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Agent interacts with environment

• Receives reward after every action

• Learns through trial-and-error

• Training sample: (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 , 𝑑𝑡)

Decision making

• Agent follows policy 𝝅: 𝑆 → 𝐴

• Goal: find optimal policy 𝜋∗

• Optimal maximizing return: 𝐺𝑡 = σ𝑘 𝛾𝑘𝑅𝑡+𝑘

Expected return can be estimated through value function 𝑸(𝒔, 𝒂)

• Helps answering: “Best action to take in given state?”

• Not a priori known, but can be learned iteratively

• Q-learning: learn 𝑸 𝒔, 𝒂 using function approximator

• DQN: Deep Q-learning (feed-forward neural network)

• FERL: Free energy based RL (quantum Boltzmann machine)

RL book: Sutton & Barto

Introduction
Reinforcement learning (RL) in a nutshell

https://www.youtube.com/watch?v=SsJ_AusntiU
https://www.youtube.com/watch?v=Lu56xVlZ40M

https://www.youtube.com/watch?v=imOt8ST4Ej

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=imOt8ST4Ejc


• Free energy based RL

• Efficient for high-dimensional spaces

• Q-function estimate: free energy of coupled spin system

• Spin system  quantum Boltzmann machine (QBM)

• Higher sample efficiency compared to classical deep Q-learning

• Limiting here: discrete state and action spaces

DQN FERL

𝝅∗

https://arxiv.org/pdf/1706.00074.pdf

Introduction
FERL motivation

https://arxiv.org/pdf/1706.00074.pdf


Classical Q-learning: DQN

• Feed-forward, dense neural network

• Explicit

FERL: QBM

• Network of coupled, stochastic, binary units
(e.g. qubits in spin up / down states)

• 𝑸 𝒔, 𝒂 ≈ negative free energy of coupled spin system

• Sampling ground-state spin configuration using 
(simulated) quantum annealing

• Implicit 𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗
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QBMIntroduction
QBM vs. DQN



Project overview

Objectives

• Implement FERL using simulated quantum annealing and am actual quantum annealer (D-Wave)

• Extend to continous state-action spaces for real-world applications: quantum actor-critic

• Compare quantum approach to classical RL in terms of
1) Training efficiency – “# steps required to train agent”
2) Descriptive power of QBM – “# weights needed”

Use case I: Q-learning on 1D beam steering model (simulated environment)

Use case II: quantum actor-critic on 10D AWAKE beam line (simulated and real environment)



Use case I: Q-learning on 1D beam steering
Environment

• OpenAI gym template

• Action: deflection angle
(Discrete)

• State: beam position
(continous)

• Reward: integrated beam 
intensity on target

State
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Beam line in reality more complex than shown here



Use case I: Q-learning on 1D beam steering
First successes with simulator and D-Wave quantum annealer

• First success on D-Wave 2000Q: FERL works!

• Training on hardware and with simulator equally efficient

• Using same hyperparameters: very helpful to optimize with 
simulator and then run on real hardware

D-Wave training and evaluation

Trained with simulator
120 steps, batch size: 10

Trained on D-Wave quantum annealer
~120 steps, batch size: 7



Use case I: Q-learning on 1D beam steering
Training efficiency & descriptive power

• Optimality metric: “in what fraction of possible states does agent take the right decision”

• Training efficiency: FERL massively outperforms classical Q-learning (8±2 vs. 320±40 steps)

• Descriptive power: QBM can reach high performance with much fewer weights than DQN (52 vs. ~70k)

Training efficiency vs. # Q-net / QBM weightsTraining efficiency

70k

340

8

52



Project overview

Objectives

• Implement FERL using simulated quantum annealing and am actual quantum annealer (D-Wave)

• Extend to continous state-action spaces for real-world applications: quantum actor-critic

• Compare quantum approach to classical RL in terms of
1) Training efficiency – “# steps required to train agent”
2) Descriptive power of QBM – “# weights needed”

Use case I: Q-learning on 1D beam steering model (simulated environment)

Use case II: quantum actor-critic on 10D AWAKE beam line (simulated and real environment)



• FERL for continous state-action spaces to tackle real-world problems:
inspired by classical actor-critic methods

• Why use FERL in combination with classical policy network? 

