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Canonical quantisation of group field theory (GFT)

In textbook quantum field theories, canonical quantisation is based on a choice of
coordinate time in the spacetime manifold. In background-independent quantum
gravity there is no a priori spacetime or preferred notion of time (problem of
time): canonical quantisation becomes less straightforward.

Two main alternatives:

• Dirac quantisation: build a kinematical Hilbert space, represent phase-space
functions as operators, implement dynamics as constraints on states, define
inner product through group averaging. (see standard LQG)

• Deparametrisation: identify a (matter) clock degree of freedom classically,
proceed in standard textbook fashion. (see dust models etc in LQG)

Deparametrisation has been proposed in GFT using a scalar matter field as clock.
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Two roads to canonical quantisation

Models for quantum gravity coupled to a scalar field χ, based on a real or
complex group field ϕJ(χ) where J = (~, ~m, ι) is a Peter–Weyl multi-index.
For a complex field one can assume commutation relations [SG, Oriti & Sindoni 2013,

Oriti 2016, . . . ],

[ϕ̂J(χ), ϕ̂†J ′(χ
′)] = δJ,J ′δ(χ− χ′)

so that the fields act as creation and annihilation operators, which generate a
(kinematical) Fock space. No dynamical information used so far.

Alternatively, define a canonical momentum [Wilson-Ewing 2019, . . . ]

πJ(χ) :=
δS

δ(∂χϕJ(χ))

using explicitly the matter field χ as a time variable. Then impose at equal times

[ϕ̂J(χ), π̂J ′(χ)] = iδJ,J ′ .
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Dirac quantisation for GFT?
The usual proposal in the timeless approach is that we should really impose the
equations of motion

δ̂S

δϕJ(χ)
|ψ〉 = 0 , (1)

but in practice we only do this on average,

〈ψ| δ̂S

δϕJ(χ)
|ψ〉 = 0 . (2)

This is because we cannot solve (1) for interacting field theories. However even
when interactions are neglected, the proposal is to solve only (2), often in a
mean-field approximation.
If we decided to be more ambitious and solve (1), we would typically find states
that are not normalisable in the kinematical inner product.

We need a different physical inner product and group averaging for GFT.
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Dirac quantisation for (Klein–Gordon) QFT
In standard scalar QFT we do not have constraints, just dynamical equations.

To obtain a constrained formalism, add an extra “worldline” or “proper time”
argument τ to a complex scalar field and define an action (in momentum space)

S[Φ, Φ̄, N ] =

∫
dDp

(2π)D
dτ

[
i

2

(
Φ̄
∂Φ

∂τ
− Φ

∂Φ̄

∂τ

)
+N(p2 +m2)|Φ|2

]
.

Variation with respect to the “lapse” N now gives a constraint (p2+m2)|Φ|2 = 0;
the other equations of motion are then ∂Φ/∂τ = ∂Φ̄/∂τ = 0. Hence classically
this is equivalent to standard (free) field theory.
However we can now define kinematical field operators

[Φ̂(p), Φ̂†(p′)] = (2π)Dδ(D)(p− p′)

and we must impose the constraint (p2 + m2)Φ̂†(p)Φ̂(p)|ψ〉 = 0, which means
that physical states cannot contain any quanta with p2 +m2 6= 0.
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Dirac quantisation for (Klein–Gordon) QFT

Now we need to do group averaging to get a physical inner product, and
go from the kinematical Fock space to a physical Fock space. For one-particle
states,

〈φph|ψph〉 ∝
∫

dDp

(2π)D
δ(p2 +m2)φ(p)ψ(p)

and we can extend this to the Fock space by defining “projections”

Φ̂(p) 7→ PΦ̂(p) , Φ̂†(p) 7→ PΦ̂†(p)

such that the projected operators generate the physical one-particle Hilbert space
when acting on a Fock vacuum |0〉ph. We then obtain (time-independent)
creation and annihilation operators in the usual way.

Similar projections can be defined for all operators that are well-defined observables
on the kinematical Fock space (e.g., number operator) ⇒ standard QFT.
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Dirac quantisation for (free) GFT

We can run the same arguments for a quadratic GFT action. We need to
distinguish between Peter–Weyl modes for which the classical solutions are
ϕJ ∼ e±ipχ and those for which the solutions are ϕJ ∼ e±Pχ (the latter ones are
relevant for a realistic cosmology, since they generate an expanding Universe).

Starting from an extended GFT action with dependence on a parameter τ ,

[ϕ̂J(p), ϕ̂†J ′(p
′)] = 2πδJ,J ′δ(p− p′) , [ϕ̂J(P ), ϕ̂†J′(P

′)] = 2πδJ,J′δ(P − P ′)

for these two types of modes, and we impose strongly that(
K(0)
J −K

(2)
J p2

)
ϕ̂†J(p)ϕ̂J(p)|ψ〉 =

(
K(0)

J +K(2)
J P 2

)
ϕ̂†J(P )ϕ̂J(P )|ψ〉 = 0 .

(NB. We need a momentum space definition, which requires analytic continuation
in χ for the “P” modes.)
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Observables on physical Fock space
As in the case of the Klein–Gordon field, we obtain observables on the physical
Fock space through “projection”. For instance, we get a physical number operator

N̂ =
∑
J

(
â†J âJ + b̂†J b̂J

)
+
∑
J

(
e2mJχÂ†JÂJ + e−2mJχB̂†JB̂J

)
.

There is no “cross-term” as in mean-field approximations, which changes the
resulting Friedmann equation (slightly), e.g., for a single J mode:(

〈V ′(χ)〉
〈V (χ)〉

)2

= 4m2
J

(
1− 4

v2J〈Â
†
JÂJ〉〈B̂†JB̂J〉
〈V (χ)〉2

)

Structure of these observables agrees mostly with deparametrised approach.
No χ operator corresponding to the clock itself, just as there is no time operator
in standard QFT. Implications for operational definition of χ? Alternative
construction (POVM’s etc.)?
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Summary

• Two alternative approaches to canonical quantisation of GFT have been
proposed: one “timeless”, one based on deparametrisation and closer to
standard QFT. I reviewed attempts to connect the two.

• Usually no strong imposition of dynamics in timeless approach, but if we
do impose dynamics strongly we can define Dirac quantisation and obtain a
physical Hilbert space, at least for free approximation to GFT.

• Unclear whether any chance of explicit realisation of Dirac quantisation exists
for interesting interacting GFTs.

• Differences between the approaches small in general, but have impact on, e.g.,
resulting cosmology, as unphysical states contribute in usual approach.

• Deparametrisation much easier to define, as in LQG, but suffers from usual
drawback of loss of general covariance. Problem of time in GFT anyone??
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Thank you!


