Hawking radiation from a sandwich evaporating Black Hole

Rodrigo Eyheralde

July 17, 2022

Introduction

Motivation

- Hawking radiation (HR) is a result of QFT in CST
\rightarrow Dynamical space-time forming a BH emits radiation that thermalizes at late times.
- [Hawking'75] used Bogoliubov transformations to obtain it.
- Back-reaction \rightarrow evaporation (open problem, including possible paradoxes) \rightarrow Quantum Gravity.
- Early stratery (ad-hoc procedure to solve semiclassical eq.):
guess EBH metric \rightarrow compute $\mathrm{HR} \rightarrow$ check if $G_{a b}=8 \pi\left\langle T_{a b}\right\rangle$.
Several EBH toy models were proposed, from [Hiscock'81] to regular BH [Hayward'05,Bianchi et al '14, Frolov \& Zilnikov '17]
$\rightarrow \mathrm{HR}$ is computed by regularization of $\left\langle T_{a b}\right\rangle$.

Hawking result for evaporating BH
 Sandwich Vaydia metric

$$
d s^{2}=-\left(1-\frac{2 M(v)}{r}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2}, \quad M(v)= \begin{cases}0 & , v<v_{s 1}, v>v_{s 2} \\ M & , v_{s 2}>v>v_{s 1}\end{cases}
$$

- Two incoming null-thin shells of energy M (at $v=v_{s 1}$) and $-M$ (at $\left.v=v_{s 2}\right)$.
- H^{+}: event horizon, it ends at i_{e}.
- A: apparent horizon (outermost trapped surface)
- C: Cauchy horizon growing from i_{e}.

The exterior of the $B H$ is not globally hyperbolic due to C.
\rightarrow invalidates Bogoliubov transformations to compute HR ¿or does it?

Hawking result for evaporating BH

Sandwich Vaydia metric

$$
d s^{2}=-\left(1-\frac{2 M(v)}{r}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2}, \quad M(v)= \begin{cases}0, v<v_{s 1}, v>v_{s 2} \\ M & , v_{s 2}>v>v_{s 1}\end{cases}
$$

- Consider s-waves of K-G equation ($\square \phi=0$) ouside H^{+}:
$\rightarrow \chi_{\omega}^{\text {out }}$: radiative modes at I^{+}, vanishing at H^{+}and i_{e}.
$\rightarrow \chi_{\omega}^{\text {int }}$: complement of out modes.
$\rightarrow \psi_{\omega^{\prime}}^{\text {in }}$: radiative modes at I^{-}.

Hawking result for evaporating BH
 \section*{Sandwich Vaydia metric}

$$
d s^{2}=-\left(1-\frac{2 M(v)}{r}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2}, \quad M(v)= \begin{cases}0 & , v<v_{s 1}, v>v_{s 2} \\ M & , v_{s 2}>v>v_{s 1}\end{cases}
$$

- Consider s-waves of K-G equation ($\square \phi=0$) ouside H^{+}:
$\rightarrow \chi_{\omega}^{\text {out }}$: radiative modes at I^{+}, vanishing at H^{+}and i_{e}.
$\rightarrow \chi_{\omega}^{\text {int }}$: complement of out modes.
$\rightarrow \psi_{\omega^{\prime}}^{i n}$: radiative modes at I^{-}.
- Positive frequency modes \rightarrow inequivalent cuantizations in the dashed region (correspond to vacua $|0\rangle_{\text {in }}$ and $|0\rangle_{\text {out }}$)
- In [RE'22] s-waves HR is computed in the near horizon approx. $\partial_{u} \partial_{V} \phi \sim 0$

Results

Results

- Assuming the field in the state $|0\rangle_{\text {in }}$ (Heisenberg picture)

$$
\rho_{\omega_{j} \omega_{k}}=\left\langle\omega_{j}\right| \operatorname{Tr}_{\text {int }}\left(|0\rangle\left\langle\left. 0\right|_{i n}\right)\left|\omega_{k}\right\rangle=\int_{0}^{+\infty} d \omega^{\prime} \beta_{\omega_{j}, \omega^{\prime}}\left(\beta_{\omega_{k}, \omega^{\prime}}\right)^{*}\right.
$$

with $\beta_{\omega_{j}, \omega^{\prime}}=-\left\langle\chi_{\omega_{j}}^{\text {out }},\left(\psi_{\omega^{\prime}}^{\text {in }}\right)^{*}\right\rangle_{K-G}$ (β Bogoliubov coefficient)

- Luminosity:
\rightarrow divergence at evaporation (thunderbolt [Hawking, Stewart'92])
\rightarrow numerical agreement with other methods (regularization of $T_{a b}$ using conformal anomaly).
- A late time approximation is identified $\left(v_{s 2}-v_{s 1} \gg 4 M\right)$.

