Event Horizons are tunable factories
of quantum entanglement
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See Dimitris’ talk on Tuesday, for further details



Motivation




S. Hawking 74

Black holes aren’t black: they radiate as hot bodies:
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Observability?
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Hawking radiation is over-shined by the Cosmic Microwave Background



Observability?
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Hawking radiation is over-shined by the Cosmic Microwave Background

Unruh’81:

The Hawking effect is generic in presence of causal barriers (horizons)

Hawking radiation in Analog Gravity systems

(fluids, optical systems, BEC’s, etc)



Spontaneous Hawking radiation is extremely weak. Difficult to observe.

See however:
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Thermal spectrum of analogue black hole puts Hawking
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Quantum analogue: Jeff Steinhauer and col eagues have measurec the temperature of an analcgue blzck
nole. (Courtesy: Technicn



Stimulated Hawking radiation
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Measurement of stimulated Hawking emission in an analogue system

Silke Weinfurtner*, Edmund W. Tedford**, Matthew C. J. Penrice*, William G. Unruh*, and Gregory A. Lawrence**

*Department of Physics and Astronomy,
University of British Columbia,
Vancouver, Canada V6T 1Z1

Observation of Stimulated Hawking Radiation in an Optical Analogue

Jonathan Drori!, Yuval Rosenberg', David Bermudez?, Yarcn Silberberg!, and Ulf Leonhardt*
! Weizmann Institute of Science, Rehovot 7610001, Israel
2 Departamento de I'isica, Cinvestav, A.P. 14-740, 07000 Ciudad de México, Mexico
(Dated: Januarv 15, 2019)

But... there is nothing quantum in these experiments (agreed by the authors)



The stimulated Hawking effect is regarded as a classical phenomenon



Questions

(1) What is quantum and what is not in the stimulated Hawking effect?

(2) Can quantum effects be amplified?



Questions

(1) What is quantum and what is not in the stimulated Hawking effect?

Entanglement

(2) Can quantum effects be amplified?

Actually, yes!

“Event horizon are tunable factories of quantum entanglement”

===l Observational opportunity




Task: quantify the entanglement generated in the Hawking process



The Hawking Process for astrophysical BH’s

= [AERL LG d_




Previous work



D. Page’2013:

Journal of Cosmology and gg
Astroparticle Physics ISSA

You may also like
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Time dependence of Hawking radiation entropy
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Entropy of
outgoing radiation

Page’s argument:

Entropy of the radiation reaching infinity = entanglement entropy

> Quantifier of Hawking-generated entanglement

Nice! But limited, because:

(1) Only true if “in” state is pure, and
(2) BH is in isolation (not satisfied for any BH’s we know in nature)
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Entropy of
outgoing radiation

Page’s argument:

Entropy of the radiation reaching infinity = entanglement entropy

> Quantifier of Hawking-generated entanglement

Nice! But limited, because:

(1) Only true if “in” state is pure, and
(2) BH is in isolation (not satisfied for any BH’s we know in nature)



Goal:

Extend Page’s analysis to quantify the entanglement generated in the
Hawking process under different inputs




The tools




Brief Review of Gaussian states for finite-dimensional bosonic quantum systems

Good reference:

1] Alessio Serafini, Quantum continuous variables: a primer of theoretical methods (CRC press, 2017).
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® N-dimensional quantum (bosonic) system: Z1,P1;T2,D2; " TN,PN= 7

. g g 0 1
C.C.Rs: [*", 7] =1h QY QY =By (_1 O)
® Gaussian state p : Completely and uniquely determined by its first and second moments
' = Trlpr!]
Tr[p 7 7] » oY =Tr[p{(*" — pu'),(# —p’)}] covariance matrix

@® Restriction to a subsystem produces another Gaussian state: (p’, g, o)

. = —Tre _
Example. Hn = HB ) 0 = ol O_red
AB B
d —red T = ~—red
re ] re red _ ~ N,

® Mean number of quanta in subsystem A: (1 4) = 1 Trloly



® Elementary examples:

Vacuum: ,ui =0 o =Ty

Coherent state: ' # 0 o =Ihn Pure
Squeezed: p' =0 o % Iy

Thermal: pi=0 o7 =&7(2n+1)[ } Mixed

® A Gaussian state is pure iff the eigenvalues of " (Q,; are =+1

(beautiful connection with Kihler geometries)



Evolution:

If Hamiltonian is quadratic (= linear system), Gaussian states evolve to Gaussian states

</'L§n7 0-17}71> > (Méut? Uéﬁt)

5" = evolution matrix (2Nx2N)

ﬁout =95 ﬁin
—G9.g...-9T
Oout — Oin

Because of linearity, S 3 turns out to be exactly the same matrix as the matrix implementing
Hamiltonian evolution in the classical theory.



