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Can we produce a phenomenology of Planckian discreteness?
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to zero when |p|/Λ → 0. But in our calculations we will set ∆ and ∆̃ to
exactly zero. We will assume Λ to be of order the Planck scale.

Corrections to the propagation of the scalar field are governed by its
self-energy† Π(p), which we evaluate to one-loop order. We investigate
the value when pµ and the physical mass m are much less than the cutoff
Λ. Without the cutoff, the graph is quadratically divergent, so that
differentiating three times with respect to p gives a convergent integral
(i.e., one for which the limit Λ → ∞ exists). Therefore we write

Π(p) = A + p2B + pµpνWµWν ξ̃ + Π(LI)(p2) + O(p4/Λ2), (1.8)

in a covariant formalism with p2 = pµpνηµν , where ηµν is the space-time
metric. The would-be divergences at Λ = ∞ are contained in the first
three terms, quadratic in p, so that we can take the limit Λ → ∞ in the
fourth term Π(LI)(p2), which is therefore Lorentz invariant. The fifth
term is Lorentz violating but power-suppressed. The coefficients A and
B correspond to the usual Lorentz-invariant mass and wave function
renormalization, and the only unsuppressed Lorentz violation is in the
third term. Its coefficient ξ̃ is finite and independent of Λ, and explicit
calculation (Collins et al., 2004) gives:

ξ̃ =
g2

6π2

⎡

⎣1 + 2

∞
∫

0

dxxf ′(x)2

⎤

⎦ . (1.9)

Although the exact value depends on the details of the function f , it is
bounded below by g2/6π2. Lorentz violation is therefore of the order of
the square of the coupling, rather than power-suppressed. The LIV term
in (1.8) behaves like a renormalization of the metric tensor and hence
of the particle’s limiting velocity. The renormalization depends on the
field and the size of the coupling, so that we expect different fields in
the Standard Model to have limiting velocities differing by ∼ 10−2. The
rough expected size depends only on UV power counting and Standard-
Model couplings.

The expected size is in extreme contrast to the measured limits. To
avoid this, either Lorentz-violation parameters in the microscopic theory
are extremely fine-tuned, or there is a mechanism that automatically re-
moves low-energy LIV even though it is present microscopically. More
exact calculations would use renormalization group methods. But we
know from the running of Standard-Model couplings, that this can pro-
duce changes of one order of magnitude, not twenty.

† In perturbation theory, the sum over one-particle-irreducible two-point graphs.
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In Secs. 1.4 and 1.5, we will analyze the applicability of LIV effective
theories. But first, we will make some simple model calculations, to
illustrate generic features of the relation between microscopic LIV and
low-energy properties of a QFT.

1.3 Model calculation

The central issue is associated with the UV divergences of conventional
QFT. Even if the actual divergences are removed because of the short-
distances properties of a true microscopic theory, we know that QFT
gives a good approximation to the true physics up to energies of at least
a few hundred GeV. So at best the UV divergences are replaced by large
finite values which still leave observable low energy physics potentially
highly sensitive to short-distance phenomena.

Of course, UV divergences are normally removed by renormalization,
i.e., by adjustment of the parameters of the Lagrangian. The observable
effects of short-distance physics now appear indirectly, not only in the
values of the renormalized parameters, but also in the presence in the
Lagrangian of all terms necessary for renormalizability.

The interesting and generic consequences in the presence of Lorentz
violation we now illustrate in a simple Yukawa theory of a scalar field
and a Dirac field. Before UV regularization the theory is defined by

L =
1

2
(∂φ)2 −

m2
0

2
φ2 + ψ̄(iγµ∂µ − M0)ψ + g0φψ̄ψ. (1.5)

We make the theory finite by introducing a cut-off on spatial momenta
(in a preferred frame defined by a 4-velocity Wµ). We use a conventional
real-time formalism, so that the cutoff theory is within the framework
of regular quantum theory in 3 space dimensions. The cutoff is imple-
mented as a modification of the free propagators:

i

γµpµ − m0 + iϵ
→

if(|p|/Λ)

γµpµ − m0 + ∆(|p|/λ) + iϵ
, (1.6)

i

p2 − M2
0 + iϵ

→
if̃(|p|/Λ)

p2 − M2
0 + ∆̃(|p|/λ) + iϵ

. (1.7)

Here, the functions f(|p|/Λ) and f̃(|p|/Λ) go to 1 as |p|/Λ → 0, to
reproduce normal low energy behavior, and they go to zero as |p|/Λ →
∞, to provide UV finiteness. The functions ∆ and ∆̃ are inspired by
concrete proposals for modified dispersion relations, and they should go
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Lorentz invariance and quantum gravity: an additional fine-tuning problem?
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(Dated: 30 October 2004)

Trying to combine standard quantum field theories with gravity leads to a breakdown of the usual
structure of space-time at around the Planck length, 1.6×10−35 m, with possible violations of Lorentz
invariance. Calculations of preferred-frame effects in quantum gravity have further motivated high
precision searches for Lorentz violation. Here, we explain that combining known elementary particle
interactions with a Planck-scale preferred frame gives rise to Lorentz violation at the percent level,
some 20 orders of magnitude higher than earlier estimates, unless the bare parameters of the theory
are unnaturally strongly fine-tuned. Therefore an important task is not just the improvement of
the precision of searches for violations of Lorentz invariance, but also the search for theoretical
mechanisms for automatically preserving Lorentz invariance.

