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Black hole entropy
• In quantum theory, we don’t know yet what a black hole is. 

• In quantum theory, the notion of geometry should emerge 
only under a certain limit.

⇒ Horizon is just an approximated property of black holes. 

• The notion of information is covariant and quantum. 
⇒A black hole should be characterized by 

𝑆𝑆 =
𝐴𝐴

4𝑙𝑙𝑝𝑝2
.

BH ?=
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• What is the origin of 𝑆𝑆 = 𝐴𝐴
4𝑙𝑙𝑝𝑝2

?

⇒Black hole = gravitational bound state of some d.o.f.
responsible for 𝑆𝑆 = 𝐴𝐴

4𝑙𝑙𝑝𝑝2

⇒Where do the d.o.f. live? 
(i) Around the “horizon”?  (ii) Inside somewhere?

BH=bound state of many d.o.f.

BH

Strings and D-branes? discrete spacetime units? 

graviton condensation?semi-classical 
dynamical modes?

[Strominger-Vafa,…]

[Dvali-Gomez,…]

[Ashtekar-Baez-Corichi-Krasnov,…]

[Barvinski-Frolov-Zelnikov,…]

+ more approaches…
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BH=

⇒We try  to consider case (ii) today.



Bound state of semi-classical d.o.f. (1/2) 
• Consider a spherical static BH as a bound state of any semi-classical 

d.o.f. satisfying 
𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝜋𝜋 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 .

• As a simple case, we focus on a configuration s.t.
(i)  The d.o.f. are distributed inside uniformly in 𝑟𝑟-direction. 
(ii) The acceleration required to stay at 𝑟𝑟 is semi-classically maximum.

(i) Uniform distribution of information 

BH 𝑟𝑟

・Uniform distribution 
・ Δ𝑀𝑀 1𝑏𝑏𝑏𝑏𝑏𝑏 ∼

ℏ
𝑟𝑟

・𝑆𝑆 = ∫~𝑙𝑙𝑝𝑝
~𝑎𝑎 𝑑𝑑𝑑𝑑 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑠𝑠(𝑟𝑟) ~ 𝑎𝑎2

𝑙𝑙𝑝𝑝2BH

[Bekenstein]

⇒𝑠𝑠 𝑟𝑟 ≈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. ~ 𝑁𝑁
𝑙𝑙𝑝𝑝𝑅𝑅 ≈ 𝑎𝑎 ≡ 2𝐺𝐺𝐺𝐺
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(ii) semi-classically maximum acceleration 
• BH should have a maximum gravity. 
• The minimum resolution of spacetime should be 𝑙𝑙𝑝𝑝 ≡ ℏ𝐺𝐺.

⇒The bound state should have semi-classically maximum acceleration:

(⇒We will explain later how (i) and (ii) hold as a result of dynamics. )

Bound state of semi-classical d.o.f. (2/2) 

proper acceleration 
required to stay at r

𝐶𝐶 = 𝑂𝑂(1) ≫ 1𝛼𝛼𝑛𝑛 𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑂𝑂
1
𝐶𝐶𝑙𝑙𝑝𝑝

(i) uniform cond.

𝑟𝑟

𝛼𝛼𝑛𝑛 𝑟𝑟

(⇒We will explain later how (i) and (ii) hold as a result of dynamics. )
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Interior metric
• From (i) (ii), we can derive the interior metric:

• No singularity because
・Leading values of the curvatures for 𝑟𝑟 ≫ 𝑙𝑙𝑝𝑝 :  

𝑅𝑅, 𝑅𝑅𝜇𝜇𝜇𝜇𝑅𝑅𝜇𝜇𝜇𝜇 , 𝑅𝑅𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑅𝑅𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 = 𝑂𝑂
1
𝑁𝑁𝑙𝑙𝑝𝑝2

≪ 𝑂𝑂
1
𝑙𝑙𝑝𝑝2

for 𝑁𝑁 ≫ 1

・ Δ𝑀𝑀 0≤𝑟𝑟≤𝑙𝑙𝑝𝑝~ 𝑚𝑚𝑝𝑝⇒ the center is  represented by a QG state.

𝜎𝜎~𝑁𝑁𝑙𝑙𝑝𝑝2 with 𝑁𝑁 ≫ 1
1 ≤ 𝜂𝜂 < 2,

Size: 

𝑅𝑅 = 𝑎𝑎 +
2𝜎𝜎
𝑎𝑎

> 𝑎𝑎

Schwarzschild metric
𝑅𝑅

𝑑𝑑𝑠𝑠2 = −
2𝜎𝜎
𝑅𝑅2

𝑒𝑒−
𝑅𝑅2−𝑟𝑟2
2𝜎𝜎𝜎𝜎 𝑑𝑑𝑡𝑡2 +

𝑟𝑟2

2𝜎𝜎
𝑑𝑑𝑟𝑟2 + 𝑟𝑟2𝑑𝑑Ω2

semi-classically maximum

⇒The bound state has ho horizon 
but looks like a classical BH from the outside.
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Interior structure
• We can show that the interior has a structure like a concentric and 

continuous stack of 𝐴𝐴𝐴𝐴𝑆𝑆2 (of 𝐿𝐿) × 𝑆𝑆2(of 𝑟𝑟).