➢ QBM has ideal structure to replace classical critic

➢ Can we benefit from high training efficiency of QBM (?!)
Intuitively: if critic learns faster, should be beneficial for actor training

Main challenge

• Calculating derivative of critic wrt. 
action ∇aQ(s, a|𝜃

𝑄)

• Numerical (finite difference) or semi-
analytical derivative options
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Developing the quantum actor-critic
Quantum DDPG



• AWAKE electron beam line
https://gitlab.cern.ch/be-op-ml-optimization/envs/awake

• OpenAI gym template

• Action: deflection angles at 10 correctors
(continous)

• State: beam positions at 10 BPMs
(continuous)

• Reward: negative rms from 10 BPMs

Credits: A. Scheinker

Use case II: Q-learning on 10D AWAKE beam line
Environment

https://gitlab.cern.ch/be-op-ml-optimization/envs/awake
https://cds.cern.ch/record/2715451/plots


Classical vs. quantum actor-critic: training efficiency
Use case II: Q-learning on 10D AWAKE beam line

Training:
200 steps
(50 random)

Evaluation:
1.4 ± 0.1 steps

Classical actor-critic • Training:
100 steps
(75 random)

• Evaluation:
1.2 ± 0.2 steps 

Quantum actor-critic

• Running 5 trainings and evaluations from scratch for averaging

• Showing current best performance, yet to finish hyperparameter optimization for both

• Quantum actor-critic is ahead, but the race is still on …



Use case II: Q-learning on 10D AWAKE beam line
Test on actual AWAKE beam line

• Trained and tested our quantum actor-critic agent on simulated
10D AWAKE beam line

• Deployment on real beam line => agent works successfully ☺ !
Even with 1 broken beam position monitor (BPM) …

• Will redo with optimized agent and fixed BPM

Evaluation on simulated beam line Evaluation on real beam line



Summary

• FERL works both with simulator and on quantum annealing hardware

• Developed new quantum actor-critic algorithm that performs well and solves 10x10D 
continuous state-action problem both in simulated and real environments

• See advantage in terms of sample efficiency and descriptive power for all cases studied

• More studies on D-Wave annealer planned

• Attempt training in more complex environment

Thank you !



Backup



https://www.endtoend.ai/paper-unraveled/cer/

Online Learning
• Learn directly and only from latest experience

• Highly correlated data

• Agent learns from each interaction once and discards it 
immediately

Experience Replay
• Save transitions into memory buffer

• Sample batch from buffer to train agent on multiple past training 
samples at every step

Introduction
How to learn from training samples

https://www.endtoend.ai/paper-unraveled/cer/


Part I: Q-learning on 1D beam steering
Sampling efficiency

• Optimality: “in what fraction of possible states does agent take the right decision”

• FERL massively outperforms classical DQN: 10 vs. 360 steps (ER), 90 vs. 160’000 steps (no ER)

• Required # weights QBM vs. Q-net is also completely different! 

Experience replay ON Experience replay OFF



Part II: Q-learning on 10D AWAKE beam line
Quantum DDPG

• Once issue fixed worked immediately really well ☺ !!!

• Every training is a success, sometimes with a few more or less evaluation steps

• QBM critic can be very small and still produce good performance

• Here: unoptimized. Hyperparameter optimization will bring performance well up …
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3x3 QBM: 150 + 35 steps
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1x2 QBM: 300 + 110 steps
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“Worst case”
3x3 QBM: 150 + 451 steps



• Following numbers are valid for 6D env (yet to rerun for 10D env)

• Classical DDPG

• Best compromise between # training updates vs. # evaluation steps

• Critic with: 400 x 300 x 1 nodes, i.e. 123k+ weights (see backup)

• QBM

• Best performance to date with 4 x 4 unit cells, 8 qubits each

• Not fully connected: following D-Wave 2000Q Chimera topology

• Total number of hidden-hidden (352) + visible-hidden (768) weights: 1’120

Classical vs. quantum DDPG: # critic weights
Part II: Q-learning on 10D AWAKE beam line

Factor 100 difference in # critic weights needed
actor networks are identical


