cells)
 - 15 MV/m peak gradient
 - Running in “bunching” mode

- 0.7 T dipole
 - 45 degree bend

- All apertures are perfect collimators
- No electrons
- No pions
Lattice

- 1 m cell length
- 0.5 T solenoids
- 4 times 0.125 m 650 MHz RF
- 15 MV/m peak gradient
- 0.7 T dipole
- 45 degree bend
- All apertures are perfect collimators
- No electrons
- No pions

Intermittent bug

Dipole field

Solenoid field
Beam distribution at start

- Beam is supposed to fill the aperture **except** in momentum
 - Assumes not much collimation before first dipole (TBC)
- Momentum spread 10 MeV/c RMS
- Time spread long compared to RF frequency
Beam distribution after RF
Beam distribution after dipole
Beam evolution

Initially: 100k events
Finally: 440 events

Finally: 0.7 mm
Require: 0.5-1 mm

Finally: 2.5 mm
Require: 2-4 mm
Comments

- Looks like the time selection is not too bad
- Relies on quite tight energy selection in first dipole – not simulated
 - Alternatively, need taller RF bucket (more voltage)
 - (More voltage might be preferred by RF system)
- Quadrupole focussing worth investigating
 - Generate asymmetric beams
- What about pions/beam impurities?
Comment on MICE Progress

- Latest round of MICE analyses in progress
 - Several new datasets have been analysed
 - Solenoid mode (Tom Lord)
 - New analysis of flip mode (Paul Jurj)
 - Wedge absorber (Craig Brown)
 - LH2 scattering data (Gavriil Chatzitheodoridis)
 - Focus is on understanding/reducing systematic uncertainty
 - Student theses are in progress
 - Hope to bring to publication as students graduate
Conclusions

- Final cooling simulations are further developed
 - Building decent understanding of transverse lattice behaviour
 - Seek to add in longitudinal/RF simulations

- Demonstrator simulation developed
 - Snowmass submission has been invited on nuSTORM by mid-January
 - Would like to understand to what extent demonstrator is compatible

- MICE analysis is in progress
 - Study of systematic uncertainty