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Preamble
• In GR, the space-time metric g encodes gravity. No background structures! All
fields, are dynamical and physical: No spectators in fundamental physics. But
Einstein’s equations are technically complicated; highly non-polynomial in g.

By contrast, the other three basic forces are described by theories of connections
Ai and equations are much simpler: low order polynomials in Ai. But they have a
spectator: g.

• Can we combine the core-strengths of both? Yes! Idea: Start with a
diffeomorphism invariant gauge theory; no background fields, not even g. Write
down the simplest equations possible. These are to be regarded as ‘fundamental’.
Introduce a dictionary that defines the Riemannian structures of GR such that
Einstein’s equations emerge from the gauge theory ones, exactly.
⇒ The dictionary is rather intricate, since gauge theory equations are very simple,
while Einstein’s equations are so complicated! Explore new insights into GR from
the gauge theory perspective.

• Of course this idea lies at the very foundations of LQG. But its full force is
generally not felt because standard treatments begin with GR and reformulate it
as a theory of connections. Regarding space-time geometry as emerging from a
‘more fundamental’ gauge theory provides qualitatively new insights.
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Organization

1. Geometrodynamics in a nutshell.

2. From Gauge Theory to GR (not the AdS/CFT gauge-gravity duality!).

3. Application: Transmutation of ‘Time Evolution’ into ‘Spatial Motions’.

4. Application: Unforeseen connection: Penrose’s ‘Non-linear Graviton’
and the group of volume preserving diffeomophisms.

4. Application: Geometrization of the Constraint Algebra:
door to anomaly-free quantization.

6. Outlook: Summary and Bridges to Other Areas

The three applications are just illustrations. In the last part I will point out others, but that will

not a full list. These applications provide interesting directions not only for further advances

within LQG but also to build bridges to other areas such as Twistor theory, Developments in

scattering amplitudes, ‘Double copy’, Mathematics and Philosophy of spacetime.
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1 Geometrodynamics in a nutshell
• GR: 4-metric gµν on 4M = M ×R. Gravitational Phase space Γ 3 (qab; p

ab) :
qab: +,+,+ metric; pab = −ε √q(kab − kqab); kab : Extrinsic curvature.

Canonically conjugate pair: Ω|(q,p)(δ1, δ2) =
∫
M

(
δ1qab δ2p

ab − 1↔ 2
)
d3x.

ε = 1 in the Riemannian signature +,+,+,+ and −1 in the Lorentzian signature -,+,+,+.
We will consider both signatures: Generalized Wick transform (Thiemann; AA; Varadarajan) .

For simplicity: (i) No matter sources Gµν = 0; and (ii) M : Oriented, compact w/o boundary.

We can drop these restrictions. Main results unaltered; just more fields and surface terms.

• Einstein’s 10 equations on g are naturally divided into 2 parts. (i) 4 constraint
equations on initial data (q; p); have no time-derivatives; and, (ii) 6 evolution
equations. Constraints are:

Ca := −2Db p
ab = 0, and C := − 1

2

(
q

1
2 R+ ε q−

1
2
(
qacqbd − 1

2
qabqcd

)
pab pcd

)
= 0.

D: covariant derivative operator of qab; q, its determinant; R, its scalar curvature.

Highly non-polynomial in q. DOF: 6 - 4 = 2

• Fundamental fact: If all fields are dynamical (no background metric) Hamiltonian
is a linear combination of constraints: H

N, ~N
(q, p) =

∫
M

(
NaCa +NC

)
d3x . Given

(N,Na), each dynamical trajectory in Γ gives qab(t). By stacking, one assembles a
4-dimensional solution gµν on 4M .
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Dynamics
Hamiltonian: H

N, ~N
(q, p) =

∫
M

(
NaCa +NC

)
d3x .

• The canonical transformation generated by the first term,
q̇ab = L ~N qab; ṗab = L ~N pab .

has a simple geometric meaning: It generates diffeomorphisms along the shift Na. This

interpretation makes it possible to lift this action to the quantum level.

