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• Distributed training on Cloud

• Conditional Progressive GAN for satellite images 

What is this Presentation about?
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The 3DGAN prototype

3D convolutional layers.

51x51x25 pixels image: sparse, large dynamic range

Custom losses, including physics constraints

Model from G. Khattak, ICMLA 2019

Physics 
constraints

3DGAN trains in about 1 week on a single NVIDIA V100
Distributed training on Cloud
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Training on TPUs

• Distribute training using Tensorflow data parallel strategies:

• Customized techniques to adapt the Tensorflow MirroredStrategy and 
TPUStrategy

• Common setup to run on TPUs and multiple GPUs

TPUs versions comparison Batch size optimisation Speed-up
Distributed training on Cloud

Deplyment made possible due to the 
colaboration with CloudBank EU and 

Google Cloud
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Kubeflow based deployment on 
GCP.

From 1 to 128 (V100) GPUs

Cluster provisioning through the 
Azure Machine Learning Service

24 vCPU cores VMs with 448 GiB 
memory and 4 V100 GPUs.

Azure ML automatically optimizes 
the data set management

Multi GPU setups

X100 near linear speed-up 

Distributed training on Cloud
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Progressive GAN

An improved logic to training for better performance on 
high resolution images:

Example satellite images from UNOSAT

Progressive GAN with auto encoder

EXAMPLE REFUGEE 
CAMP

Myanmar Flood dataset
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Progressive GAN

• Starts with low-resolution

• Progressively increase it by adding 
layers. 
• first discover large-scale structure 

• shift attention to increasingly finer scale 
detail

• Generator and Discriminator are mirror 
images of each other

• grow in synchrony. 
• All layers remain trainable throughout the 

training process. 

• Smoothly fade in new layers.
• Avoids sudden shocks to previously trained, 

smaller-resolution layers. 

Progressive GAN with auto encoder
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Our Progressive GAN

• Objective:
• Image completion of 2D satellite images

• Image in-painting and image extension

• Method: Conditional Progressive GAN
• Use 3 corners of the image to infer the 4th

• Introduce an encoder to decrease the dimensionality of the 3 given corners

• It can generate a corner of an image and, iteratively, be used to produce larger images.

Renato Cardoso

Use a 
Wasserstein 
AutoEncoder as 
input to 
conditioning 
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VAE + proGAN Architecture

Progressive GAN with auto encoder

Get the 3 
corners from 
the image

Encode the 3 
corners

Use the 3 corner latents and a 
random latent to generate the last 
corner image

Use 2 discriminators to train:
- Global Discriminator to train with the 

whole image
- Local Discriminator to train with only the 

generated corner
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Progressive GAN

Progressive GAN with auto encoder

Total latent size should be 
related to the first 
convolution layer of the 
generator The weight of the loss of 

the global discriminator 
and the local  
discriminator should 
combine to one

The loss used is the 
Wasserstein distance

The loss for the 
discriminators are done 
together and updated 
together as they are a 
combined model.
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• Training:
• 56472 different images from UNOSAT Myanmar flood 

dataset (a total of 12 million steps)

• Results:
• The generated corner is consistent with the features present in 

the original image

• Similar but no identical

• Problems:
• Limitations in replicating multiple details and monochromatic 

tiles

• Next Steps:
• Reduce training time: 1 month with 2 V100 GPUs

• Hyper-parameter optimization (role of the global vs local loss)

• Test with RGB datasets 

Progressive GAN with auto encoder

Results Original Generated
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QUESTIONS?

renato.cardoso@cern.ch

mailto:renato.cardoso@cern.ch
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Stability Test

• Sub-optimal configuration makes 
training time instable and overall 
longer

• Equal number of GPUs per 
worker and GPUs per node 
keeps instability to a minimum

Google Cloud Platform with 
Kubeflow

Batch Size Tests

Accelerating GAN training using highly parallel hardware on 

public cloud

Cluster Configuration

• optimal configuration 
• more GPUs per node 

• more GPUs per worker

• best results 
• number of workers = number 

of nodes 

• number of GPUs per worker = 
the number of GPUs per node

• less steps to 
complete

• faster training

• better 
generalization 
performance
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Further Analysis

• TPUs:
• idle time is 0.7%, with 28.5% 

for All-Reduce operations

• 38% for forward-pass

• 61% for back-propagation

• GPUs:
• idle  time is 2.9%, mostly for 

All-Reduce

• Similar percentages for forward 
and backward propagation as 
the TPUs.

• Program is not input bound, 
0% of the training step time 
was spent waiting for input 

• With this profile it is possible 
to verify that the model is 
compute bound

Accelerating GAN training using highly parallel hardware on 

public cloud

4 gradient tapes
• After each gradient tape there is one all reduce
• Followed by a RMSprop and the corresponding updates
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Wasserstein autoencoder

• There are two problem with 
the decoded images:
• The blurry effect

• The difference in color from the 
original

• The difference in color is 
something that persist to the 
Progressive GAN 

Results

Progressive GAN with auto encoder

Real Decoded
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Backup - Architecture

Progressive GAN with auto encoder
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Backup - Decoder

Progressive GAN with auto encoder
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Backup - Encoder

Progressive GAN with auto encoder
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Progressive GAN

• Architecture:
• Both the Generator and the discriminator follow the usual Progressive Gan structure 

including pixel normalization and weight scalling

• Generator:

• The input is the concatenation of the 3 corner latents obtained from the encoder and a 
random latent

• The start with a dimension is 32x32 and goes up to 128x128

• Each generator block is composed of an UpSampling layer followed by 2 2D convolution 
layers with a leaku relu activation

• Discriminators (Combined model)

• Each discriminator block is composed by 2 2D convolution layers with a leaku relu
activation followed by an average pooling layer

• The global discriminator receives as an input the generated image with the 3 original 
corners while the local discriminator receives only the generated image

Progressive GAN with auto encoder
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Wasserstein autoencoder

• Architecture:
• Encoder (8 Layers):

• Input is a 128x128 image

• 1st layer is a 2D convolution layer used to extract the color of the image

• The next 5 layers are 2D convolution layers (strides of 2) with batch normalization and 
leaky relu activation

• The last 2 layers are a flatten and a Dense layer, respectively, used to compose the latent

• Decoder (7 layers):

• Input is a latent

• 1st layer is a Dense layer followed by a reshape

• The next 5 layers are 2D Transpose convolution layers (strides of 2)  with batch 
normalization and leaky relu activation

• The last layer is a 2D convolution layer used to convert to RGB, obtaining the final image

Progressive GAN with auto encoder
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Wasserstein autoencoder

• Loss
• Loss calculation uses 2 components a reconstruction loss and a mmd loss

• Reconstruction loss

• Mean squared error between the decoded image and the original image

• MMD loss:

• Maximum mean discrepancy (MMD) with a radial basis function between a random normal 
and the latent obtained from the encoder

The encoder is trained first using the decoder and doesn’t change when 
being used for the progressive GAN training

Progressive GAN with auto encoder
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More Results

Progressive GAN with auto encoder