Late-time approximation

Results

Reason 1 to compute Bogoliubov coefficients

- Bogoliubov coefficients contain complete information about the radiation (within restricting hypothesis).
\rightarrow Thermal and non-thermal contributions are identified.
\rightarrow an effective temperature is computed. It drives the divergence at evaporation interpolating between Hawking temperature of the BH and Hawking temperature of a zero mass BH remnant (comparison with remnant scenario when $\Delta M \rightarrow 0$).

Remnant of mass ΔM

Results

Reason 2 to compute Bogoliubov coefficients

Because quantum gravity:

- The reduced phase space of spherically symmetric gravity + thin shell (midi-superspace) has been described in ADM variables ([Louko et al.'92] and in Ashtekar variables [Campiglia et al'16])
- Mass of the BH (M) and positions of the shell $\left(v_{s}\right)$ are found to be conjugated Dirac observables

$$
\left\{M, v_{s}\right\}=1
$$

- In [RE et al.'17] M and v_{s} are promoted to operators with the algebra $\left[\hat{M}, \hat{v}_{s}\right]=\hbar \hat{l} . \rightarrow$ Bogoliubov coeff. are promoted to operators $\hat{\beta}_{j_{j}, \omega_{k}}\left(\hat{M}, \hat{v}_{s}\right)$.
- Horizon fluctuations introduce important corrections to Hawking result in scrambling time scales [$M \ln \left(M / M_{P}\right)$]
- Same procedure applies for two shells. We expect a similar effect could modify the thunderbolt singularity (similar to regular $\mathrm{BHs}) \rightarrow$ work in progress.

The End

Thanks!

Thermal spectrum 1
 Eyheralde 2022

$$
\begin{align*}
\rho_{\omega_{j} \omega_{k}}(n) & =\frac{1}{(4 \pi)^{2}} \frac{\epsilon}{\sqrt{\omega_{j} \omega_{k}}} \iint_{-\infty}^{\infty} d t d \bar{t} A\left(u_{n}, t, \bar{t}\right) B\left(\omega_{j}, \omega_{k}, t, \bar{t}\right), \\
A\left(u_{n}, t, \bar{t}\right) & =\operatorname{sinc}\left(\left\{\frac{u_{n}-v_{s 2}}{4 M}+[1+W(z[t])]\right\} 2 M \epsilon\right) \operatorname{sinc}\left(\left\{\frac{u_{n}-v_{s 2}}{4 M}+\left[1+W\left(z[\bar{t}]^{*}\right)\right]\right\} 2 M \epsilon\right) \operatorname{sech}\left[\frac{t-\bar{t}}{2}\right]^{2}(, \\
B\left(\omega_{j}, \omega_{k}, t, \bar{t}\right) & =\exp \left(i 4 M \omega_{j}[1+W(z[t])]-i 4 M \omega_{k}\left[1+W\left(z[\bar{t}]^{*}\right)\right]\right), \\
\rho_{\omega_{j} \omega_{k}}^{H} & =\frac{1}{(4 \pi)^{2}} \frac{\epsilon}{\sqrt{\omega_{j} \omega_{k}}} \iint^{\infty}-\infty \tag{4}\\
A^{H}\left(u_{n}, t, \bar{t}\right) & =\operatorname{sinc}\left(\left[\frac{u_{n}-v_{0}}{4 M}+t+\frac{\pi}{2} i\right] 2 M \epsilon\right) \operatorname{sinc}\left(\left[\frac{u_{n}-v_{0}}{4 M}+\bar{t}-\frac{\pi}{2} i\right] 2 M \epsilon\right) \operatorname{sech}\left[\frac{t-\bar{t}) B^{H}\left(\omega_{j}, \omega_{k}, t, \bar{t}\right)}{2}\right]^{2}, \tag{5}\\
B^{H}\left(\omega_{j}, \omega_{k}, t, \bar{t}\right) & =\exp \left(-2 M\left[\omega_{j}+\omega_{k}\right] \pi+i 4 M\left[\omega_{j} t-\omega_{k} \bar{t}\right)\right] . \tag{6}
\end{align*}
$$

Thermal spectrum

Eyheralde 2022

Regular BH models

Bianchi et al. 2014

$$
d s^{2}=-F(r, v) d v^{2}+2 d v d r+r^{2} d \Omega^{2}
$$

where

$$
F(r, v)= \begin{cases}1, & v<v_{s 1} \\ 1-2 M / r, & \left\{v_{s 2}>v>v_{s 1}, r>R_{m}\right\} \\ 1-(r / I)^{2}, & \left\{v_{s 2}>v>v_{s 1}, r \leq R_{m}\right\} \\ 1, & v>v_{s 2} .\end{cases}
$$

Regular BH models

Frolov and Zelnikov 2017

$$
d s^{2}=-\alpha^{2} f(r, p, \alpha) d v^{2}+2 \alpha d v d r+r^{2} d \Omega^{2}
$$

where

$$
\begin{gathered}
f(r, p, \alpha)=\frac{(r-p)(r-1)(r+p /(p+1)}{r^{3}+p^{2} /(p+1)} \\
\alpha=\frac{r^{6}+1}{r^{6}+1+p^{4}}
\end{gathered}
$$