The need for a theory of quantum gravity and a modi-
fied structure of space-time at (or before) the Planck scale
is a consequence of the known and successful theories of
classical general relativity (for gravity) and the standard
model (for all other known interactions). Thus one of
the most important challenges in theoretical physics is
the construction of a quantum theory of gravitation.

Direct investigations of Planck-scale phenomena need
short-wavelength probes with elementary-particle ener-
gies of order the Planck energy EP = (h̄c5/G)1/2 =
1.2 × 1019 GeV, which is much too high to be practica-
ble. But actual tests — e.g., [1, 2, 3] — of a hypothesized
granularity of space-time at the Planck scale are possible
because relativity (embodied mathematically as Lorentz
invariance) gives a unique form for the dispersion relation
between the energy and momentum of a particle,

E =
√

p2c2 + m2c4. (1)

Here c, the speed of light is a universal constant, while
the particle rest mass m depends on the kind of particle.
We will henceforth use units in which c = 1.

Calculations in [4, 5] find preferred-frame effects asso-
ciated with space-time granularity [6] in the two most
popular contenders for a theory of quantum gravity,
which are string theory [9] and loop quantum gravity
[10, 11]. In these scenarios, the preferred frame and the
consequent Lorentz violation occur even though the fun-
damental classical equations of both of the theories are
locally Lorentz invariant. We thus have a quantum in-
spired revival of the nineteenth century idea of the elec-
tromagnetic ether, a background in which propagate light
waves, as well as all other elementary particles and fields.
Specific estimates of modified dispersion relations were
made in these papers from calculations of the propaga-
tion of quantum mechanical waves in the granular space-
time background. At accessible energies, only minute ef-
fects were predicted, of relative order E/EP or (E/EP )2,
when the probe has energy E. For other ways in which

k

p

FIG. 1: Lowest order self-energy graph. Interactions of quan-
tum fields require an unrestricted integral over the momenta
of the virtual particles up to the highest momenta allowed in
the theory.

Lorentz violation might arise, see, for example, [12, 13].
The minuteness of the effects is in accord with every-
day scientific thinking, where we often find that the de-
tails of physical phenomena on one distance scale do not
directly manifest themselves in physics on much larger
scales. Therefore attention has focused on searches for
extremely small violations of the dispersion relation.

However, as we will now explain, the predicted viola-
tions of the dispersion relations are enormously increased
when we include known elementary particle interactions.
In quantum field theories like the standard model, the
propagation of an isolated particle has calculable contri-
butions from Feynman diagrams for particle self-energies,
such as Fig. 1. The dispersion law for a particle is ob-
tained by solving

E2 − p2 − m2 − Π(E,p) = 0. (2)

Here Π is the sum of all self-energy graphs, to which
we have added any (small) Lorentz-violating corrections
calculated in free-field theory as in [4, 5].

We now apply the following reasoning: Without
a cutoff the graphs have divergences from large mo-
menta/short distances. In the Lagrangian defining the
theory, the divergences correspond to terms of dimen-
sion 4 (or less) that obey the symmetries of the micro-
scopic theory. In the textbook situation with Lorentz
invariance, the divergences are removed by renormaliza-

Discreteness and Lorentz invariance

Quantum spacetime cannot be interpreted in analogy 
with a lattice choosing a preferred rest frame.  

Lorentz violation at the Planck scale is not 
suppressed by the Planck scale. It percolates via 
radiative corrections to large violations at low 

energies.

Collins, AP, Sudarsky, Urrutia, Vusetich;  
Phys. Rev. Letters. 93 (2004).

Radiative corrections make Lorentz violation percolate to low energies

WAY OUT: Observables in QG are relational, 
discreteness must be relational3
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Discreteness is more apparent  
in curved regions than in flat ones.
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Now we estimate the amount of energy-momentum violation experienced due to the transfer of energy from the
continuum degrees of freedom of massive matter to the underlying microscopic discrete substratum of quantum
spacetime. Recall that according to our rationale only ⇢m contributes, thus simple dimensional analysis tell us that
the leading contribution should be

J = ↵`pR
2c dt

⇡ ↵`p


8⇡G

c2
(⇢� 3P )

�
2

c dt, (5)

where ↵ is a dimensionless phenomenological constant of order one (here we are neglecting higher order corrections
with powers of `2p or higher in front), and we used (4).