• That generated by the second term is
(i) Very complicated, with non-polynomial terms:

q̇ab = 2N q−
1
2
(
qacqbd − 1

2
qabqcd) pcd

ṗab = ε q
1
2
(
qacqbd − qabqcd

)
DcDdN − εN q

1
2
(
qacqbd − 1

2
qabqcd

)
Rcd

− q−
1
2 N

(
2δadδ

b
nqcm − δamδbnqcd − 1

2
qab(qcmqdn − 1

2
qcdqmn)

)
pcdpmn.

(ii) Also, it does not have a geometric interpretation. This is because the HN is of the

form Gαβ(q)PαPβ + V (q) where V (q) =
∫
N
√
q Rd3x and the integrand is a non-polynomial

functional of qab. This is why the WDW equation has remained formal for over 50 years.

• It is well-known in the LQG community that the evolution equation in the
connection formulation are much simpler. We will see that it also has a
geometrical interpretation very similar to that generated by H ~N , thereby casting
‘time evolution’ as ‘space-evolution’.
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2. Changing Gears: a Gauge Theory
• Let us begin ab-initio and consider the phase space of an SU(2) gauge theory;
(Aia, E

a
i ) ∈ Γ. Symplectic Structure: Ω|(A,E)(δ1, δ2) =

∫
M

(
δ1Aiaδ2E

a
i − 1↔ 2

)
.

• Task of specifying constraints simplifies tremendously: With no space-time
metric, very few gauge covariant expressions available!
Eai is gauge covariant. While Aia is not, it defines a gauge covariant D (on fields with internal

indices i, j, ...) and also a gauge covariant field strength F iab = 2∂[aAb]
i + ε̊ijkA

i
aA

j
b.

Simplest gauge covariant equations at most quadratic in A,E are F iab =0, or
Eai E

b
j = 0 ... will be available; there trivialize the theory.

Gi := DaEai = 0, Va := EbiFab
i = 0, S := 1

2
ε̊ijk E

a
i E

b
j Fab

k = 0.

They constitute a first class system system of constraints.

• No background metric ⇒ Hamiltonian is a linear combination of constraints:
H

Λ, ~N,N
(A,E) =

∫
M

(
ΛiGi + NaVa +NS

)
d3x. Equations of motion are again at most

quadratic in (A,E). As in any gauge theory, the first term generates an internal SU(2) gauge

rotations. Second generates gauge covariant Lie derivatives. The third also generates very
simple transformation:

Ȧia = N EbjFab
k ε̊i

jk Ėai = Da(N Eaj E
b
k) ε̊i

jk

(D only knows how to act on internal indices. Surprisingly, that suffices!!) Same philosophy
underlies the definition of the vertex amplitude in spinfoams.
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Dictionary
• Aia has 9 components and 3+3+1=7 constraints. So our gauge theory will
have 2 local DOF just like GR. (We have a background independence but not a
Topological Field Theory.) Could this theory be GR in disguise, in spite of the
strikingly complicated form of GR equations?

• As the LQG community knows, the answer is in the affirmative! Let us first
consider the Riemannian case and focus on the part of phase space where the
three Eai are linearly independent at each point of M . Then we regard them as
orthonormal triads (with density weight 1), and define a 3-metric qab as follows:

Eaj E
bj =: q qab, where q ≡ det(qab) := ηabc ε̊

ijk Eai E
b
jE

c
k

• Given Eai , the conjugate momentum pab can be recovered from Aia or D. The
procedure is a bit more intricate. First: Eai determines a unique torsion-free Da

on M that acts on fields Tab...
ij..., with both tensor and internal indices via

DaEbi = 0. Gauge theory D acts only on fields with internal indices. Therefore, ∃ !
field πa

j such that
(Da −Da)λi = ε̊ij

k πaj λk , and, we set pab := πcj
(
qc(aE

b)
j − q

abEcj
)
.

• (Aia, E
a
i ) are ‘fundamental’. (qab, p

ab) of geometrodynamics are now ‘emergent,
composite’ fields, just as quarks and gluons are fundamental and nuclei composite.
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Consequences
• Let us consider the phase space Γ spanned by complex-valued pairs (Aia, E

a
i ).

The dictionary can be naturally extended to two ‘real sectors’ of the gauge theory
Γ. It sends:
(R) The sector on which (Eai , π

i
a) are real to precisely the ε = 1 –i.e.,

Riemannian– sector of real geometrodynamics; and,

(L) The sector on which (Eai , π
i
a) are pure imaginary to precisely the

ε = −1 –i.e., Lorentzian– sector of real geometrodynamics.
Note: unlike in the standard LQG literature, we have a single symplectic structure on full Γ

–no relative factors of i between the R and the L sectors of Γ– and we have a single set of

constraints that have no ε factors in the gauge theory description.