® Entanglement

® Entanglement entropy is only a entanglement-quantifier for pure states

® Logarithmic Negavity (based in the PPT criterion) is a convenient quantifier:

o For Gaussian state and if either of the two subsystem is made of a single mode,
LogNeg is a faithful quantifier.

o Has an operational meaning: entanglement cost https:/arxiv.org/abs/1809.09592

® Units of “e-bits” (1 e-bit = the entanglement in a Bell pair)

¢ Entanglement btw any bi-partition is determined entirely from g% * is not involved
g y b1-p y H



Example 1: Two-mode squeezing of two h.o.’s
ar = —= (xr —ipr)

Sl

Evolution:
a'" — 9" = al" coshr + al' T sinhr
A1 L i AJ
. _ . ’ Tout = S 7 Tin
ar — a9t =" sinhr + @l coshr
coshr 0 sinh r 0
where gi _ | 0 cosh r 0 —coshr
J sinh r 0 coshr 0

0 —sinhr 0 coshr



Example 1: Two-mode squeezing of two h.o.’s

Evolution:
a'" — 9" = al" coshr + al' T sinhr
ar — a9t =" sinhr + @l coshr
cosh r 0 sinh r 0
: 0 coshr 0 — coshr
where St.=1 .
J sinh r 0 coshr 0
0 —sinh r 0 coshr

O Acting on vacuum:

ﬁin:(_j E— ﬁout:S'ﬁinzﬁ

cosh 2r
0

sinh 2r
0

T
Oin = Iy . Uout:S‘Uin'S —

ar = (xr —ipr)

Sl

0
cosh 2r
0
—2 coshr sinhr

A1 R Y]
Tout = S 7 Tin

sinh 2r
0

cosh 2r
0

0
—2 coshr sinhr
0
cosh 2r



Example 1: Two-mode squeezing of two h.o.’s
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Conclusion: each oscillator is individually in a thermal state, and they are

entangled: Two-mode squeezed vacuum
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Sl
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Example 2: Beam splitter for two h.o.’s

Evolution:
a® — ag"" = a” cosf + ay sinf
ay' — ag™ = —a}" sin@ + a4 cos0

cos 6 0 sin 0 0

i 0 cos 0 0 sin 0
where Si= - sin 6 0 cosf 0

0 —sin 6 0 CoST

—

r

7
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Example 2: Beam splitter for two h.o.’s

Evolution:
a® — ag"" = a” cosf + ay sinf . o
| 2 - A J

~1ln ~out Aln e ~ln TOUt o S J rin
a5 — a5 = —ay sinf + a5 cosf
cos 0 sin 6 0

: 0 cos 0 sin 0

where St = :
J —sin6 0 cos 6 0

0 —sin 6 0 CoST

&111(1 ~out

Beam Splitters divide amplitudes and entanglement

&lzn ag



The Hawking Process for astrophysical BH’s
(Cont.)

= [AERL LG d_




Can we apply these techniques to quantify the generation of entanglement?



Difficulty: Infinitely many degrees of freedom involved

Evolution mixes infinitely many “in” modes to produce one “out” mode

gTtwu — / dw (Oéw@ -+ wa )
0

l P

out

Aoy



Is it possible to “diagonalize” this evolution to find the progenitors of the Hawking quanta?



Yes! Wald’75

Progenitors of the out modes: Fj(w), Frr(w)

They do not have well-defined “in” frequency, but they are made of positive-frequency “in” modes,
hence define the same “in” vacuum

Wald’s Basis:




Yes! Wald’75

Progenitors of the out modes: Fj(w), Frr(w)

They do not have well-defined “in” frequency, but they are made of positive-frequency “in” modes,
hence define the same “in” vacuum

Wald’s Basis:




Partner

™~

Progenitors

~1n

0 = A" =" coshry —a' sinhry -
Evolution (Hawking’74): where rg(w) = tanh ™ e 27

iy = ayt = —ay

~1n

sinhrg 4+ a;; coshryg

Hawking’s squeezing

TWO-MODE SQUEEZER! intensity
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Including back-scattering
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Including back-scattering
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[ |
- BEAM SPLITTER
a'P — GOt — GUP cosfh + " sin 6
w 2
v v v Where: I'y(w) = cos” 6
Transmission coeffs. (Page’76)

7in pint . aup o 7in
b, — b, =—a)f sinf+ b, cosb




To summarize



sout

b e dg,

~in
ap;
S Bint
w
a}n 1 i S aglt

|$g = two-mode squeezer with temperature Ty

e=== = beam-splitter with transmittance I'

Event horizon  Barrier

Hawking effect:

For a fixedw = Two-mode Squeezer + Beam splitter
3 modes to 3 modes

Evolution does not mix different w-sectors

This allows direct application of techniques for Gaussian quantum states discussed before




7.in ~out
(%)

= two-mode squeezer with temperature Ty

=== = beam-splitter with transmittance I

Evolution matrix: Siot = SBg - Sy

Evolution of “in” state to “out” state: (flin, 0in) —  (flout = Stot * flin, Tout = Stot * Tin - Spnt)