From (3) the contribution to the e↵ective cosmological constant is given by

⇤ = ⇤⇤ + ↵`p

t0Z

t⇤


8⇡G

c2
⇢m

�
2

cdt, (6)

where t⇤ is the time where the e↵ects start and t
0

denotes today. Following our rationale we expect t⇤ to be given
by the time when massive matter first appears in our universe; according to the standard model (and some of its
extensions) this corresponds to the electroweak unification time3.

From Friedmann equations (H(a)/H
0

)2 = ⌦r

0

(a
0

/a)4 + ⌦m

0

(a
0

/a)3 + ⇤e↵(a)c2/3H2

0

—where H(a) = ȧ/a and ⌦r

0

,
⌦m

0

are the matter and radiation dimensionless density parameters today respectively—and using the fact that t⇤ is
well inside the radiation dominated we can accurately estimate (6) to

⇤� ⇤⇤ =
9

4

↵`pH
3

0

c3
(⌦m

0

)2p
⌦r

0

z4⇤

| {z }
dark matter ⇡ 6↵10�54m�2

+
15

8

↵`pH
3

0

c3
↵Q⌦m

p
⌦r

⇡2


md

c2kT
0

�
2

z3⇤
| {z }

cross term ⇡ 9↵Q10

�53m�2

+
225

2048

↵`pH
3

0

c3
↵Q2(⌦0

r)
3/2

⇡4


md

c2kT
0

�
4

z⇤
2

| {z }
light quarks ⇡ ↵Q2

10

�52m�2

(7)

where z⇤ is the redshift parameter corresponding to the starting time t⇤. Using the observational values [13] and
z⇤ ⇡ 7 1014 we get

⇤� ⇤⇤ ⇡ ↵ 0.24 10�52m�2 (8)

which is in remarkably close to the observed value ⇤
obs

⇡ 1.19 10�52m�2.
The previous result is an order of magnitude estimate of the model (5). In a more refined calculation the dynamical

details of the electro-weak transition would probably need to be considered: the transition cannot be sharp and this
should be taken into account when calculating the contributions to ⇤. The value of ↵ is also uncertain in that it
depends on details that are not considered in our phenomenological model. Such details can easily make ↵ move by
one or even two orders of magnitude (e.g. number of species involved, other numerical factors, etc.). Here we have
also assumed that all of ⇢m is created at the electro-weak transition; this implicitly assumes that the dark matter also
is produced at around that time or later. Again, a modification of this assumption would lead to a potential change of
only a few orders of magnitude in our estimates. Under these circumstances our very simple and minimalistic model
is remarkably accurate.

We believe that our proposal has important implications both at the theoretical as well as at the empirical level. At
the theoretical level it provides a novel view that could reconcile Planckian discreteness and Lorentz invariance and
gives possibly valuable insights guiding the quest for a theory of quantum gravity. At the empirical level our analysis
opens a new path for searches of new physical manifestations of the gravitation/quantum interface.

Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢

water

)210�49g/cm3s where ⇢
water

is
the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢2m (yet even for neutron star density
the numbers seem too small to have observational consequences).

3 The mass of the Higgs before the electroweak unification does not enter in our analysis because in the standard picture, at temperatures
above the electroweak scale the Higgs field is assumed to lie unexcited at the bottom of the e↵ective potential. This condition is valid for
all earlier times because in the corresponding regimes the e↵ective mass of the Higgs changes at the same rate as does the temperature
[12].

Discreteness could manifest 
itself in regions of non 

trivial curvature
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A model predicting the observed cosmological constant

Mass is 
born 
here

Assuming that the cosmological constant ⇤ = 0 at the big-bang

then the di↵usion e↵ect generates it during the electro-weak tran-

sition when massive-spinning particles first appear.
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Dark Energy ⇤
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The model is compatible with the constraints imposed by low energy Lorentz invariance
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What effects could be observable after the EW era?

O1 = �1 ⇠
µrµ�R = �1�̇R

V. Alan Kostelecky and 
Neil Russell. Data Tables 
for Lorentz and CPT 
Violation. Rev. Mod. Phys., 
2011. 

Lorentz violating operators in EQFT must be suppressed by the 
scalar curvature. The leading operators dimensionally allowed are:

Constraints from present experiments and observations
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and a Dirac field. Before UV regularization the theory is defined by

L =
1

2
(∂φ)2 −

m2
0

2
φ2 + ψ̄(iγµ∂µ − M0)ψ + g0φψ̄ψ. (1.5)

We make the theory finite by introducing a cut-off on spatial momenta
(in a preferred frame defined by a 4-velocity Wµ). We use a conventional
real-time formalism, so that the cutoff theory is within the framework
of regular quantum theory in 3 space dimensions. The cutoff is imple-
mented as a modification of the free propagators:

i
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, (1.6)

i

p2 − M2
0 + iϵ

→
if̃(|p|/Λ)

p2 − M2
0 + ∆̃(|p|/λ) + iϵ

. (1.7)

