¥ 4
S e e ' ARk Sy
\ » “ ) A .
L\ ..\\‘\‘ W AASY S SN
\\‘\\ A H\Y . \ "\1 ‘\‘l § 5 1k B
R A AL SO T L AR
N \ U LR S
[ | N\ RERA M LU A AR ey
AW LAY S R —
Wet ‘\‘\“ AV -
= » )
,:;" .. a
o S
-~ (3
. 6 %
3 L
- 'y

on quantum
simulators

Jakub Mielczarek
Jagiellonian University
Cracow, Poland

= ?
__‘, -

- "‘_'/‘:
e 7
- -

L —

T L

= 3

=

| _~

-

= r

' - -

- ) o :

- |

—
-

T

Quantum Cosmos Lab

quantumcosmos.org



Why simulations of the loops?

. Studies of many-body phenomena in the Planck scale
physics, e.g. phase structure, phase transitions
Analysis of the quantum thermodynamic limit, e.g. quantum
phase transitions
. Evaluation of the quantum gravitational amplitudes
Analysis of the semi-classical limit, e.g. large j limit
- Analysis of the entanglement entropy, e.g area scaling, Page
curve
A framework for simulations of the other gauge field theories
. Complexity of the quantum gravitational processes:

e Quantum circuit representation provides an upper
bound on quantum complexity of quantum gravitational
processes

e Verification of the violation of the extended Church-
Turing hypothesis for guantum gravity




A short story of quantum simulating loops

November 2017, JM ,,Spin Networks on Adiabatic Quantum Computer”,

Penn State . .
No papers on the subject at that time yet...



2017

e K. Li, et al., Quantum Spacetime on a Quantum Simulator, Commun
Phys 2, 122 (2019). [arXiv:1712.08711].

2018

e JM, Prelude to Simulations of Loop Quantum Gravity on Adiabatic

Quantum Computers, Front. Astron. Space Sci. 8:571282 (2021),
[arXiv:1801.06017]

e JM, Quantum Gravity on a Quantum Chip, [arXiv:1803.10592].
e JM, Spin Foam Vertex Amplitudes on Quantum Computer - Preliminary
Results, Universe 5 (2019) no.8, 179, [arXiv:1810.07100].

2020

e G. Czelusta, JM, Quantum simulations of a qubit of space, Phys. )
Rev. D 103, 046001 (2021) [arXiv:2003.13124]

e L. Cohen, et al., Efficient Simulation of Loop Quantum Gravity -- A
Scalable Linear-Optical Approach, Phys. Rev. Lett. 126 (2021) no.2,
020501 [arXiv:2003.03414]

e P. Zhang, et al., Observation of Two-Vertex Four-Dimensional Spin
Foam Amplitudes with a 10-qubit Superconducting Quantum
Processor, [arXiv:2007.13682]




2021

e G. Czelusta, JM, Quantum variational solving of the Wheeler-DeWitt
equation, Phys. Rev. D 105, 126005 (2022), [arXiv:2111.03038]

)

2022

 R. van der Meer, et al., Experimental Simulation of Loop Quantum Gravity on a
Photonic Chip, [arXiv:2207.00557].

More, In progress...
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Kinematics



Spin networks - states of LOQG

1

: 3
Spin labels - irreducible representations of the SU(2) group: 7; = 0, 5 1, IR

Local SU(2) gauge invariance (Gauss constraint) implies that spins sum up
to zero at the nodes - degeneracy leads to intertwiner spaces.



Ising spin networks (Feller & Livine, 2016)

f’G - Projection onto spin-0 subspace by the virtue of the Gauss constraint:

@’GM = > i) = 0)

In consequence: Glm Inv(%lgl/)2 ® H% ® Hﬁ)z ® HS)Q) )




New circuit for an Ising node

W (a|0) + B|1)) [000) = |Z(a, B)) = afto) + Blu1)
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State preparation

Projection

Operator W contributes
to a ,,projection” operator



SU(2) holonomies ~ maximal entanglement

O

Quantum entanglement is ,,gluing” together faces of tetrahedra.

