

Deep Learning Based Reconstruction for DUNE

Marco Rossi, marco.rossi@cern.ch Sofia Vallecorsa, sofia.vallecorsa@cern.ch

22/03/2022

DUNE

Deep Underground Neutrino Experiment, Fermilab (US), from 2026

ProtoDUNE, CERN (CH), From 2017

Reconstruction

RAW DATA ———

EVENT STRUCTURES

Easy for human brain!

Not so easy for automated software!

Computer vision

- Image denoising
- Image segmentation
- Object detection
- Clustering techniques
- Image classification

Physics reconstruction

- Denoising raw data
- Region of Interest selection
- Vertex finding
- Slicing
- Event labelling

ProtoDUNE - Denoising Raw Data

Input image sample

Noisy Waveform

Clear Waveform

Inputs main properties:

- High resolution (6000x480)
- Sparse features

A 1D slice of the inputs:

- Big spikes
- Noisy background

The desired output

Denoising Results

- Convolutional and graph neural networks learn to shape exactly the clear waveform
- The traditional tool filters the waveform in Fourier space not preserving amplitudes (orange line)
- Quantitative evaluation available in the <u>online article</u>

Future work directions

• The software is public and available on **GitHub**

• Next goal: architecture agnostic code, run on multiple platforms

ONNX

export models to **ONNX** form, run with **ONNX** Runtime

run on IBM POWER 10 machines (AI optimized)

Slicing

References:

[1] Pandora: article, GitHub

[2] <u>ACAT2021 Talk</u>

Cooperate with Pandora UK team: Multi Experiment Reconstruction Toolkit, [1]

 Slicing problem [2]: cluster detector hits based on the main primary interacting particle

Number of cluster is unknown a priori

Right plot: same color equals to same slice

Train a neural network to gather detector hits into slice sets

Slicing Results

Visual example – technical details at this <u>poster</u>

ProtoDUNE-SP simulation preliminary: U plane slices

Conclusions

Achievements:

DUNE experiment reconstruction with deep learning: denoising, slicing

Next:

Platform agnostic models through ONNX port

• Further developments (not covered in this talk):

Investigate architectures at the frontier of DL research: <u>attention networks</u>, <u>visual tranformers</u>

THANK YOU!

QUESTIONS?

Marco Rossi, marco.rossi@cern.ch Sofia Vallecorsa, sofia.vallecorsa@cern.ch

Backup slides

Graph Convolutional Neural Network

- Graph GCONV operation to exploit non-local pixel features
- Complex architecture acting independently on image crops 32x32 pixels
- Each event contains more than 5k crops
- Speed up training and inference with a distributed environment multi-GPU

Graph Convolutional Layer

Denoising

Input: rank 3 input image array (H,W,C_{in})

Output: rank 3 output array (H,W,C_{out}), average of convolution and non local aggregation NLA operations

Non local aggregation for each pixel:

- takes the K closest points in feature space K=8
- mixes their features like a sparse convolution
- passes the output through a non linear function
- stores the result as the pixel feature vector

! NLA is O(n²) in the input number of pixels!

! Memory expensive operation !

Reference: https://arxiv.org/abs/1907.08448

CONV is local, NLA is non-local

U-shape Self Constructing Graph Network

Denoising

- Downsampling upsampling branches to process entire images: no cropping
- SCG layer at the bottom, to exploit extremely long distance correlations
- Fast inference and low GPU memory consumption: only one GPU per image needed

Cluster Merging Network

Slicing

 <u>Approach</u>: rely on previous reconstruction products (sub-clusters)

Decide to merge or not two sub-clusters!

- <u>Input</u>: sub-clusters pair features (fixed size vector)
- Output: binary output (merge?)
- Difficulties:
 - variable number of clusters
 - variable number of hits inside cluster
- Network:
 - feed forward neural network