Here, the functions f(|p|/Λ) and f̃(|p|/Λ) go to 1 as |p|/Λ → 0, to
reproduce normal low energy behavior, and they go to zero as |p|/Λ →
∞, to provide UV finiteness. The functions ∆ and ∆̃ are inspired by
concrete proposals for modified dispersion relations, and they should go
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Lorentz invariance and quantum gravity: an additional fine-tuning problem?
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Trying to combine standard quantum field theories with gravity leads to a breakdown of the usual
structure of space-time at around the Planck length, 1.6×10−35 m, with possible violations of Lorentz
invariance. Calculations of preferred-frame effects in quantum gravity have further motivated high
precision searches for Lorentz violation. Here, we explain that combining known elementary particle
interactions with a Planck-scale preferred frame gives rise to Lorentz violation at the percent level,
some 20 orders of magnitude higher than earlier estimates, unless the bare parameters of the theory
are unnaturally strongly fine-tuned. Therefore an important task is not just the improvement of
the precision of searches for violations of Lorentz invariance, but also the search for theoretical
mechanisms for automatically preserving Lorentz invariance.

The need for a theory of quantum gravity and a modi-
fied structure of space-time at (or before) the Planck scale
is a consequence of the known and successful theories of
classical general relativity (for gravity) and the standard
model (for all other known interactions). Thus one of
the most important challenges in theoretical physics is
the construction of a quantum theory of gravitation.

Direct investigations of Planck-scale phenomena need
short-wavelength probes with elementary-particle ener-
gies of order the Planck energy EP = (h̄c5/G)1/2 =
1.2 × 1019 GeV, which is much too high to be practica-
ble. But actual tests — e.g., [1, 2, 3] — of a hypothesized
granularity of space-time at the Planck scale are possible
because relativity (embodied mathematically as Lorentz
invariance) gives a unique form for the dispersion relation
between the energy and momentum of a particle,

E =
√

p2c2 + m2c4. (1)

Here c, the speed of light is a universal constant, while
the particle rest mass m depends on the kind of particle.
We will henceforth use units in which c = 1.

Calculations in [4, 5] find preferred-frame effects asso-
ciated with space-time granularity [6] in the two most
popular contenders for a theory of quantum gravity,
which are string theory [9] and loop quantum gravity
[10, 11]. In these scenarios, the preferred frame and the
consequent Lorentz violation occur even though the fun-
damental classical equations of both of the theories are
locally Lorentz invariant. We thus have a quantum in-
spired revival of the nineteenth century idea of the elec-
tromagnetic ether, a background in which propagate light
waves, as well as all other elementary particles and fields.
Specific estimates of modified dispersion relations were
made in these papers from calculations of the propaga-
tion of quantum mechanical waves in the granular space-
time background. At accessible energies, only minute ef-
fects were predicted, of relative order E/EP or (E/EP )2,
when the probe has energy E. For other ways in which

k

p

FIG. 1: Lowest order self-energy graph. Interactions of quan-
tum fields require an unrestricted integral over the momenta
of the virtual particles up to the highest momenta allowed in
the theory.

Lorentz violation might arise, see, for example, [12, 13].
The minuteness of the effects is in accord with every-
day scientific thinking, where we often find that the de-
tails of physical phenomena on one distance scale do not
directly manifest themselves in physics on much larger
scales. Therefore attention has focused on searches for
extremely small violations of the dispersion relation.

However, as we will now explain, the predicted viola-
tions of the dispersion relations are enormously increased
when we include known elementary particle interactions.
In quantum field theories like the standard model, the
propagation of an isolated particle has calculable contri-
butions from Feynman diagrams for particle self-energies,
such as Fig. 1. The dispersion law for a particle is ob-
tained by solving

E2 − p2 − m2 − Π(E,p) = 0. (2)

Here Π is the sum of all self-energy graphs, to which
we have added any (small) Lorentz-violating corrections
calculated in free-field theory as in [4, 5].

We now apply the following reasoning: Without
a cutoff the graphs have divergences from large mo-
menta/short distances. In the Lagrangian defining the
theory, the divergences correspond to terms of dimen-
sion 4 (or less) that obey the symmetries of the micro-
scopic theory. In the textbook situation with Lorentz
invariance, the divergences are removed by renormaliza-
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Raychaudhuri equation is

a2
d

dt

�
a3a0

�
= �4⇡G

3

(⇢+ 3P ) +

⇤(t)

3

, (22)

and the continuity equation derived from (1) is

⇢0rad + 3

a0

a
(⇢rad + Prad) = �⇤

0
(t)

8⇡G
. (23)

Note that equation (23) encodes the diffusion of energy between the dark sector and the energy density of matter (this
is the symmetry reduced form of (1)). The only assumption in the previous equation is that the diffusion process does
not disrupt the homogeneity and isotropy5 of the background matter and geometry configurations to leading order
(perturbations will be considered but they will be small in comparison with average densities). As stated before, we
assume that the relevant channel into which ⇤ decays is massless fields so that ⇢rad = 3Prad (this justifies the subindex
‘rad’ in our notation, ⇢ and P denoting the total energy density and pressure that will have contributions coming
from the Higgs scalar).