The map (Aia, E
a
i )→ (qab, p

ab) has the following properties: on both sectors, it

(i) Preserves the symplectic structure, or Poisson brackets;

(ii) Preserves constraints, i.e., maps the constraint surface of the gauge theory phase to that of
complexified geometrodynamics;

(iii) Preserves dynamics, i.e. maps dynamical trajectories on the constraint surface of gauge

theory to those on the constraint surface of geometrodynamics.

Thus we recover both Riemannian and Lorentzian geometrodynamics. The factors
of ε arise naturally from the dictionary.
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Dictionary: Features & Generalizations

• Interestingly, on the Lorentzian sector the gauge theory equations are symmetric hyperbolic,

without any extra work (Reula et al; Shinkai et al) .

• The Dictionary also provides the geometrical meaning of Aia. In the 4-d
solution gµ,ν , Aia is the self-dual connection: The curvature F iab of AIa vanishes
if and only if gµν is a self-dual solution.

• Generalization to: M non-compact with asymptotically flat boundary conditions, introduction

of scalar spinor, Maxwell and Yang-Mills fields as sources, and inclusion of a cosmological

constant were been fully worked out. (AA, Lewandowski, Romano, Tate, Thiemann . . . )

• Riemannian geometry is now emergent: From the gauge theory perspective, the
1st and 2nd fundamental forms on M are composite fields. The gauge theory
equations are simple. Those of geometrodynamics are very complicated simply
because the expressions of the ‘composite fields’ (qab, p

ab) in terms of the
‘fundamental’ ones (Aia, E

a
i ) are complicated. Analogy: Nuclear Physics ↔ QCD.

9 / 20



Organization

1. Geometrodynamics in a nutshell.
√

2. From Gauge Theory to GR (not the AdS/CFT gauge-gravity duality!).
√

3. Application: Transmutation of ‘Time Evolution’ into ‘Spatial Motions’.

4. Application: Unforeseen connection: Penrose’s ‘Non-linear Graviton’
and the group of volume preserving diffeomophisms.

5. Application: Geometrization of the Constraint Algebra:
Door to anomaly-free quantization.

6. Outlook: Summary and Bridges to Other Areas

The three applications are just illustrations. In the last part I will point out others, but that will

not a full list. These applications provide interesting directions not only for further advances

within LQG but also to build bridges to other areas such as Twistor theory, Developments in

scattering amplitudes, ‘Double copy’, Mathematics and Philosophy of spacetime.
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3. Transmutation of ‘Time Evolution’
• Recall: Geometrodynamics had two undesirable features: (i) Eqs complicated;
and, (ii) While the canonical transformation generated by H ~N

has simple
geometric meaning, that by HN does not. In quantum theory, the action of Ĥ ~N

is
geometrical and transparent, that of ĤN is not, making it difficult to construct an
anomaly free constraint algebra.

• While gauge theory equations are simple, the asymmetry between space and
time ‘evolutions’ of geometrodynamics has persisted in the LQG literature. Recall:
H ~N,N

=
∫
M

(
Nb(Eai F

i
ab) +N (̊εijkE

a
i E

b
jFab

k)
)

d3x

The Hamiltonian flow generated by the first term has a natural
geometrical interpretation on (SU(2) bundles over) M :
Gauge covariant Lie-derivative (GCLD): Ex: Ėai = L ~NE

i
a.

But that generated by the second term does not:

Ex: Ėai = ε̊i
jk Db

(
NE

[b
j E

a]
k

)
.

• Interestingly, symmetry can be restored using a generalized GCLD along
space-like vector fields! Unforeseen bonus of the gauge theory formulation. The
generalization opens a window for anomaly-free quantization (Varadarajan’s talk),
and also for further work in mathematics. More precisely ...
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Gauge Covariant Lie Derivative
• Recall: Operational definition of Lie-derivative à la Penrose-Geroch: L ~N acts

on tensor fields satisfying four axioms: (i) Linearity; (ii) Leibniz rule; (iii) L ~Nf = ~N df , and

(iv) commutativity w.r.t. exterior derivative. These conditions yield the familiar formula
L ~N Tab = NcD̊cTab + TcbD̊aNc − TacD̊cNb , where D̊ is any torsion-free derivative
operator on M . We can take D̊ to be flat: ∂.

