A new spin foam model of quantum geometry based on edge vectors

Roukaya Dekhil
In collaboration with Matteo Laudonio and Daniel Oriti
(Paper to appear)

Loops 2022, Lyon, France
18 July 2022

Mokivation and goal

Open issues: correctness of the imposition of simplicity, constraints.
$[$ Edge vectors would do the job! $]$
[Crane and Yetter, 2003]

Oubline

1. Quantum geometry of a triangle.
2. Quantum geometry of a tetrahedron.
3. New spin foam amplitude based on edge vectors.
4. Conclusion and outlook.

2. Quankum geometry of a Eriangle in $4 d$

A. The elassical Eriangle in Minkowski space

$$
\text { Closure relation: } \quad e_{1}+e_{2}=e_{3}
$$

$$
e_{1}, e_{2}, e_{3} \in M^{4}
$$

Encodes all the geometric properties of the triangle.
3. Quantization
Edge-based quantization

Closure relation + normal bivector (the $2-d$ surface orthogonal to the triangle is spanned by a normal bivector):

$$
b:=e_{1} \wedge e_{2}=e_{1} \wedge e_{3}=e_{3} \wedge e_{2}
$$

same triangle but restricted to its skew symmetric part

Bivector-based quantization

- Skew-symmetric part of the tensor product $T^{A}\left[e_{1}, e_{2}\right]=L^{2}\left[e_{1}\right] \wedge L^{2}\left[e_{2}\right]$
- \mathscr{H} of the translation

The Hilbert space of the 4 harmonic oscillator

- Quantization: $b=* L \in \operatorname{so}(3,1)^{*}$
$L^{2}\left[e_{1}\right] \wedge L^{2}\left[e_{2}\right] \cong F\left(s o^{*}(1,3)\right)$

3. Quantum Eetrahedron

A. The classical tetrahedron via edge vectors
 C. The quantum tetrahedron

- Functions on the translation group on $M^{4}: f\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}\right) \in F\left(M^{4}\right)^{\times 6}$

Closure constraint

$$
\hat{C}_{t}\left(\lambda_{1}, \ldots, \lambda_{6}\right)=\delta\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \delta\left(-\lambda_{3}+\lambda_{4}+\lambda_{5}\right) \delta\left(-\lambda_{5}+\lambda_{6}-\lambda_{1}\right) \delta\left(-\lambda_{6}-\lambda_{4}-\lambda_{2}\right),
$$

$$
\text { Wave function: } \quad\left(\hat{C}_{t} \star f\right)\left(\lambda_{1}, \ldots, \lambda_{6}\right)
$$

Skew-symmetric projection

Change of variables (via expansors)

- $F\left(s o^{*}(1,3)\right)^{\times 4}$: a sub-space of the tetrahedron Hilbert space $L^{2}\left[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right]$

Closure constraint

2. $\hat{C}_{\tau_{b}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\delta\left(x_{1}+x_{2}+x_{3}+x_{4}\right)$

Spacelike tetrahedra

1. Dependence relation: For each pair of bivectors $b_{i}, b_{j} \subset\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\} b_{i} \wedge b_{j}=0$;
2. Closure condition: $b_{1}+b_{2}+b_{3}+b_{4}=0$

4. New spin foam model based on edge vectors

The 4-simplex amplitudes are combined together by identifying the edge decorations.

$$
A_{\Gamma}=\prod_{s} A_{s} \prod_{\tau} A_{\tau}
$$

Amplitudes combinations: edge decorations:

$$
A_{\tau}=\int[d \lambda]^{6} \prod_{i=1}^{6} \delta\left(\lambda_{\alpha ; i}-\lambda_{\beta ; i}\right)
$$

Access the anti-symmetric data of the

 geometry:$$
\begin{aligned}
& \left(\hat{C}_{t} \star f\right)\left(\lambda_{1}, \ldots, \lambda_{6}\right) \Rightarrow\left(\hat{C}_{\tau_{b}} \star f\right)\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& A_{s}=\int[d x]^{10}\left(\prod_{\alpha=1}^{4} \hat{C}_{\tau_{\alpha}}\left(\left\{x_{\alpha ; a}\right\}\right)\right) \star \prod_{\alpha=1}^{4} \prod_{a=1}^{4} \delta\left(x_{\alpha ; a}-x_{\alpha+a ; 5-a}\right),
\end{aligned}
$$