Figure 1: Numerical solution of (24) with � = 10

�80, we plot the cosmological constant ⇤ (inserted panel in linear scale), and
the radiation energy density ⇢rad (in log scale) in terms of the number of e-folds log(a). ⇤ behaves effectively as a constant until
about when condition (27) is satisfied and abruptly decays to zero thereafter. The radiation density decays exponentially from
its initial Planckian value until the energy injection from the relaxation of ⇤ starts winning over the expansion. By the end of
inflation radiation density grows back (reheating) to about Planckian density again (the reheating temperature is estimated in
equation (39)).

In such case equations (21) and (22) can be combined to obtain

a00 + 4

a02

a
=

2

3a5
⇤(t), (24)

5 Thermal equilibrium for the radiation is not a necessarily valid. We are used to this to be true in the high energy/density regime of the
primordial universe. However, this is not clearly possible as we approach Planck scales and if we take seriously an extrapolation from
particle physics at those scales. The reason is that the condition for thermal equilibrium � > H on the interaction rate � (where � ⌘ n�
where n ⇠ T 3 is the number density and � the cross section for interactions) cannot be maintained close to Tp = mp because � ⇠ 1/T 2

for high energy processes and thus � ⇠ T . As T would drop dramatically if the initial ⇢0 was in thermal equilibrium, while H ⇠ mp > T ,
all species decouple in the inflationary past and the radiation injection via the decaying ⇤ cannot achieve thermal equilibrium until later
when H eventually trops below T .
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If we take H0/k0 = 1 which boils down to normalizing a = 1 at the moment the most IR mode in the CMB leaves
the horizon we arrive at the final expression for the power spectrum of scalar perturbations (for H0 ⇡ mp) we get

PR ⇡ 9⇡2�

k3�2

✓
1 + 4� log

✓
k

k0

◆◆
. (88)

Using the customary notation where PR ⌘ N2/k3, comparison with CMB observations (see for instance [33]) fixes
the normalization factor N2 to

N2 ⇡ 9⇡2�

�2
⇡ 1.9⇥ 10

�10. (89)

Using that � ⇡ �10

�2 at our energy scale one needs to fix � ⇡ 10

�16 which is remarkably close to the estimate �H
given in (19) based on the natural measure of deviation from conformal invariance put forward in the introduction
expected to control the Brownian diffusion mechanism. Deviation from scale invariance are encoded in the spectral
index of scalar perturbations ns. They are controlled by the Higgs self coupling as it follows from (88). The result to
first order in � is

ns � 1 ⌘ d log(k3PR)

d log k
⇡ 4�+ O


�2

log

✓
kmax

k0

◆�
. (90)

Observations constraint it to

1� ns = 0.04± 0.004, (91)

which implies � ⇡ � 10

�2 which is compatible with the he standard model expected value of � = �(1.3± 0.7)⇥ 10

�2

at these high field values—see [39]. Notice that in our framework the spectral index is itself k dependent. Notice that
the linear approximation used remains consistent inspite of the log(kmax/k0) in the error term as for � = �10

�2 and
kmax = 10

5k0 one has �2
log(kmax/k0) ⇡ 10

�3 which is smaller than the present observational error in 1� ns [43]. In
the same paper the deviations from a constant spectral index are reported to be given by

dns

d log k
= �0.0045± 0.0067. (92)

One can repeat the previous analysis starting from equation (76) and keeping terms up to order �2. With this
improved approximation it is possible to compute the previous quantity and the result is

dns

d log k
= �0.0005 + O(�3

). (93)

The previous is a prediction of our scheme, potentially verifiable in the future if observational data reduce the error
by about 10%.

Tensor modes

So far we focused on the description of a mechanism for the generation of inhomogeneities in scalar modes only.
The question of whether tensor modes are also produced is a very important one in view of future constraints on the
scalar-to-tensor ratio r from CMB observations. In our model fundamental discreteness is the underlying mechanism
for the active generation of the inhomogeneities. As argued in the introduction, see also [25, 26] for further discussion,
such discreteness should primarily affect degrees of freedom breaking scale invariance. In the present case, with
the assumption of the validity of the standard model, the breaking of scale invariance is mediated by the Higgs
scalar mass. Gravitons being massless should not interact with the Planckian discrete structure according to the
dimensional analysis type of rational behind our model. More precisely, as it is well known, an infinitesimal conformal
transformation �gab = �!gab—here regarded as a field variation—leads to the trace-part of Einsteins equations
(R � 8⇡GT ) = 0. This clearly implies that the trace part the field equations encode conformal-invariant-breaking
interactions that mediate the stochastic production of inhomogeneities in our model. Thus the Planckian granularity—
imposed by the consistency with the low energy Lorentz invariance [26, 30]—cannot generate tensor modes whose
sources are encoded in the tensor traceless components of the energy momentum tensor. Therefore, the expected
value of the tensor-to-scalar ratio predicted by our model is basically r ⇡ 0.
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at these high field values—see [39]. Notice that in our framework the spectral index is itself k dependent. Notice that
the linear approximation used remains consistent inspite of the log(kmax/k0) in the error term as for � = �10

