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Motivation
The effective dynamics

An example

Difficulty
The way out

The problem

Determining the evolution of quantum system on the genuine
quantum level: solving partial differential equation(s) or large
set of coupled ordinary differential equations

iℏ∂t |Ψ⟩ = Ĥ|Ψ⟩
Example (Loop Quantum Cosmology):

Isotropic LQC: 105 points in v (equations).
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Anisotropic homogeneous LQC 109 equations. Just 3D

More variables: impractical!!
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However ...

Often interest in specific systems: behaving classically (small
variances)

Restriction to semiclassical states very useful.
Usually just a couple of DOF (specific observables) is of
interest.

No need to track fine details of the wave function shape.
Desired: a method of casting the quantum evolution that:

Involves just a couple of relevant degrees of freedom.
Allows for control of the effects of neglected DOF with
arbitrary precision.

The solution: semiclassical effective dynamics based on
Hamburger moments.
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Semiclassical effective dynamics

In quantum optics known for a long time, for cosmology
rediscovered by Bojowald, Skirzewski 2006.
General construction: define a set of observables that

Encode all the information about the quantum state.
Few of them contain relevant information (expectation values
and variances of interesting observables) while
the rest can be treated as quantum corrections.
Set of equations of motion represents the quantum dynamics
fully.

Closeness and completeness requires a Poisson algebra of
observables.
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Hamburger moments

Example: a 1D quantum system with Heisenberg algebra
{x̂ , p̂, I} and the hamiltonian Ĥ

[x̂ , p̂] = iℏI iℏ∂tΨ(x) = [ĤΨ](x).
Observables: analogs of statistical moments

Gmn =′′ ⟨: (x̂ − ⟨x̂⟩I)m(p̂ − ⟨p̂⟩I)n :⟩′′

:=
∑m,n

i ,j=0

(m
i

)(n
j

)
(−1)(m+n)−(i+j)⟨: x̂ i p̂j :⟩⟨x̂⟩m−i ⟨p̂⟩n−j

Poisson algebra structure uniquely defined by requirement

{⟨: x̂mp̂n :⟩, ⟨: x̂m′
p̂n

′
:⟩} = (iℏ)−1⟨[: x̂mp̂n :, : x̂m

′
p̂n

′
:]⟩

{G ab,G cd} polynomial and at most 2nd order in G
couples Gmn of order (m+n) up to a+b+c+d-1.
In practice: found automatically by metalanguage procedures

Semiclassicality: all the Fmn := ⟨: x̂m′
p̂n

′
:⟩ must be finite.

In practice:
∑

m,n∈N |Gmn| < ∞.
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The dynamics

Taylor-like expansion of the Hamiltonian
H(x̂ , p̂) = H(⟨x̂⟩I+ (x̂ − ⟨x̂⟩I), ⟨p̂⟩I+ (p̂ − ⟨p̂⟩I))

In Weyl ordering (x := ⟨x̂⟩, p := ⟨p̂⟩):

H(x , p, {Gmn}) := ⟨Ĥ(x̂ , p̂)⟩ =
∑

mn
1

m!n!
∂m+n

∂mx∂npH(x , p)Gmn

In practice the ordering of operators in Fmn is adapted to the
factor ordering in Ĥ.

Any observable can be decomposed the same way.
The equations of motion: Hamilton-Jacobi equations for
Gmn, x , p,

Ġmn = {H({Gmn}),Gmn}
Countable set of equations.
Polynomial and at most quadratic in Gmn for m + n ≥ 2.
Nonlinear!
Can be cut-off at arbitrary order m + n.
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Loop quantized system (LQC)

LQC isotropic geometry example
Classical variables: volume V and momentum b

{V , b} = 4πγ
√
∆G = a ∝ ℏ1/2

γ - Barbero-Immirzi par; ∆ - LQC area gap
Generators: volume V and holonomy component N = e ib

(promoted to operators)
Hamburger moments G̃ ab algebra complex!!

Basic observables: V , c = (N + N−1)/2, s = (N − N−1)/(2i)

{V , c} = −as, {V , s} = ac, {s, c} = 0

Absolute moments: F abc := ⟨: V̂ aŝb ĉc :⟩ → G abc

Necessary step of tranformation G abc ↔ G̃ ab

Performed via metalanguage
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Simple FRLW inflationary universe

The model: flat isotropic FRLW universe with matter:
Dust providing the internal clock (negligible mass to not affect
the dynamics).
Massive scalar field: quadratic inflationary potential.