The quantum
Minkowskian lime-like
bivector

- Recover the $B C$ model as a sector of our more general one
$A_{s}=\int[d \lambda]^{10}[d h]^{5} d^{5} \mu \prod_{\alpha=1}^{5} \prod_{a=1}^{4} \prod_{i=1}^{6} \mu_{\alpha}^{2} e_{\star}\left(h_{\alpha}, x_{\alpha ; a}\left(\lambda_{\alpha ; i}, \lambda_{\alpha ; i}\right)\right) \underbrace{0, \mu_{\alpha}}_{0,0 ; 0,0}\left(g\left(x_{\alpha ; i}\right) g\left(x_{\alpha+i ; 5-i}\right)\right)$
Gluing constraints; combination of $B C$ amplitudes
- Full amplitude also via GFT formulation based on translation group

Conclusion

Outlook

- Construction of a new SF model based on edge vectors.
* Algebraically, it is expressed in terms of irreps (and functions of) translation group;

Simplicial geometry is fully encoded and manifest;

Contains $B C$ amplitudes, when expressed in
 terms of bivectors (harmonic oscillator/ translation group duality)

X Analysis of amplitudes (divergences etc).
× Precise relation to $B C$ model (what is encoded in the extra data?).
\times Obtain an expression in terms of simplicial gravity action with edge vectors.
x
Extracting physical consequences (e.g. in GFT cosmology)

Thank you for your attention!

Marci!

1. A bit of group theory: the interplay between the Lorentz group and translation group

A. Infinite dimensional unitary representations of the Lorentz group

- Finding unitary finite dimensional representations of the Lorentz group is still unsolved problem.
- Infinite dimensional ones are unitary and irreducible, studied by Dirac.
\Rightarrow Homogeneous realisation of the infinit dimensional irreps of the Lorentz group
- Lie group $S L(2, C)$ (double cover of the Lorentz group), its group element is given by: $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$
$\alpha, \beta, \gamma, \delta \in C$ satisfying the
relation $\alpha \delta-\beta \gamma=1$
homogeneous polynomials P as a function of $z_{1}, z_{2} \in C$ of order $n_{1}-1$ in z_{1} and $n_{2}-1$ in z_{2}
- The action of $R(g)$ on such homogeneous polynomials is $R(g) P\left(z_{1}, z_{2}\right)=P\left(\alpha z_{1}+\gamma z_{2}, \beta z_{1}+\delta z_{2}\right)$ defines a realisation of the representation of $S L(2, C)$ and a Hilbert space D_{λ}
- Define an appropriate scalar product with respect to which the operators $R(g)$ are unitary

$$
\left\langle R(g) f_{1}(g), R(g) f_{2}(g)\right\rangle=\left\langle f_{1}(g), f_{2}(g)\right\rangle
$$

Unitary reps but
not yee an
irreducible one'

- Use the homogeneous functions to compute the norm of a function belonging in the Hilbert D_{λ}

$$
f\left(\sigma z_{1}, \sigma z_{2}\right)=\sigma^{\lambda_{1}} \bar{\sigma}^{\lambda_{2}} f\left(z_{1}, z_{2}\right) \Rightarrow| | f| |^{2}+\left|\sigma^{\lambda_{1}+\lambda_{2}+2}\right| .\left||f|^{2} \quad \Rightarrow \lambda_{1}+\lambda_{2}+2=0 \quad\right. \text { Unitary reps and irreducible one! }
$$

$R_{j \mu}(g)$: they are labelled by the half integer j and the real number $\mu \in R$ and again the $S L(2, C)$ transformations are specified by the action of $R_{i \bar{\mu}}$ on the polynomials of degree $\left(\frac{1}{2}(\mu+j), \frac{1}{2}(\mu-j)\right)$.

Among the $S L(2, C)$ infinite dimensional representations, one can show that the unitary ones are those in the principal series

B. Expansors and the relation between Translation group and the Lorentz group

- Consider four real variables $\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}$ in Minkowski space
- A general vector in the product space will have coordinates $A_{i j k h}$ which can be represented as the coefficients in a power series

$$
P\left(\xi_{\mu}\right)=\sum_{i j k h} A_{i j k h} \xi_{x}^{i} \xi_{y}^{j} \xi_{z}^{k} \xi_{t}^{-1-h}
$$

The coefficient A is called expansor.