• For fields T ai with both tensor (manifold) and internal indices: We have the
notion of a gauge covariant Lie derivative L ~N . Fix any torsion-free derivative
operator, say ∂ on tensors and extend its action on internal indices using a fixed
connection Aia as usual: DaT bi = ∂aT bi + ε̊ij

kAja λk. Then GC Lie-derivative
L ~NT

a
i = NcDc Tai − T ci ∂cNa

is again uniquely selected by the 4 axioms together with a fifth: L ~Nλi = ~N Dλi.

• But now the Lie bracket also involves a gauge rotation:
[L ~N , L ~M

]Ti = L~V Ti + ε̊ij
k (NaMb Fab

j)Tk where V a := L ~NM
a ≡ L ~NM

a

Geometrical interpretation: the ‘Lie group’ generated by the Lie algebra is the
group of all automorphisms on SU(2) bundles (i.e. diffeos that preserve the bundle
structure). This is well-known. This is the group generated by H

Λ, ~N
.

• The challenge is to provide a similar geometrical interpretation of ‘time
evolution’: Ȧia = −̊εijk NEbj Fbak and Ėai = ε̊i

jk Db
(
NE

[b
j E

a]
k

)
.
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Generalized Gauge Covariant Lie Derivative

• Idea: The Hamiltonian H ~N,N
=
∫
M

(
Nb(Eai F

i
ab) + N (̊εijkE

a
i E

b
jFab

k)
)

d3x

can be recast as:
H ~N,N

=
∫
M

(
Nb(Eai F

i
ab) + Na

i (̊εijk E
b
jFab

k)
)

d3x

where Na
i = NEai is called the electric shift. The first term generates GCLD. Suggests: a

generalization of GCLD by replacing the vector fields Na by Lie algebra-valued vector fields Na
i

carrying an internal index. (Note: H ~N,N
=
∫
M Na

i
j Eaj F

i
ab d3x with Na

i
j = Naδji + ε̊i

jkNEak ).

• The same 4 axioms and the requirement of covariance determine the following
generalization L Of the GCLD of L:

L~Vk
Tai

bj := V ck DcTai
bj + Tci

bj DaV ck − Tai
cj DcV bk

Same as for GCLD but now the gauge covariant D acts also on the vector field V ck
since they carry internal indices. Surprise: ‘time evolution’ equations turn out to
be precisely the generalized GCLDs: (AA & Varadarajan)

Ȧia = ε̊ijk L ~Nj
Aka and Ėai ≈

1
2
ε̊ij

kL ~Nj
Eak .

Thus, in the gauge theory, all evolutions are given by generalized GCLDs along
space-like vectors! Distinction between space and time evolutions arises only when
we use the dictionary to pass to geometrodynamics. (Note that the Hamiltonian can

also be unified as: H =
∫
M Na

i
j Eaj F

i
ab d3x with Na

i
j = Naδji + ε̊i

jkNEak ).
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Ramifications of this Transmutation
• The Lie bracket between vector fields ~M, ~N on a manifold M provides us with a Lie algebra

whose ‘Lie group’ is Diff(M). Given an SU(2) bundle on M , and a connection 1-form on it, we

acquire another Lie bracket: [L ~M
, L ~N ]. The Lie group it generates is the semi-direct product

SU(2)loc n Diff(M) –generally taken to be the kinematical symmetry group in presence of SU(2)

gauge fields.

• We now have a brand new generalized GCLD L ~Ni
associated with vector fields

~Ni with internal indices! Their Lie bracket:
[L ~N , L ~M

] Tk = L~Vij
Tk + ε̊k`

m
(
Na
i M

b
jFab

`
)
Tm︸ ︷︷ ︸ where V aij = L ~Ni

Ma
j .

again involves an internal rotation in SU(2)loc, just as that for GCLDs. Therefore, again, we
have to enlarge the space of vector fields Na

i by including generators of SU(2)loc.

