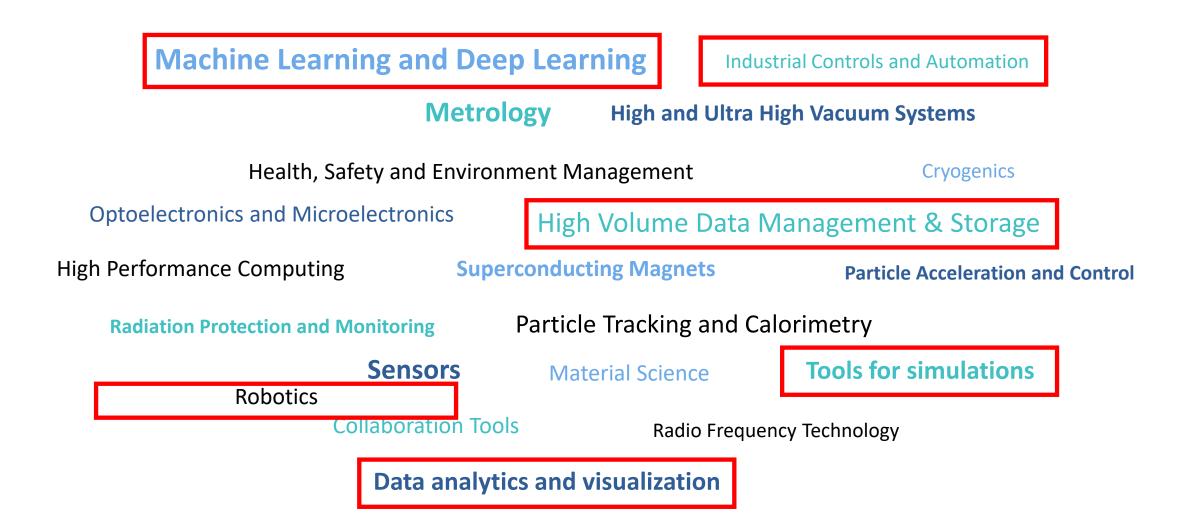


Working with CERN Knowledge Transfer

Sample of examples cases and projects

Nick Ziogas nick.ziogas@cern.ch Open Lab Technical Workshop 22 March 2022

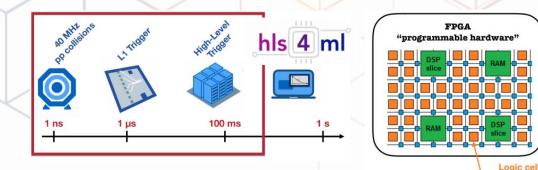
Our Mission


Maximise the technological and knowledge return to society, in particular through Member States industry

Promote CERN as a centre of excellence for technology and innovation

Demonstrate the importance and impact of fundamental research investments

Key technology: Ultra-fast on-edge neural network inference


S

σ

0

10

Know-how in neural network pruning and neuromorphic chips (e.g. FPGA) for ultra-low latency, on-edge inference

CERN needs ultra fast deep learning inference (execution in ~1 microsec) for fast classification of particle collision data, requiring compact code for edge-computing on programmable chips (FPGAs with logic cells)

For this, CERN contributes to an open-source **package (hls4ml) to automatically translate pre-trained neural networks** (as specified by NN architecture, weights, biases) into high-level synthesis code for FPGA architecture, drastically **accelerating prototyping**, **reducing time to results**

- Pruning, quantization (binary, tertiary), compression and parallelization of models by ML experts
- hls4ml integrates with DL libraries: reads as input models trained with Keras/TF, PyTorch, scikit-learn, planned xgboost and outputs hls code; uses Xilinx HLS software (accessible to non-expert, engineers)
- Inference time: <10 microsec

S

Comes with implementation of common network components (layers, activation functions, binary NN, ...); example classification network: 16 inputs, 3 layers with 64/ 32/ 32 nodes (ReLU) and 5 outputs (Softmax)

- A car manufacturer teamed up with CERN to develop ML for the classification of image (computer vision) and lidar sensor data from self-driving cars using FPGAs
- A developer of wireless and multimedia tech jointly with CERN developed quantized ML to gain speed and save energy with minimal impact on accuracy
- Additional use cases of the second edge, energy-efficient ML incl. fast triggering a classification of second search engines and chatbots (FPGAs used in BING and SIRI privacy of phant inference (object classification without storing camera dare)
- CERN can help organizations design optimized neural neurophysics in a second provides of the second p
- Designmeural networks for fast and efficient interence through pruning, quantization, compression, parallelization
- → En efficient of the stat, reduced latency, ultra-fast inference
 Understand lates: developments, define strategy for adoption and R&D
 → Advi
 → advi

ZENSEACT (Volvo Cars Company) teams up with CERN on fast machine learning using FPGAs.