- These coefficients are regarded as the coordinates of vectors in a certain space of an infinite number of dimensions.
© For infinitesimal Lorentz transformation given by $\quad \xi_{0}=\xi_{0}^{\prime}+\epsilon \xi_{1}^{\prime}, \quad \xi_{1}=\xi_{1}^{\prime}+\epsilon \xi_{0}^{\prime}, \quad \xi_{2}=\xi_{2}^{\prime}, \quad \xi_{3}=\xi_{3}^{\prime}$
- This coordinate transformation induces the following expansors transformation:

$$
\Sigma r!s!t!A_{r s t}^{\prime 2}=\Sigma r!s!t!\left[A_{r s t}^{2}+2(r+1) \epsilon A_{r t} A_{r+1, s-1, t}-2(s+1) \epsilon A_{r-1, s+1, t} A_{r s t}\right]
$$

- Unitarity is enforced through the scalar product to be invariant

$$
P_{1} \cdot P_{2}=\sum_{i j k h} A_{i j k h} B_{i j k h}
$$

The induced linear transformations on the expansors leave the square length invariant, presenting them as unitary representation of the Lorentz group.

The expansors present a quantisation of Minkowski space and the associated Hilbert space is then give by

$$
L^{2}\left(M^{4}\right) \overline{\bar{x}} \oplus E^{n}
$$

Dirac idea: expansors can be interpreted as a tensor product of four harmonic oscillators, where the space components have positive energy whereas the time component has a negative one

$$
\begin{aligned}
x_{a} & =\frac{1}{\sqrt{2}}\left(\xi_{a}+\frac{\partial}{\partial \xi_{a}}\right), & \frac{\partial}{\partial x_{a}} & =\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \xi_{a}}-\xi_{a}\right), \\
x_{t} & =\frac{1}{\sqrt{2}}\left(\xi_{t}-\frac{\partial}{\partial \xi_{t}}\right), & \frac{\partial}{\partial x_{t}} & =\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \xi_{t}}+\xi_{t}\right),
\end{aligned} a=x, y, z
$$

- The homogeneous polynomial on Minkowski space can be represented as a combination in the polynomials which are a general combination of four Hermite functions

$$
\begin{aligned}
\Psi_{i j k h}(t, x, y, z) & =\frac{1}{\pi n!\sqrt{2^{i+j+k+h}}}\left(x_{i}-\partial_{x_{i}}\right)^{i}\left(x_{j}-\partial_{x_{j}}\right)^{j}\left(x_{k}-\partial_{x_{k}}\right)^{k}\left(x_{h}-\partial_{x_{h}}\right)^{h} e^{-\frac{1}{2}\left(x_{l}^{2}+x_{a} x^{a}\right)} \\
& =\psi_{h}(t) \psi_{i}(x) \psi_{j}(y) \psi_{k}(z)
\end{aligned}
$$

$$
P\left(x_{\mu}\right)=\sum_{i j k h} A_{i j k h} \Psi_{i j k h}\left(x_{\mu}\right) \quad P\left(\xi_{\mu}\right)=\sum_{i j k h} A_{i j k h} \xi_{x}^{i} \xi_{j}^{j} \xi_{z}^{k} \xi_{t}^{-1-h}
$$

- The alternative representation of the ξ variables that Dirac introduced is related to the theory of the four dimensional harmonic oscillator.
- The four x-parameters can be treated as the coordinates of a four-dimensional harmonic oscillator, whereas the respective four operators $\partial_{x_{\mu}}$ being the conjugate momenta $p_{x_{\mu}}$.
- To illustrate further the duality between the expansors and the harmonic oscillator, a state of the oscillator with components $0,1,2,3$ occupying the $i t h, j$ th, $k t h, h$ th quantum states respectively is represented by Ψ. Following the map one can get back the ξ-representation and the function $\Psi_{i j k h}\left(x_{\mu}\right)$ goes over to $\xi_{x}^{i} \xi_{y}^{j} \xi_{z}^{k} \xi_{t}^{-1-h}$.
- In this sense, the state of the oscillator for which each of its components is in a quantum state is naturally identified with an expansor with one non-vanishing component, whereas a stationary states corresponds to a homogeneous expansor
- The degree of the expansor is this case represents the energy of the state.
- Recalling the expressions of the ladder operators associates to a four dimensional harmonic oscillator:
$a_{i}^{\dagger}=\xi_{i}=\frac{1}{\sqrt{2}}\left(x_{i}-\partial_{i}\right), \quad a_{0}^{\dagger}=-\partial_{\xi_{t}}=\frac{1}{\sqrt{2}}\left(t-\partial_{t}\right)$,
$a_{i}=\partial_{\xi_{i}}=\frac{1}{\sqrt{2}}\left(x_{i}+\partial_{i}\right), \quad a_{0}=\xi_{t}=\frac{1}{\sqrt{2}}\left(t+\partial_{t}\right)$