But, in addition, the bracket between generators of the type Na
i is a vector field of the type V aij .

Thus, the Lie algebra will thus have vector fields with arbitrary number of internal indices! The

generators span a (huge!) graded vector space. But the commutator bracket on it does satisfy

Jacobi identity. So a deep mathematical question is: What is the corresponding ‘Lie group’?

Probably the group of automorphisms on a bundle over M with infinite
dimensional fibers. Such a rich structure is essential because this Lie-group
captures full Einstein dynamics! It is well worth understanding its structure in
detail.
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4. The Half-flat Sector
For full GR, perhaps the most important result from Twistor Theory is Penrose’s
“Non-linear Graviton”: General anti-self-dual (ASD) complex-valued solutions to
Einstein’s equations: Encoded in certain deformations of the complex structure of
Twistor space.

• Let us begin by collecting all equations in the gauge theory formulation:
constraints: Gi := DaEai = 0 Va := EbiFab

i = 0, S := 1
2
ε̊ijk E

a
i E

b
j Fab

k = 0.

evolution equations: Ȧia = ε̊ijk L ~Nj
Aka and Ėai ≈

1
2
ε̊i
jk L ~Nj

Eak .

ASD solutions: self-dual part of curvature vanishes ⇔ F iab = 0! Let us go to a
gauge in which Aia = 0. ⇒ We are left with just the two Brown equations!
Evolution equations require a lapse N to construct ‘the electric shift’ Na

i := NEai . Fix a

reference volume form ε̊abc on M and a compatible derivative operator D̊ : D̊dε̊abc = 0. Finally,

set N = ε̊abcηabc.

• Then: multiplying the the two remaining brown equations by N , one obtains:
D̊aNa

i = 0 ⇔ L ~Ni
ε̊abc = 0, and Ṅa

i = 1
2
ε̊i
jk L ~Nj

Na
k .

This is the entire content of anti-self-dual solutions of Einstein’s equations!
Key simplification: If Aia = 0 initially, it remains zero because time derivative is transmuted to a

space derivative by the generalized GCLD L ~Nj
.
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ASD solutions & Volume Preserving Diffeos
• Thus, ASD solutions to Einstein’s equations are in 1-1 correspondence with
solutions to L ~Ni

ε̊abc = 0, and Ṅa
i = 1

2
εi
jk [Nj , Nk]a

Hence, given any linearly independent triplet Na
i that generates volume preserving

diffeomorphisms on M , we can evolve it by the second equation to obtain an ASD
solution:

• Define ‘t-dependent’ 3-metrics qab := Na
i N

bi on M and set
gαβ = q̂

1
2 N

(
tαtβ + qαβ

)
with q̂ = det q̂ab.

This is an ASD solution to Einstein;’s equation and every ASD solution can be
written in this form locally (AA, Jacobson, Smolin). The simplicity is striking and the
interplay with the volume preserving diffeomorphisms (generated by Na

i )
“explains” the hyperKähler structure underlying anti-self-dual solutions (Robinson).
It may well be a pointer to other deep mathematical structures.

• The interplay can directly be traced back to our gauge theory formulation of
GR; was not seen in earlier literature on self-dual solutions(Twistor theory or
Newman and Plebanski work). Furthermore, this characterization holds not only
for complex solutions as in earlier work but also for self-dual Riemannian solutions
(instantons) that are real.
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5. Geometrization of the Constraint Algebra
• The algebra of Diff constraints is simple because the canonical transformation
they generate has a simple geometric meaning: Since H ~M

acts by Lie-derivatives
along Ma we can integrate by parts and obtain:

{H ~M
, H ~N

} = {H ~M
, −2

∫
d3x

(
Na qbcDbpac}

)
= −2

∫
d3xNaL ~M

(
qbcDb pac

)
= 2

∫
d3x (L ~MN

a)
(
qbcDbpac

)
= H~V

, where V a = −L ~MN
a.

By contrast, the Poisson bracket between two scalar constraints takes pages
because in geometrodynamics, the action of HN is messy and non-geometric; we
cannot just integrate by parts! Takes > 10 pages! (Thiemann’s book).

• In the gauge theory formulation, the action of HN is geometric: Generalized
GCLD! Therefore, the calculation again has geometric interpretation. It only takes
4 steps and the final answer is:

[HM , HN ] = H~V
where V a = −L ~Mi

Na
i .