Collaborative R&D

- General issue
- Jointly find solution

PHH 388

• Jointly develop solution

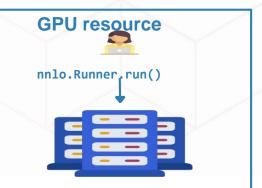
Collaborative R&D

- General issue
- Jointly find solution
- Jointly develop solution

CEVA and CERN joined R&D on neural network weight and activation compression algorithms aiming make them run more efficiently. Wireless comms & computer vision applications

Neural Network Learning and Optimization (NNLO)

Currently under development...a KT Funded project aiming to create a service for Industry (and our community) > Software library for distributed training and optimization.


Objectives:

- Unified distributed deep learning training workflow
 - ✓ Common interface for Tensorflow and Pytorch
 - ✓ Distribution strategy → Single GPU, → Single node with multiple GPUs, → Multiple nodes
 - ✓ Simplified distributed hyperparameter optimization
 - ✓ Unified interface for samplers and pruners (Bayesian optimization, Hyperband,...)
 - ✓ Pluggable optimization frameworks (Optuna, Keras tuner,...)

Deployment on diverse platforms

Local resources, mPP planets, HPC containers, Cloud

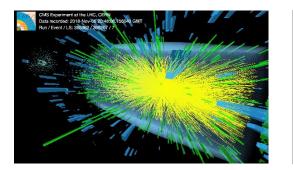
Status in NNLO: **TESTING**

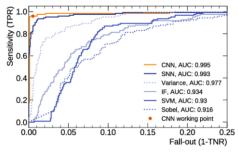
Container-based workflow

Export self-contained containers that can run on the target platform

Singularity for HPC, Docker for cloud (Kubernetes/Kubeflow)

Key competence: Big data classification and anomaly detection

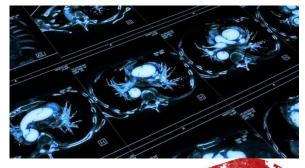

CERN researches and operates and highly sensitive ML models for the detection of weak signals in very large datasets


S

_

U

70



CERN generates and stores large data volumes (1,000 observations/ sec. corresponding to 1 GB/ sec. and 10,000 TB/ year). A single physics analysis typically involves millions of observation examples to reach science-grade results requiring strong classification and anomaly detection algorithms.

For this, CERN researchers develop deep neural networks to effectively reject background noise from weak signals as well as a modular big data software framework (ROOT) for data handling, analysis, and visualization.

- FCN, All space r
 CNNs for (sensor images)
- Data: 2bn recorded events/ year with 100m dimensions per example
 - FCN, AE, LSTM¹ for unsupervised anomaly detection: comparing latent space representation (AEs)/ prediction (LSTMs) with observed data
 - CNNs for anomaly detection through image recognition: plotting (sensor) read-outs as image and training CNN to recognize anomalous images for e.g., data quality monitoring (reached AUC = 0.995)
 - Weak signal detection where signal occurs at ratio of 1 in 10³ to 1 in 10⁶
 - Example NN: parameters: 2.3m, epochs: 100, examples: 100k 1m
 - Boosted Decision Trees (ROOT, XGBoost) to improve data resolution

- An institute for commodity risk management teamed up with C.B. comport regulators to detect trading anomalies from stock market data.
- Knowledge Transfer supports the development anomaly detection and classification algorithms for medical image analysis to diagnose cancer and Covid-19 pneumonia
- Additional use cares, s gives because in large-scale, noisy, high-dimensional data such as identified and essecurity and fraud attacks, detecting dangerous goods in logistic data, detecting energy consumption anomalies, pharma quality control
- CERN can help organizations use its mode
- Adopt or design and train fit for purpose models to detect to (supervised, unsupervised, semi-supervised)
- Optimize model Interpretability and transparency along science-grade standards

n an

- Use CERNS data as testbed for development of anomaly detection models
 Asst is odel quality by benchmarking with high-quality data

Collaboration with CORMEC and WUR to support national banks and regulators to detect trading anomalies in stock market

0.22	0.00	0	0	2,788		0.44	0.64	0.02	6.09	18.04	14.32	<u>I</u> A	
0.76	-1.30	17,288,600	13,224	3,491		109	0.22	ester M	0	-4,64	-4.9	/	M
0.79	0.00	249,300	197	368	-	2 01	141	0.40	0.98	32.36	30.67	2	N ()
14.1	+4.44	2,91 <mark>3,1</mark> 00	40,573	3,540	14.41	5.91	4.04		<u>n</u>	24.06	A.	J -:	- ALA
3.42	0.00	0	0	1,051		1.94	1.01						maandag
3.34	0.00	0	0	3,789			-1.94	- I				2	maandag i investeren deelstation ligt volgens zitter Boger rier stuks po
and starked starting and	0.00	16.273,100	93,345	3,108	16.04	2.62	0.82		0.35	12.27	15.79	op riti	en verdriev pzichte van tme, maar v ers broodno
5.65	0.00	10,213,100	00,010						500	= /	E 0.4		Joand