Note that they are given
by the inverse relation
of

$$
\begin{array}{llrl}
x_{a} & =\frac{1}{\sqrt{2}}\left(\xi_{a}+\frac{\partial}{\partial \xi_{a}}\right), & \frac{\partial}{\partial x_{a}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \xi_{a}}-\xi_{a}\right), \\
x_{t} & =\frac{1}{\sqrt{2}}\left(\xi_{t}-\frac{\partial}{\partial \xi_{t}}\right), & \frac{\partial}{\partial x_{t}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \xi_{t}}+\xi_{t}\right),
\end{array}
$$

the space-like creation operators a^{\dagger} are represented by the space

- Balanced representations of the Lorentz group in terms of representations of the translation group:

Derive the eigenstates of the Casimir operator (representations of the Lorentz group) as a combination of the eigenstates of the harmonic oscillator (representations of the translation group).
coordinates of Minkowski space ξ_{i} but the time-like creation operator a_{0}^{\dagger} is represented by its momentum
(up to a sign), and vice-versa for the annihilation operators.

The set of homogeneous polynomials on Minkowski space can be derived as the general solution of the Schrödinger equation

$$
H \Psi=E \Psi \text { where the Hamiltonian operator } H=-\frac{1}{2} \Delta+\frac{1}{2}\left(t^{2}-x^{2}-y^{2}-z^{2}\right)
$$

Relation between the wave functions associated to the infinite dimensional representations of the Lorentz group and the wave functions associated to the infinite dimensional representations of the translation group:

$$
\Psi_{n_{r}, \mu, \ell, m}(r, \eta, \theta, \phi)=\sum_{n_{t}, n_{x}, n_{y}, n_{z}} \int d^{4} \alpha_{\nu} e^{-\frac{1}{2} \sum_{\nu}\left|\alpha_{\nu}\right|^{2}} C_{n_{r}, \mu, \ell, m}^{n_{t}, n_{x}, n_{y}, n_{z}} \frac{\alpha_{t}^{* n_{t}} \alpha_{x}^{* n_{x}} \alpha_{y}^{* n_{y}} \alpha_{z}^{* n_{z}}}{\pi^{4} \sqrt{n_{t}!n_{x}!n_{y}!n_{z}!}} \Psi_{\alpha_{t}, \alpha_{x}, \alpha_{y}, \alpha_{z}}(t, x, y, z)
$$

B. The quantum triangle

$$
\begin{gathered}
e_{1}+e_{2}=e_{3} \quad \Rightarrow \quad \zeta_{\mu}+\lambda_{\mu}=\omega_{\mu} \\
b:=e_{1} \wedge e_{2}=e_{1} \wedge e_{3}=e_{3} \wedge e_{2}
\end{gathered}
$$

The steps to extracking the representation of the quantum bivector are:

- We take the skew part of the tensor product of the direct sum of all the expansors E^{n} (the edges e_{i}): the wedge product condition
- Each of these decomposes into a tower of copies of the bisector representation $R(0, \mu)$ and of the right parity.
- We then project onto the balanced part (simple bivector) ie. only the copies of $R(0, \mu)$ where now μ is any positive real number.
- Thus we get copies of the direct integral of all the $R(0, \mu)$ for each combination of two indices n, and two μ_{i} skew symmetrized with respect to the pair of indices.
- The quantization of Minkowski space $L^{2}\left[M^{4}\right]$ is realised as the Hilbert space associated to the translation group.