Suggests that there is something deep about the fact that the generalized GCLD
encodes dynamics. This provides a point of departure for Varadarajan’s anomaly
free implementation of the LQG quantization program. (Of course, the Poisson bracket

still involves structure functions because the generalized GCLD L ~Nj
depends on both Aia

through gauge covariant derivative and Eai through its definition Na
i = NEai .)
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Constraint Algebra: Derivation

The complete derivation: from (AA & Varadarajan (2021))

{HM , HN}

= 1
4

∫
Σ

d3xM ε̊ijk
(
Ėai E

b
j Fab

k + Eai Ė
b
j Fab

k + Eai E
b
j Ḟab

k
)
−M ↔ N

= 1
4

∫
Σ

d3xM ε̊ijk

[̊
εi
mn (L ~Nm

Ean)Ebj Fab
k − Eai E

b
j ε̊
km

n L ~NmFab
n
]
−M ↔ N

= 1
4

∫
Σ

d3xM
[
(L ~Nj

Eak − L ~Nk
Eaj )Eb j Fab

k + EakE
b
j (L ~NjFab

k − L ~NkFab
j)
]
−M ↔ N

= 1
4

∫
Σ

d3x
[
2M L ~Nj

(Eak Fab
k)Eb j + 2MEa (kFab

j) (L ~Nk
Ebj )

]
−M ↔ N

= 1
2

∫
Σ

d3x
(
L ~NjM

a
j − LMvj

~Na
j

)
Ebk Fab

k

= H~V
with V a = 1

2

(
L ~NjM

b
j − L ~MjN

b
j

)
≡ −L ~MjN

b
j .

Note: The right side equals but ‘geometrizes’ the familiar ADM structure
function V a = ε qab(N∂bM −M∂bN).
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6. Summary & Outlook
• The gauge theory equations are very simple: We arrive at them w/o reference
to GR, making appeal to diff and gauge covariance. It severely restricts the form
of Hamiltonian if there is no background metric! Similar in spirit to spin-foams where it

was argued that the vertex amplitude can be arrived at using general covariance requirements.

But this emergence of gravity from gauge theory is very different from the
AdS/CFT conjecture. The LQG correspondence is more limited in scope. But it is
not a conjecture. It is established rigorously and in detail. Other differences:
Higher dimensions, supersymmetry, and negative Λ are not needed!

• Equations of GR are complicated because its geometry is emergent and
(qab, p

ab) are rather complicated, composite combinations of the elementary building
blocks of the gauge theory. After all, Physics of atoms is simple and clean; Chemistry of

molecules they form is rich but messy! The perspective lets one cast ‘time-evolution’ as
‘space-evolution’ at the fundamental, gauge theory level: Not possible in the
metric framework. This geometrization of ‘time evolution’ has opened the door to
an anomaly-free, non-perturbative quantization. It has brought to forefront ‘the essential
reason’ behind integrability of the half flat sector of GR. Insights into the ‘infinite
dimensional group’ defined by generalized GCDs could lead to unforeseen
advances in gravitational dynamics and pure mathematics.
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Illustrative Directions for Further Work

• Several directions within gravitational physics and LQG.

• Scattering amplitudes: Perturbative amplitudes have been obtained by
regarding GR as a double copy of YM theory (S. Bern et al). Can we use our
non-perturbative framework –particularly the generalized GCLD– to shed light into
the ‘origin’ of this connection? Can it supply non-perturbative insights?

• Application to geometry? Thurston program on classification of 3-manifolds was recently

completed (by Perelman and Hamilton). Einstein metrics play a key important role there. But
for 4-manifolds, the ‘dream’ of trying to understand 4-manifolds via Einstein or
other canonical metrics may well be impossible to realize (Gromov). Deep
understanding of smooth 4-manifolds has come via the geometry of half-flat gauge
fields (Donaldson). But “How far such theories can be carried over to metrics, (the
gravitational field), remains to be seen.” (Review article, M.T. Anderson). Perhaps the
gauge theory framework underlying LQG –together with the ‘infinite dimensional
group’ generated by generalized GCLDs– would be helpful since they bridge the
two in a background independent fashion!

20 / 20