�2 and
kmax = 10

5k0 one has �2
log(kmax/k0) ⇡ 10

�3 which is smaller than the present observational error in 1� ns [43]. In
the same paper the deviations from a constant spectral index are reported to be given by

dns

d log k
= �0.0045± 0.0067. (92)

One can repeat the previous analysis starting from equation (76) and keeping terms up to order �2. With this
improved approximation it is possible to compute the previous quantity and the result is

dns

d log k
= �0.0005 + O(�3

). (93)

The previous is a prediction of our scheme, potentially verifiable in the future if observational data reduce the error
by about 10%.

Tensor modes

So far we focused on the description of a mechanism for the generation of inhomogeneities in scalar modes only.
The question of whether tensor modes are also produced is a very important one in view of future constraints on the
scalar-to-tensor ratio r from CMB observations. In our model fundamental discreteness is the underlying mechanism
for the active generation of the inhomogeneities. As argued in the introduction, see also [25, 26] for further discussion,
such discreteness should primarily affect degrees of freedom breaking scale invariance. In the present case, with
the assumption of the validity of the standard model, the breaking of scale invariance is mediated by the Higgs
scalar mass. Gravitons being massless should not interact with the Planckian discrete structure according to the
dimensional analysis type of rational behind our model. More precisely, as it is well known, an infinitesimal conformal
transformation �gab = �!gab—here regarded as a field variation—leads to the trace-part of Einsteins equations
(R � 8⇡GT ) = 0. This clearly implies that the trace part the field equations encode conformal-invariant-breaking
interactions that mediate the stochastic production of inhomogeneities in our model. Thus the Planckian granularity—
imposed by the consistency with the low energy Lorentz invariance [26, 30]—cannot generate tensor modes whose
sources are encoded in the tensor traceless components of the energy momentum tensor. Therefore, the expected
value of the tensor-to-scalar ratio predicted by our model is basically r ⇡ 0.
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the constraints on 1-parameter extensions to the base-⇤CDM
model. As in 2013 and 2015 we find no strong evidence in favour
of any of these extensions, using either the Planck data alone or
Planck combined with BAO. We also find that constraints on the
base-⇤CDM parameters are remarkably robust to a variety of
possible extensions to the ⇤CDM model, as shown in Table 5:
many of these parameters are constrained to high precision in a
nearly model-independent way.

We now discuss some specific extensions in more detail.

7.2. Early Universe

CMB observations probe the state of the universe at the earliest
time that is directly observable with the electromagnetic spec-
trum. The physics of the anisotropies is well understood, and
can be predicted accurately with linear theory given a set of ini-
tial conditions. Planck observations can therefore be used to give
powerful constraints on the initial conditions, i.e., the perturba-
tions present at the start of the hot big bang. We discuss in turn
constraints on the scalar and tensor perturbations, allowing for
deviations from a purely power-law scalar spectrum, and dis-
cuss the interpretation within the context of the most popular
inflationary models.

7.2.1. Primordial scalar power spectrum

The Planck data are consistent with purely adiabatic primordial
scalar curvature perturbations, with no evidence for isocurva-
ture modes (see Planck Collaboration X 2020), as predicted by
the simplest single-field inflation models. The primordial power
spectrum is then just a function of scale. In this section, we char-
acterize the scalar fluctuation spectrum in terms of a spectral in-
dex ns and its first two derivatives with respect to ln k (the “run-
ning” and “running of the running” of the spectral index):

PR(k) = As

 

k
k0

!n(k)

, (38a)

n(k) = ns � 1 + (1/2)(dns/d ln k) ln(k/k0)
+(1/6)(d2ns/d ln k2)(ln(k/k0))2. (38b)

In the absence of any running of the spectral index, our con-
straint on ns for the base-⇤CDM model (Eq. 21) shows an 8� tilt
away from scale invariance. Adding BAO tightens the constraint
to nearly 9�:

ns = 0.9665 ± 0.0038 (68 %, TT,TE,EE+lowE+lensing
+BAO). (39)

The need for a red-tilted scalar spectrum is quite robust to exten-
sions to base ⇤CDM, as summarized in Table 5. In all cases, we
find ns < 1 at � 3�.