(Livine 2018; Baytas, Bianchi, Yokomizo 2018; JM, Trzesniewski 2020)

The state associated with holonomy can be written as:

1
[ E) = %h}ﬂ[)smt e Hy, @ Hy ] eg. |&) = 7 (101) —|10})

hrs are matrix components of the SU(2) holonomy.

Based on this Maximally Entangled Spin Network (MESN) states can

be i duced:
e introduce <|MESN PG ® |gl )




Dipole
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Pentagram
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Variational extraction of the 5-qubit state
of the pentagram.

Ansatz
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Pentagram on 20 quits Pentagram on 5 quits

The probability of the state |0)¥*" is maximized.



Kinematics - ongoing and further studies

- Beyond the pentagram - simulations of the Ising
spin networks ,molecules” with the dozens on
nodes (direction of the thermodynamic limit).

- Simulations of dipole spin network in the large |
limit (semi-classical limit).

- Understanding the properties of entanglement -
measurements of entanglement entropy, mutual
informations, Page curves etc.

- Analysis of the fluctuations of the volume.

- Application of the tensor network methods (PEPS).

> Quantum complexity studies (geometric tools).

> Implementations on the new quantum hardware.



Dynamics



Following the Dirac quantization of gravitational system, the physical
Hilbertspace Hphys is constructed by solving the Wheeler-DeWitt

(WDW) equation:
(w0

The WDW is difficult to solve in general case. Solutions are
known for certain minisuperspace models.

For C , being a self-adjoint (but in general non-unitary) operator
the physical states correspond to the ground states of the Master

Hamiltonian:
(At

The task is to find the states which minimize

‘(o) )




Overview of method of solving the WDW equation
for arbitrary #DOF (m) on a quantum computer:

1. Regularize theory to make the Hilbert space finite.
Compact phase space =* Finite Hilbert space
Here, the spherical compactification is applied.

2. Apply Variational Quantum Eigensolver (VQE) to find
the states minimizing the Master Hamiltonian C“:

é )

Clpo) = 0 <= (1ho|C?|tho) = 0

. J

An ansatz on the class of states is heeded.

3. Study the large spin limit to recover the affine case.



Loop Quantum Cosmology (LQC)

In the homogeneous and isotropic case, the holonomy-flux algebra reduces
to the ,cylindrical algebra”:

E.U|=U E,U" = -U" U, U =0

where (U, E/) € U(1) x R , which is non-compact.

Employing the fact that U |0) = €?|) , one can equivalently write:
GE, sinp| =icosp |[E,cosp| = —ising [cosy,sin ] :9

What we consider in what follows is the SU(2) generalization of the
above algebra, so that

q—sz,sy]:z‘sx 5., 5,] = —iS, [Sx,sy]:z'sz>

The associated phase space is Sz , SO that its volume is finite.




One can introduce the vector z

—

S = (5:,9,,95:)

with the following components:

4 )

S, = S cos (}%) CcoS (Riz)’ N
_ Cun [ P q

Sy —Ssm(R1>cos(R2>,

S, = —Ssin (}%) .

- Y
- 1 of dg  Of O
Poisson bracket: {/.g} = cos(a/ ) (a—ga—i -~ a_ga_g)

Employing the above, the su(2) algebra is recovered:

[{57:7 Sjt = Ez'jksa




Compactified flat de Sitter cosmology (Artigas, JM, Rovelli, 2019)

Kinematics (symplectic form)

Affine 2-sphere

w = dp A dq ——— w:cos(}g>dp/\dq
2

Dynamics (scalar constraint)

3 3 S2 A
C=q|-=> ~ 0 —= ——| ~0
q< i + _I_'[ 4“R§ J
b ps = S0 _ R, Sm o i) \ The procedure is
QS 1q e ambiguous! We made
q— qs = —R—j = Rz sin (R—2> , the simplest choice.