Vacuum Input

fin =0 oin = g



Result of evolution:

L'y (w)
ew/Tn — 1

(Aot (W) = Tp(w) sinh® rg(w) =

LogNeg[as:™®|(ai, b))

LogNeg
0.12

0.10

0.08

0.06

0.04

0.02

0.2 0.4 0.6 0.8 1.0

-0.02L

Plot corresponding to Schwarzschild BH, ¢ =1, w = 0.25 M

The potential barrier degrades the entanglement carried out to infinity



Coherent state input

fin %0 o =1I¢



We obtain:

¢  (Now(w)) =TI'(w) sinh®rg(w) —|—T1'[,JITn Set fin Stot]‘} (stimulated Hawking radiation)

*

® LogNeg remains exactly the same as for vacuum input

Ok with Standard Lore: Stimulated Hawking radiation is intrinsically classical



Single-mode squeezed input



Illuminate with a single mode squeezed input (academic exercise)

Event honizon  Bammer

(271 0 0
Initial state: fin =0 on= 1 0 e 27| 0
0 0 I




Event horizon

Initial state:

Final state:

Burmier

]

int
(58

ainr §
|G, b,

l("iZ!IY.

bEntanglement
o
[\]
o

LogNeg

(Rous (w)) = I'(w) sinh? 7°H(w)'jcosh2 ry

0.30F

e
DO
St

e
b—l
ot

0.10f

Illuminate with a single mode squeezed input (academic exercise)

e 0 0
Oin = 0 e 2" 0
0 0 Iy

T stimulated radiation

Q
0
.

-
.....
ay at
------

Both number of Hawking quanta
and LogNeg can be tuned up!!

This is not physically viable for
astrophysical BH’s

0.0

0.5 1.0 1.5 2.0
Input squeezing, r;



Thermal input



out
w

hin < Thermal input. E.g., the CMB.

Event horizon  Barrner

o, — N p— ]14 O
Initial State:  ji;, =0 Oin = (0 (14 2n4,) 15 )




Entanglement:

Ambient thermal noise degrades
the generation of entanglement
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> 90% reduction



Sum over all modes: total entanglement produce per unit of retarded time



Entanglement Spectrum (int|rad)
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Rotating BH’s



. _ Event horizon  Barrier
Event horizon  Barrier

Non-Super-radiant modes Super-radiant modes

w>mQy w<mQy



Hawking radiation in analog optical models




Optical analogs

Based on Kerr effect: Nerf(t, ) =n+ o|Estrong(t; T) ‘2



Optical analogs

Based on Kerr effect: Nerf(t, ) =n+ o|Estrong(t; T) ‘2

AVAL
Weak e.m. probe

— M

Strong e.m. pulse

Fiber



In the frame comoving with the pulse...



Frame comoving with the strong pulse

White Hole Black Hole



Hawking radiation!

NAVA VA BNAVAVA-

White Hole Black Hole



Comoving frame
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Circuit for the White-Black hole paitr:

k;n I
k_f;' i q
BS
k; —».
Evolution matrix: Stotal = OSWH * OBS, * OBS, ' OBH

From this, we can compute every aspect of the evolution of any Gaussian state

We add the effect of ambient noise, losses and detector inefficiencies



Circuit for the White-Black hole paitr:
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1 Sq ql. .
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k:)” _’ _>_ k;m‘

Evolution matrix: Stotal = OSWH * OBS, * OBS, ' OBH

From this, we can compute every aspect of the evolution of any Gaussian state

We add the effect of ambient noise, losses and detector inefficiencies



Circuit for the White-Black hole paitr:

k}n I S _’ S -1 I k(Imt
R q..,.
BS BS
k:?” — — k;m‘
k;ﬂ _’ / _» k;ul

Evolution matrix: Stotal = SWH * OBS, * OBS; * OBH

From this, we can compute every aspect of the evolution of any Gaussian state

We add the effect of ambient noise, losses and detector inefficiencies



Our contribution:

Stimulated Hawking radiation is classical because the use of coherent states
and because entanglement-degrading environmental effects (ambient thermal
noise and losses)

Proposal: use instead squeezed states —— Amplification of entanglement

White Hole Black Hole



Entanglement between Hawking pairs emitted by the white hole:
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Initial squeezing, r;’

We argue that this mechanisms is a sharp tool to:

® Increase the observability of the Hawking effect

e Be able to confirm the

® We provide a concrete protocol to materialize these ideas in the laboratory
(including the effects of thermal noise and detector inefficiencies)

See D. Kranas’ talk.

radiation observed has quantum origin



Conclusions
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(1) The Gaussian formalism for continuous-variable systems and symplectic
circuits: power tools to study Hawking-like effects

(2) Hawking process = two-mode squeezer

(3) We have applied the tools to astrophysical BH’s as well as to optical BH-WH pairs

(4) Stimulated or induced process: interesting strategy to increase the
observability of quantum aspects of Hawking radiation



Credits: Anthony Brady
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