Adding running of the spectral index, dns/d ln k, as a single
additional parameter to base ⇤CDM, we find

dns/d ln k = �0.0045 ± 0.0067,
ns = 0.9641 ± 0.0044,

ns,0.002 = 0.979 ± 0.021,
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dns/d ln k = �0.0041 ± 0.0067,
ns = 0.9659 ± 0.0040,
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where ns is defined by default at k = 0.05 Mpc�1 and ns,0.002
is the corresponding tilt at k = 0.002 Mpc�1. The slight pref-
erence for negative running is driven by the mild tension be-
tween the CMB temperature power spectrum at high and low
multipoles discussed in Sect. 6.1, with negative running allow-
ing higher large-scale tilt, giving less power on large scales (see
Fig. 27 and the extensive discussions in PCP13 and PCP15). The
measurements of the tilt and running around the pivot scale of
k ' 0.05 Mpc�1 are robust to allowing even more freedom for
the spectrum to vary with scale. For example, allowing for run-
ning of the running we find

d2ns/d ln k2 = 0.009 ± 0.012,
dns/d ln k = 0.0011 ± 0.0099,

ns = 0.9647 ± 0.0043,
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+lowE+lensing
+BAO.

(41)

Here the slight preference for negative running has almost dis-
appeared, and there is instead a slight preference for lower large-
scale power by having positive running of the running, leaving
a near power-law solution on small scales. There is no evidence
for any significant deviation from a power law on small scales.
This is consistent with the simplest slow-roll inflation models
where the running (and higher derivatives of the spectral index)
are higher order in slow-roll (so that dns/d ln k = O(|ns � 1|2),
d2ns/d ln k2 = O(|ns � 1|3)) and all deviations from a constant
spectral index can be neglected at Planck sensitivity.

An analysis of more general parameterizations of the
primordial power spectrum are presented in section 6 of
Planck Collaboration X (2020), including various specific phys-
ically motivated models, as well as general parametric recon-
structions. Models with many more free parameters can pro-
vide better fits to the data, but none are favoured; in all cases
the small-scale spectrum is found to be consistent with a power
law over the range 0.008 Mpc�1 <⇠ k <⇠ 0.1 Mpc�1, with low-
significance hints of larger-scale features corresponding to the
dip in the low-` temperature power spectrum. The introduction
of the additional degrees of freedom in the initial power spec-
trum had no significant impact on the determination of the main
cosmological parameters for the parameterizations considered.

7.2.2. Tensor modes

Primordial gravitational waves32, or tensor modes, source a dis-
tinctive curl-like (“B-mode”) pattern in the CMB polarization
and add additional power to the large-scale temperature power
spectrum (Kamionkowski et al. 1997; Seljak & Zaldarriaga
1997). Planck’s B-mode measurement is noise and systematics
limited and provides a relative weak constraint on the tensor-
to-scalar ratio r0.002 < 0.41 (95 % CL, Planck Collaboration V
2020). As with the 2013 and 2015 releases, the strongest con-
straint on tensor modes from the Planck data alone comes from
the TT spectrum at ` <⇠ 100.

The precision of the Planck temperature constraint remains
limited by cosmic variance from the scalar component and is
model dependent. The tightest and least model-dependent con-
straints on the tensor amplitude come from the Ade et al. (2018,
BK15) analysis of the BICEP2/Keck field, in combination with
Planck and WMAP maps to remove polarized Galactic dust
emission. The BK15 observations measure the B-mode polar-
ization power spectrum in nine bins at ` <⇠ 300, with the ten-
sor amplitude information coming mainly from scales ` ' 100,

32The polarization anisotropies generated by gravitational waves was
discussed first by Polnarev (1985).
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If we take H0/k0 = 1 which boils down to normalizing a = 1 at the moment the most IR mode in the CMB leaves
the horizon we arrive at the final expression for the power spectrum of scalar perturbations (for H0 ⇡ mp) we get
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Using the customary notation where PR ⌘ N2/k3, comparison with CMB observations (see for instance [33]) fixes
the normalization factor N2 to
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Using that � ⇡ �10

�2 at our energy scale one needs to fix � ⇡ 10

�16 which is remarkably close to the estimate �H
given in (19) based on the natural measure of deviation from conformal invariance put forward in the introduction
expected to control the Brownian diffusion mechanism. Deviation from scale invariance are encoded in the spectral
index of scalar perturbations ns. They are controlled by the Higgs self coupling as it follows from (88). The result to
first order in � is
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at these high field values—see [39]. Notice that in our framework the spectral index is itself k dependent. Notice that
the linear approximation used remains consistent inspite of the log(kmax/k0) in the error term as for � = �10

�2 and
kmax = 10

5k0 one has �2
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�3 which is smaller than the present observational error in 1� ns [43]. In
the same paper the deviations from a constant spectral index are reported to be given by
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One can repeat the previous analysis starting from equation (76) and keeping terms up to order �2. With this
improved approximation it is possible to compute the previous quantity and the result is
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d log k
= �0.0005 + O(�3

). (93)

The previous is a prediction of our scheme, potentially verifiable in the future if observational data reduce the error
by about 10%.