Friedmann [ .o _ A (sin(g/Ro) *[cos? (q/Rz) — & 4 A
equation: "3\ q/R cos?(q/Ra) Where & = g 75 € [0.1]

The affine case is recovered in the R, Ro — oo limit.




Cylindrical limit (LQC)

In the R> — oo  limit the so-called
polymerization of momentum is obtained.

This is the case of loop quantum cosmology.

The su(2) algebra reduces t

o the

cylindrical case:
)

()

I
L

Ry

Ry — o0 l

Ro = const

Ry — o0

Ry = const| _..---=--- )

Cop o

q I ;

reduces to:

The scalar constraint O — (
p— q —

3k sin®(Ap) A

)\2

The Friedmann (2 _ ~ (1 B
equation is: 3

where the

+ _> ~ (0| polymerization
K

scaleis: \:=
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Compactified de Sitter in LQC

The symmetrized quantum Hamiltonian constraint:

.

We have shown that the WdW has always solutions for any () for the bosonic
representations. For the fermionic representations the solutions do not exist,
except some particular values of ().

1

CZS

(8.9,5,+5,5.5,+ 5,5,8.) - 6528. ~ )

( The simplest non-trivial case is s=1, for which:

1 0
: 1
—2(=-5
¢=2(5-9)

0 O
0 O
The physical state, which satisfy the constraint, is:
0

V)

\_

1
0

=|s=1,5,=0) =

1
V2

(101) +[10))

S




The action of the spin operators on n-qubit (spin-1/2) quantum register
IS given by:

\_

.
Oi

5
71=1

~

LI cAf:Z RV ..I"™ | wheren=2s.

J

Because 2 IS not a unitary operator, the expectation values cannot be
evaluated directly with the use of quantum computing. For this purpose
the operator has to be expanded into unitarities (here, the Pauli matrices):

\_

- | 1
=250
j 0

so that <CA' ZCJ ®

J

Similarly for CA'Q .

Every contributing expectation value has to be evaluated individually. The
so-called Hadamard test can be used for this purpose



Variational Quantum Eigensolver

We iteratively search for the minimum of the cost function:

4 a

max\)\i|2

() () | 52| ()
o (1 s(s+1)

\_

c(a) = (¢ (@) |CTCY (a))

)

~

J

The second contribution fixes the spin-s

aO

where:
a,b e (0,1)
a+b=1

subspace of a quantum register.

Acting iteratively we find:

Qmin ‘= argmin_, c(«)

sothat |Y0) = |¢ (Qmin))

>
>

Quantum circuit

Classical algorithm g |




Quantum chip

IBMQ

The expectation values are evaluated
Oon a quantum processor.

Here, the IBM 5-qubit Yorktown
superconducting guantum chip
has been used. The connectivity
of the quantum processor is the

following:

9




The s=1 case Cost function during minimalization
for 10 runs, with randomly initialized

Here: parameters:

A

(C?) =2 (é — 5>2 (1+ (0. ®02.))

The Hadamard test becomes:

Cost function

0> — H ° T 2<O'_|.>
0) — 7 —
qu Steps
0) — Z The cost function landscape:

The ansatz for the state

¥ (a)) = [ (61,05)) = Vi |00)

— Ry (01) I Ry (02) —

IS

— Ry (61) Ry (02) —




Averaged (over 10 runs) amplitudes of the final state:

0.7 A

Amplitude
S 2 8 3

o
N

=
=

0.0 -
|00) |01) |10) 111)

Basis states

In the simulations, 1024 shots for each circuit have been made.

The theoretically predicted O\w _ L(|01> 10>D

solution to the WDW equation: V2

The quantum fidelity of the found state is:<0.997 + 0.00S)




Dynamics - ongoing and further studies

- A new representation which utilizes almost all the
Hilbert space of the quantum register.

. Increasing the spin s for m=1 (semi-classical limit).

> Inhomogeneous configurations with m>1
interacting copies of the ultralocal patches.

. Implementation of the graph-preserving
truncations of the LQG Hamiltonian constraint.

> Computational complexity analysis.

- Implementations on the new quantum hardware.



Thank you!
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