$$
b:=e_{1} \wedge e_{2}=e_{1} \wedge e_{3}=e_{3} \wedge e_{2}
$$

\Rightarrow Consider the Hilbert spaces associated to two vectors $e_{1}, e_{2} \in M^{4}$ and then take the tensor product of the associated Hilbert spaces

$$
L^{2}\left[e_{1}, e_{2}\right]:=L^{2}\left[e_{1}\right] \otimes L^{2}\left[e_{2}\right]
$$

- Denote $T_{q}^{A}\left[e_{1}, e_{2}\right]$ its skew symmetric part.
\Rightarrow The anti-symmetric condition ensures that the elements of $T_{q}^{A}\left[e_{1}, e_{2}\right]$ represents the bi-vectors obtained as the wedge product of e_{1}, e_{2}, and thus are normal of a triangle.

$$
e_{1}+e_{2}=e_{3} \quad \Rightarrow \quad \zeta_{\mu}+\lambda_{\mu}=\omega_{\mu},
$$

- closure of the edge vectors of the triangle:
\Rightarrow The Hilbert space of a bi-vector is the space $T_{q}^{A}\left[e_{2}, e_{2}\right]$ such that $L^{2}\left[e_{2}, e_{2}\right]$ is invariant under the switching operator

$$
\sigma_{q}: L^{2}\left[e_{1}, e_{2}\right] \rightarrow L^{2}\left[e_{1}, e_{3}\right]
$$

This ensures that, given a (quantum) triangle, its description is not affected by the choice of the two edge vectors used to construct the bi-vector (normal to the triangle).
a : generators of translations on
Minlowski space, a^{\dagger} : can be seen as the quantization of their dual momenta (position operators ξ on Minkowski space).

- The wedge product of the two edge vectors $e_{1} \wedge e_{2}$ can be associated to an operator acting on the Hilbert space $L^{2}[\zeta, \lambda]$

$$
b_{e_{1} \wedge e_{2}}:=-i a_{1}^{\dagger} \wedge a_{2}=-i\left(a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{1}\right)
$$

- Associate to such edges the position and momentum (or translation) operators
\Rightarrow they are expressed as a combination of the ladder operators of the harmonic oscillator

$$
\begin{array}{ll}
a_{1}^{\dagger}:=a_{t} \zeta_{t}+a_{x}^{\dagger} \zeta_{x}+a_{y}^{\dagger} \zeta_{y}+a_{z}^{\dagger} \zeta_{z}, & a_{2}^{\dagger}:=a_{t} \lambda_{t}+a_{x}^{\dagger} \lambda_{x}+a_{y}^{\dagger} \lambda_{y}+a_{z}^{\dagger} \lambda_{z} \\
a_{1}:=a_{t}^{\dagger} \zeta_{t}+a_{x} \zeta_{x}+a_{y} \zeta_{y}+a_{z} \zeta_{z}, & a_{2}:=a_{t}^{\dagger} \lambda_{t}+a_{x} \lambda_{x}+a_{y} \lambda_{y}+a_{z} \lambda_{z} .
\end{array}
$$

$$
b_{e_{1} \wedge e_{2}}
$$

$$
=
$$

quantization of the simple bivector $e_{1} \wedge e_{2}$.

- The wave function of the quantum bivector $b_{e_{1} \wedge e_{2}}:=-i a_{1}^{\dagger} \wedge a_{2}=-i\left(a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{1}\right) \quad M^{4} \wedge M^{4} \cong s o^{*}(1,3)$
- Use the operator associated to the bi-vector to expand the wave function in the Fourier decomposition:

$$
f\left(\lambda_{1}, \lambda_{2}\right):=-i \int d \alpha d \alpha^{\prime}\left\langle\alpha_{\nu}\right| a^{\dagger}\left(\lambda_{1}\right) a\left(\lambda_{2}\right)-a^{\dagger}\left(\lambda_{2}\right) a\left(\lambda_{1}\right)\left|\alpha_{\nu}^{\prime}\right\rangle f_{\alpha_{\nu}, \alpha_{\nu}^{\prime}}
$$

role of plane wave in the Fourier Eransform.

$$
\left\langle\alpha_{\nu}\right| a^{\dagger}\left(\lambda_{1}\right) a\left(\lambda_{2}\right)-a^{\dagger}\left(\lambda_{2}\right) a\left(\lambda_{1}\right)\left|\alpha_{\nu}^{\prime}\right\rangle
$$

