
1

Advanced GAN training

22/03/2022

Renato Cardoso

Supervisor: Sofia Vallecorsa

2

• Distributed training on Cloud

• Conditional Progressive GAN for satellite images

What is this Presentation about?

3

The 3DGAN prototype

3D convolutional layers.

51x51x25 pixels image: sparse, large dynamic range

Custom losses, including physics constraints

Model from G. Khattak, ICMLA 2019

Physics
constraints

3DGAN trains in about 1 week on a single NVIDIA V100
Distributed training on Cloud

4

Training on TPUs

• Distribute training using Tensorflow data parallel strategies:

• Customized techniques to adapt the Tensorflow MirroredStrategy and
TPUStrategy

• Common setup to run on TPUs and multiple GPUs

TPUs versions comparison Batch size optimisation Speed-up
Distributed training on Cloud

Deplyment made possible due to the
colaboration with CloudBank EU and

Google Cloud

5

Kubeflow based deployment on
GCP.

From 1 to 128 (V100) GPUs

Cluster provisioning through the
Azure Machine Learning Service

24 vCPU cores VMs with 448 GiB
memory and 4 V100 GPUs.

Azure ML automatically optimizes
the data set management

Multi GPU setups

X100 near linear speed-up

Distributed training on Cloud

6

Progressive GAN

An improved logic to training for better performance on
high resolution images:

Example satellite images from UNOSAT

Progressive GAN with auto encoder

EXAMPLE REFUGEE
CAMP

Myanmar Flood dataset

7

Progressive GAN

• Starts with low-resolution

• Progressively increase it by adding
layers.
• first discover large-scale structure

• shift attention to increasingly finer scale
detail

• Generator and Discriminator are mirror
images of each other

• grow in synchrony.
• All layers remain trainable throughout the

training process.

• Smoothly fade in new layers.
• Avoids sudden shocks to previously trained,

smaller-resolution layers.

Progressive GAN with auto encoder

8

Our Progressive GAN

• Objective:
• Image completion of 2D satellite images

• Image in-painting and image extension

• Method: Conditional Progressive GAN
• Use 3 corners of the image to infer the 4th

• Introduce an encoder to decrease the dimensionality of the 3 given corners

• It can generate a corner of an image and, iteratively, be used to produce larger images.

Renato Cardoso

Use a
Wasserstein
AutoEncoder as
input to
conditioning

9

VAE + proGAN Architecture

Progressive GAN with auto encoder

Get the 3
corners from
the image

Encode the 3
corners

Use the 3 corner latents and a
random latent to generate the last
corner image

Use 2 discriminators to train:
- Global Discriminator to train with the

whole image
- Local Discriminator to train with only the

generated corner

10

Progressive GAN

Progressive GAN with auto encoder

Total latent size should be
related to the first
convolution layer of the
generator The weight of the loss of

the global discriminator
and the local
discriminator should
combine to one

The loss used is the
Wasserstein distance

The loss for the
discriminators are done
together and updated
together as they are a
combined model.

11

• Training:
• 56472 different images from UNOSAT Myanmar flood

dataset (a total of 12 million steps)

• Results:
• The generated corner is consistent with the features present in

the original image

• Similar but no identical

• Problems:
• Limitations in replicating multiple details and monochromatic

tiles

• Next Steps:
• Reduce training time: 1 month with 2 V100 GPUs

• Hyper-parameter optimization (role of the global vs local loss)

• Test with RGB datasets

Progressive GAN with auto encoder

Results Original Generated

12

QUESTIONS?

renato.cardoso@cern.ch

mailto:renato.cardoso@cern.ch

13

Stability Test

• Sub-optimal configuration makes
training time instable and overall
longer

• Equal number of GPUs per
worker and GPUs per node
keeps instability to a minimum

Google Cloud Platform with
Kubeflow

Batch Size Tests

Accelerating GAN training using highly parallel hardware on

public cloud

Cluster Configuration

• optimal configuration
• more GPUs per node

• more GPUs per worker

• best results
• number of workers = number

of nodes

• number of GPUs per worker =
the number of GPUs per node

• less steps to
complete

• faster training

• better
generalization
performance

14

Further Analysis

• TPUs:
• idle time is 0.7%, with 28.5%

for All-Reduce operations

• 38% for forward-pass

• 61% for back-propagation

• GPUs:
• idle time is 2.9%, mostly for

All-Reduce

• Similar percentages for forward
and backward propagation as
the TPUs.

• Program is not input bound,
0% of the training step time
was spent waiting for input

• With this profile it is possible
to verify that the model is
compute bound

Accelerating GAN training using highly parallel hardware on

public cloud

4 gradient tapes
• After each gradient tape there is one all reduce
• Followed by a RMSprop and the corresponding updates

15

Wasserstein autoencoder

• There are two problem with
the decoded images:
• The blurry effect

• The difference in color from the
original

• The difference in color is
something that persist to the
Progressive GAN

Results

Progressive GAN with auto encoder

Real Decoded

16

Backup - Architecture

Progressive GAN with auto encoder

17

Backup - Decoder

Progressive GAN with auto encoder

18

Backup - Encoder

Progressive GAN with auto encoder

19

Progressive GAN

• Architecture:
• Both the Generator and the discriminator follow the usual Progressive Gan structure

including pixel normalization and weight scalling

• Generator:

• The input is the concatenation of the 3 corner latents obtained from the encoder and a
random latent

• The start with a dimension is 32x32 and goes up to 128x128

• Each generator block is composed of an UpSampling layer followed by 2 2D convolution
layers with a leaku relu activation

• Discriminators (Combined model)

• Each discriminator block is composed by 2 2D convolution layers with a leaku relu
activation followed by an average pooling layer

• The global discriminator receives as an input the generated image with the 3 original
corners while the local discriminator receives only the generated image

Progressive GAN with auto encoder

20

Wasserstein autoencoder

• Architecture:
• Encoder (8 Layers):

• Input is a 128x128 image

• 1st layer is a 2D convolution layer used to extract the color of the image

• The next 5 layers are 2D convolution layers (strides of 2) with batch normalization and
leaky relu activation

• The last 2 layers are a flatten and a Dense layer, respectively, used to compose the latent

• Decoder (7 layers):

• Input is a latent

• 1st layer is a Dense layer followed by a reshape

• The next 5 layers are 2D Transpose convolution layers (strides of 2) with batch
normalization and leaky relu activation

• The last layer is a 2D convolution layer used to convert to RGB, obtaining the final image

Progressive GAN with auto encoder

21

Wasserstein autoencoder

• Loss
• Loss calculation uses 2 components a reconstruction loss and a mmd loss

• Reconstruction loss

• Mean squared error between the decoded image and the original image

• MMD loss:

• Maximum mean discrepancy (MMD) with a radial basis function between a random normal
and the latent obtained from the encoder

The encoder is trained first using the decoder and doesn’t change when
being used for the progressive GAN training

Progressive GAN with auto encoder

22

More Results

Progressive GAN with auto encoder