Tensor modes

So far we focused on the description of a mechanism for the generation of inhomogeneities in scalar modes only.
The question of whether tensor modes are also produced is a very important one in view of future constraints on the
scalar-to-tensor ratio r from CMB observations. In our model fundamental discreteness is the underlying mechanism
for the active generation of the inhomogeneities. As argued in the introduction, see also [25, 26] for further discussion,
such discreteness should primarily affect degrees of freedom breaking scale invariance. In the present case, with
the assumption of the validity of the standard model, the breaking of scale invariance is mediated by the Higgs
scalar mass. Gravitons being massless should not interact with the Planckian discrete structure according to the
dimensional analysis type of rational behind our model. More precisely, as it is well known, an infinitesimal conformal
transformation �gab = �!gab—here regarded as a field variation—leads to the trace-part of Einsteins equations
(R � 8⇡GT ) = 0. This clearly implies that the trace part the field equations encode conformal-invariant-breaking
interactions that mediate the stochastic production of inhomogeneities in our model. Thus the Planckian granularity—
imposed by the consistency with the low energy Lorentz invariance [26, 30]—cannot generate tensor modes whose
sources are encoded in the tensor traceless components of the energy momentum tensor. Therefore, the expected
value of the tensor-to-scalar ratio predicted by our model is basically r ⇡ 0.
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The previous is a prediction of our scheme, potentially verifiable in the future if observational data reduce the error
by about 10%.

Tensor modes

So far we focused on the description of a mechanism for the generation of inhomogeneities in scalar modes only.
The question of whether tensor modes are also produced is a very important one in view of future constraints on the
scalar-to-tensor ratio r from CMB observations. In our model fundamental discreteness is the underlying mechanism
for the active generation of the inhomogeneities. As argued in the introduction, see also [25, 26] for further discussion,
such discreteness should primarily affect degrees of freedom breaking scale invariance. In the present case, with
the assumption of the validity of the standard model, the breaking of scale invariance is mediated by the Higgs
scalar mass. Gravitons being massless should not interact with the Planckian discrete structure according to the
dimensional analysis type of rational behind our model. More precisely, as it is well known, an infinitesimal conformal
transformation �gab = �!gab—here regarded as a field variation—leads to the trace-part of Einsteins equations
(R � 8⇡GT ) = 0. This clearly implies that the trace part the field equations encode conformal-invariant-breaking
interactions that mediate the stochastic production of inhomogeneities in our model. Thus the Planckian granularity—
imposed by the consistency with the low energy Lorentz invariance [26, 30]—cannot generate tensor modes whose
sources are encoded in the tensor traceless components of the energy momentum tensor. Therefore, the expected
value of the tensor-to-scalar ratio predicted by our model is basically r ⇡ 0.

Running of the spectral index Nearly vanishing tensor to scalar ratio

r ⇡ 0

Perturbations in the slow-roll regime

To illustrate this, let us consider a model of inflation with large field values (model
of type A), for instance, with a power law potential (8.68). The expressions (8.69)
and (8.235) allow us to establish that

r =
f

2

(
n

n + 2

)
(1− nS). (8.257)

Inverting (8.70) and (8.69) for ε, we obtain

r = f
n

4(N + n/4)
, 1− nS =

n + 2

2(N + n/4)
. (8.258)

For a given model, for example, n = 4, the observable quantities r and nS − 1 depend
on the number of e-folds. Figure 8.11 illustrates the position of one of these models in
the (nS − 1, r)-plane. As N is increased the model gets closer and closer to the point
(nS −1, r) = (0, 0). This figure also summarizes the constraints on the two parameters
obtained from WMAP data.
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Fig. 8.11 Constraints on single-field chaotic inflationary models with potentials of the form
ϕn with n = 2 (dashed), n = 4 (solid) and on Nflation with ϕ2 potential (dotted). HZ is

the prediction for a strictly scale invariant power spectrum. The predictions for N = 50 and
N = 60 e-folds have been plotted. The ϕ4 models are excluded at 95% CL. From Ref. [29].

Given observational constraints in this plane, the viability of a model depends on
the number of e-folds. The previous example shows that predictions from a model of
chaotic inflation depend crucially on N . The latest analysis of WMAP [29] concluded
that a single-field model with V = λϕ4/4 is far from the 95% confidence level (CL)
region for both N = 50 and N = 60. A massive free-field model is out of the 68% CL
region for N = 50 and at the boundary of this region for N = 60 while being inside
the 95% CL region. For a power-law inflation model, R = 1/p and 1 − nS = 2/p so
that p < 60 is excluded at more than 99% CL.

Our model 