The metric:
ds2 = −N2(t)dt2 + a2(t)oq oq = dx2 + dy2 + dz2

Degrees of freedom:
geometry: canonical pair (V = a3, πV ) s.t. {V , πV } = 1,
matter: canonical pair {ϕ, pϕ},
time: dust field potential T .

The dynamics generated by the (deparametrized) Hamiltonian

H(V , πV , ϕ, pϕ) = −6πGVπ2
V +

p2
ϕ

2V + m2

2 Vϕ2

Polynomial with exception of 1/V term!
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The quantization

Quantization: Wheeler-deWitt one (following the
geometrodynamics program)

Both dynamical DOF quantized using Schrödinger
representation:

variables (V , πV , ϕ, pϕ) promoted to operators,
Hilbert space: H = L2(R, dV )⊗ L2(R,dϕ).

The quantum dynamics generated by the Schrödinger equation

iℏ∂TΨT (V , ϕ) =
[
−6πG π̂V V̂ π̂V + 1

2 V̂
−1p̂2

ϕ + m2

2 V̂ ϕ̂2
]
ΨT (V , ϕ)

The semiclassical description:
expectation values V , πV , ϕ, pϕ,
the moments

G abcd := ⟨: (V̂ − ⟨V̂ ⟩I)a(π̂V − ⟨π̂V ⟩I)b :

: (ϕ̂− ⟨ϕ̂⟩I)c(p̂ϕ − ⟨p̂ϕ⟩I)d :⟩
where : x̂ p̂ ::= (1/2)(x̂ p̂ + p̂x̂).
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Framework for numerical analysis
D. Brizuela, TP, 2021

The system:
Generated sets of EOM for cutoffs n from 2 to 6.

The respective numbers of EOM: 14, 34, 69, 125, 209.
Initial data: evaluated moments for Gaussian (and couple
other) shapes in basic variables.
Inflaton mass: ∼ 10−6mPl.
Initial data specified in (high density) kinetic dominated region
before inflation.
Since V is the infrared regulator we "densitized" the moments

G abcd → Qabcd := G abcd/V a+d , pϕ → σ := pϕ/V

The evolution range: well past inflation end.
The data processing:

Compared the trajectories of expectation values and higher
moments for various order of cutoff.
Convergence: determined convergence of the trajectories as n
increases.
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Regulator removal limit

Infrared regulator:
Action/Hamiltonian/momentum variables defined by
integrating densities over (infinite) Cauchy slice.
For finiteness integration restricted to finite comoving region.
Crucial requirement: model has to admit nontrivial limit as
chosen region is expanded to encompass whole slice!
Addressed only partially: Corichi, Montoya, Singh, ...

Crucial properties of EOM:
At 2nd order cutoff V decouples. System manifestly invariant
wrt. fiducial cell choice.
For higher order V appears only through terms (ℏ/V )n.

Consequences:
System admits well defined limit V → ∞.
Taking that limit is mathematically equivalent to setting
ℏ → 0: system behaves like an ensemble of statistical ones.
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Densitized central moments
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Rysunek: Evolution of sample of the moments for order 6.
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Hubble parameter corrections
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Rysunek: Quantum corrections to Hr .
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Hubble parameter corrections (2)
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Rysunek: Quantum corrections to Hr : late reheating.
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Distinguished dynamical results

Significant dispersion in volume
Moments Qn000 start rapidly increasing mid-inflation,
becoming constant upon inflation end.
Approximate analysis of 2nd order EOM shows that transition
point is distinguished by a certain function of expectation
values.

Counterintuitive behavior past inflation (classicalization)
After exiting the inflation the quantum corrections to locally
measurable observables decrease as the cutoff order increases!

Holds for all evolved data, though variances in conjugate
variables differ by at most 1 level of magnitude.
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General insights

General observations inferred:
Method robustness: described semiclassical framework is a
technically viable and powerful tool of controlling the
dynamical evolution of quantum systems up to high order (of
quantum corrections).
Consistency check: it allows to probe the models consistency in
the infrared regulator removal limit in a precise and robust
manner.
Surprises: in certain domains the 1st subleading correction can
actually be least accurate and including higher order
corrections may prove necessary to accurately describe systems
past 0th order approximations.

Point to remember:
What is the real result is the limit to which the trajectories
converge with increasing order!
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