On the continuum limit of spin foams: graviton dynamics and area metric induced corrections.

Athanasios Kogios

Perimeter Institute

July 17, 2022 [Dittrich and Kogios, 2022]

Motivation

- No previous systematic study of Area Regge calculus [Asante, Dittrich, and Haggard, 2018; Rovelli, 1993; Barrett, Rocek, and Williams, 1999].
- Formerly, thought that Area Regge imposes flatness → incorrect semi-classical limit of spin foams.
- Previous results were based on a lattice with a singular Area Regge action.
 Treating them involved tilting the lattice and in the limit of vanishing tilt certain dof are suppressed. [Dittrich, 2021]
- These dof are the ones leading to the area metric.

Length vs Area Regge

- 10 edges
- 10 areas

- \bullet 10 + 10 6 = 14 edges
- 10 + 10 4 = 16 areas

Many more dof's in Area Regge than Length Regge. What is their geometrical interpretation?

- Every 4-simplex in the hypercube has the same geometry.
- Jacobian from lengths to areas (in given 4-simplex) is degenerate.
- "Hypercubical constraints".
- Suppressed dof (ones leading to area metric).

• Added an inner vertex.

Jacobian becomes invertible!

Computation

- Computation of Hessian on new inner-vertex lattice.
- Integrating out dof associate to bulk triangles in hypercubes.
- Lattice Fourier Transform: important to determine scaling.
- Identification of (coarse grained) geometrical variables: Area metric variables determine the first two leading orders (next-to-leading order previously suppressed).

Key Mechanism

- Key mechanism: different scaling of various blocks in the Hessian with respect to momenta (equivalently derivatives).
- In particular only length metric degrees of freedom are massless (Hessian block scales with second derivatives).
- Integrate out the χ variables to determine the effective action for the length metric (h).

	h	χ
h	$\mathcal{O}(k^2)$	$\mathcal{O}(k^2)$
χ	$\mathcal{O}(k^2)$	$O(k^0)$

Table 1: Scaling of the blocks in the Regge action Hessian with the momenta.

Results I

• Leading order: Recover GR!

• Lowest order correction: Weyl squared!

Results II

- Why not Riemann?
- Area metric splits to:
 - trace part (corresponding to massless length dof giving GR)
 - traceless part (giving higher order corrections).

Conclusion

- First systematic results on Area Regge calculus
- As long as Area Regge action appears (possibly after integrating out additional variables), one can hope to obtain GR in continuum limit.
- Continuum limit ensures universal behavior (also in Barrett-Crane model whose semi-classical limit is directly connected to Area Regge action).
- Continuum dynamics can be interpreted in terms of area metrics.
- Enlargement to area metrics leads to the Weyl squared correction for the effective length action.

Bibliography I

- Asante, Seth K., Bianca Dittrich, and Hal M. Haggard (2018). "The Degrees of Freedom of Area Regge Calculus: Dynamics, Non-metricity, and Broken Diffeomorphisms". In: *Class. Quant. Grav.* 35.13, p. 135009. DOI: 10.1088/1361-6382/aac588. arXiv: 1802.09551 [gr-qc].
- Rovelli, Carlo (1993). "The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis". In: *Phys. Rev. D* 48, pp. 2702–2707. DOI: 10.1103/PhysRevD.48.2702. arXiv: hep-th/9304164.
- Barrett, John W., Martin Rocek, and Ruth M. Williams (1999). "A Note on area variables in Regge calculus". In: *Class. Quant. Grav.* 16, pp. 1373–1376. DOI: 10.1088/0264-9381/16/4/025. arXiv: gr-qc/9710056.
- Dittrich, Bianca (May 2021). "Modified Graviton Dynamics From Spin Foams: The Area Regge Action". In: arXiv: 2105.10808 [gr-qc].