
Deep Learning with Micron FPGAs on protoDune

Miroslav Kubu 2022 CERN openlab Technical Workshop 21.03. 2022

DUNE Experiment


- Deep Underground Neutrino Experiment
- Leading-edge experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and proton decay searches
- Far Detector (FD) is 800 miles from the neutrino beam source
 - Four modules, each with 10,000 ton of liquid argon
- High power muon neutrino beam produced at Fermilab
 - Can switch polarity to produce a muon antineutrino beam.

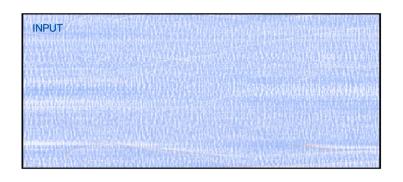
DUNE Experiment

- ProtoDUNE is the DUNE Far Detector prototype at the CERN Neutrino Platform
 - Consists of 6 APA (Anode Plane Assembly) units, while DUNE Far Detector will consist of 150 APAs
 - 1:1 scaled design components with same technologies
 - Data collected with 2 collection and 1 induction planes
 - Could be reconstructed as 3x 2D image

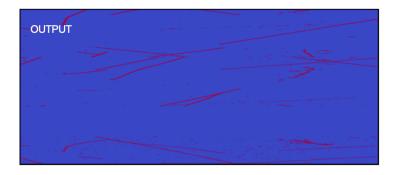
Real-time data processing

DUNE Data collection in numbers (one single-phase module):

- Sampling rate: 2 MHz
- Trigger window: 3 ms
- Number of pixels to process during the time window: 15,360,000 (2560x6000) per APA
 - 2 induction planes with 800 channels
 - 1 collection plane with 960 channels

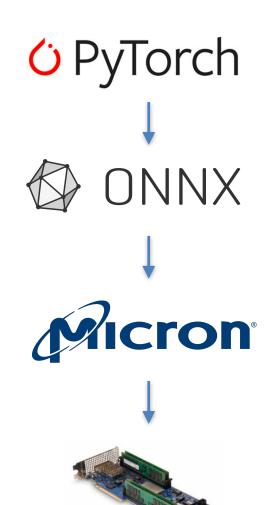

Our goal:

- Reduce the amount of data stored for offline reconstruction
 - Locate where the hits are
- DUNE data could be processed by Deep Learning methods
- Deep Learning accelerators such as Micron FPGAs might enable us to filter the data online using a suitable Deep Learning model


Real-time data processing

Possible approach:

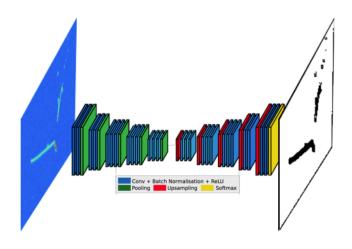
- Perform semantic segmentation for regions of interest (ROI) using the raw inputs
- Target is to find a mask for ROI in the raw data

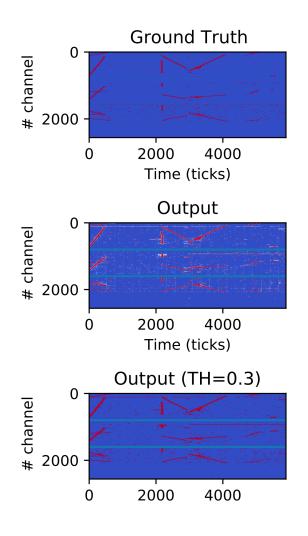


Micron framework

- Direct deployment of neural networks on the inference engine
- Supports majority of the layers used in computer vision
- Any framework that supports export to ONNX could be used

Workflow:

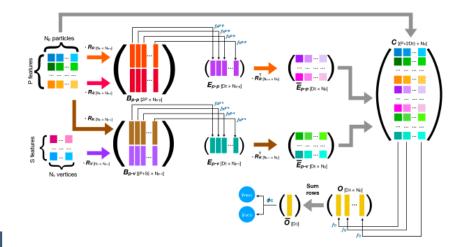

- 1. Train the network
- 2. Convert it into ONNX
- 3. Compile it using the Micron framework
- 4. Deploy it using the inference engine



Approach: Linknet

- Pixel-wise semantic segmentation for visual scene understanding
- Promising results in terms of accuracy
- We managed to use a minimalistic version of Linknet on a Micron FPGA

LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation (<u>https://arxiv.org/abs/1707.03718</u>)



Approach: Linknet

- We aim to find these ROIs in real time
 - To analyze a whole trigger window of 3 ms, we need to run the inference over 15,360,000 pixels (2560 channels x 6000 ms)
- After reducing the network to a minimalistic working version, the best reported results are ~100 ms
- We have large volume of sparse data
 - We need to think about an approach that wouldn't need to process full event input
 - Graph Neural Networks (GNNs) are often used for similar cases

Approach: Interaction network

- Possibilities of compiling Graph Networks with advanced layers on FPGAs are limited
- Interaction network
 - Alternative to common Graph Convolutional layers
 - Series of MLP and matrix multiplications using receiving and sending matrices describing the connections between hits in the image
- Designed for classification
 - · We created a test dataset for shower and track classification
 - Next step would be to find a way how to use the network for semantic segmentation

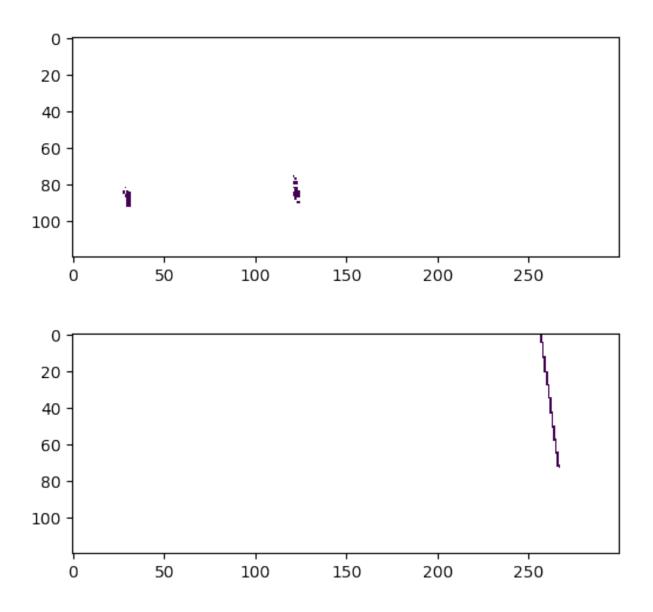
Interaction networks for the identification of boosted H→bb decays (https://arxiv.org/abs/1909.12285)

Micron DU

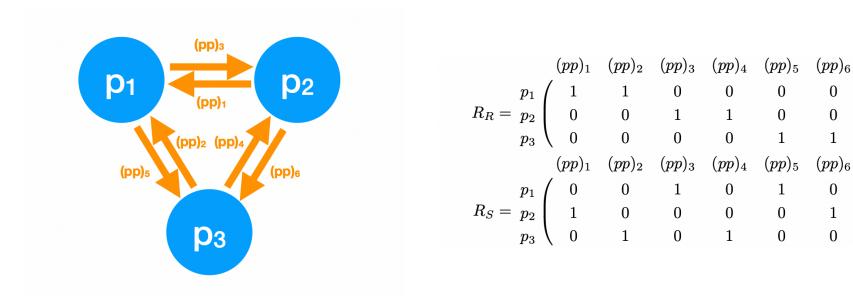
Approach: Interaction network

- Graph analogies:
 - Nodes are represented by positions of the hits (pixels)
 - Nodes are connected only when the pixels are close to each other
- Matrices defining the connections between the nodes are too large for the FPGAs (size N x N(N-1))
- After restricting connections on 2 closest pixels, we need to limit to N ~ 200 hits
- Good accuracy:
 - 0.85 ACC for shower
 - 0.95 ACC for track
- Bottleneck: With 200 hits restriction, we can use only a small portion of the event

Summary


- We are testing fast inference solutions for Deep Learning using the Micron FPGAs
- We aim to use the FPGAs for data filtering on protoDUNE
- The tested semantic segmentation Linknet model works offline, but we need to increase the inference speed for the online filtering
- We tested a graph-inspired Interaction network, but we were not able to use it on a full-scale event
- Plan: we are looking for a way to speed up our Linknet solution to make it fast enough for online filtering

Thank you



M. Kubu I Deep Learning with Micron FPGAs on protoDune

Track X Shower binary classification using the event coordinates

Interaction network receiving and sending matrices

Interaction networks for the identification of boosted H→bb decays (https://arxiv.org/abs/1909.12285)