DE TELEGRAA

MONTEURS VOOR 1850 KM KABEL

Contract Research

- Use case and requirements by the company
- Code contributed to the OS project
- Development
 @CERN, benefit for
 HEP applications

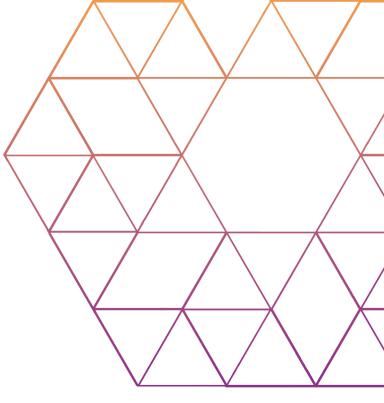
0 078F07F 5CD45C340 8 078078 CD4BC34CD4 56DE 6

ROCHE is using CernVM-FS for application and library distribution worldwide. Contract Research for a Company in the financial services sector. Strong interest in this tech for fast reliable worldwide file distribution.

Consultancy/Service

- Specific issue
- Time of experts
- Time of facilities

Bundesdruckerei GmbH works with CERN on next generation ideas for identity management and cryptography and data handling


Collaborative R&D

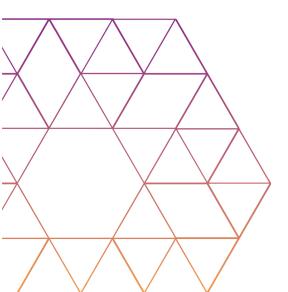
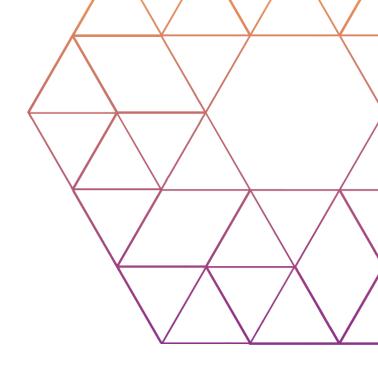
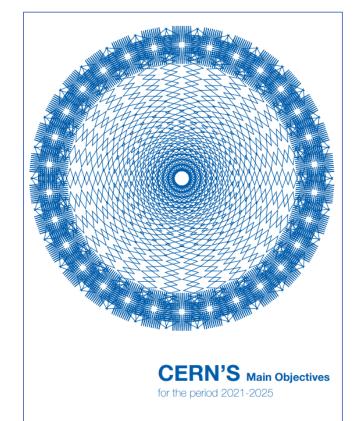

- General issue
- Case study
- Jointly develop solution

ABB teams up with CERN to build a digital twin of our cooling and ventilation system in order to optimize enegy usage

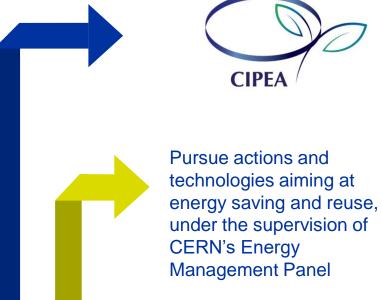
Advise / 2ND Opinion / Tech Challenge from CERN Expert team


> Collaborative R&D / Codevelopment agreements on specific topic of mutual interest

Challenge Based Innovation program with CERN Experts and/or universities to address specific issue Using CERN labs / CERN openlab for joint R&D, prototyping, benchmarking, testing of software and equipment


Licensing of CERN technology for commercial use / Support or training on using Open Source Hardware / Software

Facilitation of Knowledge Exchange by sponsoring PhD / Allocation of company resource at CERN / Use of Alumni Network


Environment: a clear priority for CERN

Three main development directions have been identified for environment and sustainability:

Minimise the Laboratory's impact on the environment by implementing CEPS (CERN Environmental Protection Steering) recommendations and defining a Green Procurement strategy

Identify and develop CERN's technologies that may contribute to mitigating the impact of society on the environment

CERN Technology Impact Fund

A mechanism for seeking **donor funding** to support the further development of **CERN technologies** that have high potential to positively impact one or more of the 17 **United Nations Sustainable Development Goals (SDGs)**

- > CERN personnel proposal for a high potential project that creates societal impact.
- Funding sought through the CERN & Society Foundation.
- Partnerships with external organisations in academia, the public sector and industry to maximise the chances of a successful technology transfer to society.

Further information about the SDGs: <u>https://sdgs.un.org/goals</u>

Thank you!

Nick Ziogas@cern.ch cern.ch/kt