• Each spherical excitation accelerates uniformly at 

𝛼𝛼𝑢𝑢 =
𝜂𝜂

2 𝜂𝜂 − 1
1
𝐿𝐿

,

approaching to its own AdS-Rindler horizon and emitting  radiation at Unruh 
temperature. (⇒This backreaction is introduced in 𝑔𝑔𝜇𝜇𝜇𝜇.)

• Each small region behaves like a subsystem at local temperature 

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 =
ℏ
2𝜋𝜋𝜋𝜋 .

𝑅𝑅 = −
2
𝐿𝐿2

+ 𝑂𝑂 𝑟𝑟−2

𝐿𝐿 ≡ 2𝜎𝜎𝜂𝜂2~ 𝑁𝑁𝑙𝑙𝑝𝑝
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Entropy again
• We can use 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 = ℏ

2𝜋𝜋𝜋𝜋
, thermodynamic relations and 

𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝜋𝜋 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 to evaluate the entropy density:

𝑠𝑠 𝑟𝑟 =
2𝜋𝜋 2𝜎𝜎
𝑙𝑙𝑝𝑝2

⇒Integrating it over the volume reproduces the area law:

𝑆𝑆 = �
0

𝑅𝑅
𝑑𝑑𝑑𝑑 𝑔𝑔𝑟𝑟𝑟𝑟𝑠𝑠 = �

0

𝑅𝑅
𝑑𝑑𝑑𝑑

𝑟𝑟2

2𝜎𝜎
𝑠𝑠 =

𝜋𝜋𝑅𝑅2

𝑙𝑙𝑝𝑝2
=
𝜋𝜋𝑎𝑎2

𝑙𝑙𝑝𝑝2
+ 𝑂𝑂(1)

• Also, we can derive Hawking temperature: 

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 =
ℏ
2𝜋𝜋𝜋𝜋

→ 𝑇𝑇𝐻𝐻 =
ℏ
4𝜋𝜋𝜋𝜋

Bound
state

Consistent with [Gibbons-Hawking]
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ℏ
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ℏ
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How to obtain the configuration?

• Q1: Does this metric satisfy 𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝜋𝜋 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 ?
⇒Yes. Indeed, (𝜎𝜎, 𝜂𝜂) exist satisfying it.
・e.g. For conformal matter, 4D Weyl anomaly fixes 

𝜎𝜎 =
8𝜋𝜋𝑙𝑙𝑝𝑝2𝑐𝑐𝑊𝑊

3𝜂𝜂2
with 𝑐𝑐𝑊𝑊 ≫ 1.

・Direct evaluation of 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 can determine 𝜂𝜂.
⇒Non-perturbative 4D dynamics of matter fields 

plays a key role in the highly-curved space! 

• Q2: How is this uniform configuration formed?
⇒As one possibility, it is formed by growing adiabatically in the heat bath. 

⇒Most typical BH in various formation processes
High temperature Low temperature

𝑀𝑀’
𝑀𝑀

𝜓𝜓 𝑇𝑇𝜇𝜇
𝜇𝜇 𝜓𝜓

= ℏ(𝑐𝑐𝑊𝑊𝐶𝐶𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝐶𝐶𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 − 𝑎𝑎𝑊𝑊ℊ)

𝑇𝑇𝜃𝜃
𝜃𝜃 ~

1
𝐺𝐺𝑐𝑐𝑊𝑊𝑙𝑙𝑝𝑝2

, ℛ~
1

𝑐𝑐𝑊𝑊𝑙𝑙𝑝𝑝2
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[Kawai-Yokokura 2015,22]



Conclusion

• We represent a BH as a bound state of semi-classical d.o.f.
with semi-classically maximal gravity. 

• The interior has a structure like a continuous stack of 
𝐴𝐴𝐴𝐴𝑆𝑆2 × 𝑆𝑆2 with ℛ~ 1

𝑁𝑁𝑙𝑙𝑝𝑝2
.

• The state |𝜓𝜓⟩ behaves like a thermal state with 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 = ℏ
2𝜋𝜋𝜋𝜋

.
• The entropy comes from the inside. 
• Non-perturbative 4D dynamics of matter fields 

plays a key role in a highly-curved spacetime. 

BH =

Thanks!
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