On consistent gauge-fixing conditions in polymerized gravitational systems Phys. Rev. D 105, 066023

Stefan Andreas Weigl(FAU)

joint work with Kristina Giesel(FAU), Bao-Fei Li(ZUT), Parampreet Singh(LSU),

21.07.2022, LOOPS 22 Lyon

Introduction

- Get to the physical sector by
 - 1. constructing observables: relational formalism¹ ²
 - 2. or gauge-fixing $G_J = 0$
- Consider effective theories by³

Polymerization:
$$A_a^j\mapsto h_a^j\Big(A_a^j;\lambda_a^j\Big)$$
 e.g. $\frac{\sin(\lambda A)}{\lambda}$

Question: How to polymerize lapse and shift in a given model?

$$N_{\rm class} = 1, N_{\rm class}^a = \frac{b}{\gamma} \quad \mapsto {}^{4} \quad N = 1, N^a = \frac{\sin(\lambda b)}{\lambda \gamma}$$

 \Rightarrow Check if stability equations are solved: $\overset{ullet}{G}_{J}\overset{!}{pprox}0$

¹Rovelli, What is observable in classical and quantum gravity?

²Dittrich, Partial and complete observables for canonical general relativity

³Ashtekar&Singh, Loop Quantum Cosmology: A Status Report

⁴Santacruz&Kelly&Wilson-Ewing, *Black hole collapse and bounce in effective loop quantum gravity*

Lemma 1: A simple model

Given a system where⁵

- 1. all G_J depend only on gravitational d.o.f.,
- 2. only the connection is polymerized and h_a^j do not depend on partial derivatives,
- 3. for at least one gauge-fixing condition we have $\frac{\partial G_I}{\partial t} \not\approx 0$
 - ⇒ Gauge-fixing and Polymerization **do not** commute!

⁵Corichi&Singh, Loop quantization of the Schwarzschild interior revisited

Lemma 1: A simple model

Given a system where⁵

- 1. all G_J depend only on gravitational d.o.f.,
- 2. only the connection is polymerized and h_a^j do not depend on partial derivatives,
- 3. for at least one gauge-fixing condition we have $\frac{\partial G_I}{\partial t} \not\approx 0$
 - \implies Gauge-fixing and Polymerization **do not** commute!

But: Replace third assumption by

3. for all G_J we have $\frac{\partial G_J}{\partial t} \approx 0$ and each of them only depend on one canonical pair

⁵Corichi&Singh, Loop quantization of the Schwarzschild interior revisited

Lemma 1: A simple model

Given a system where⁵

- 1. all G_J depend only on gravitational d.o.f.,
- 2. only the connection is polymerized and h_a^j do not depend on partial derivatives,
- 3. for at least one gauge-fixing condition we have $\frac{\partial G_I}{\partial t} \not\approx 0$
 - \implies Gauge-fixing and Polymerization **do not** commute!

But: Replace third assumption by

3. for all G_J we have $\frac{\partial G_J}{\partial t} \approx 0$ and each of them only depend on one canonical pair

or

- temporal GF cond. only depend on matter d.o.f. and all other depend on only one canonical pair
 - ⇒ Gauge-fixing and Polymerization **do** commute!

⁵Corichi&Singh, Loop quantization of the Schwarzschild interior revisited

Stability Equations

Why is this the case?

$$\overset{\bullet}{G}_{J} \approx \int N\{G_{J}, C\} + N^{a}\{G_{J}, C_{a}\} + \frac{\partial G_{J}}{\partial t}$$

$$= \int N\left(\mathcal{F}_{J,0}^{A_{1}} \partial h_{1} + \mathcal{F}_{J,0}^{A_{2}} \partial h_{2} + \ldots\right) + N^{a}\left(\mathcal{F}_{J,a}^{A_{1}} \partial h_{1} + \ldots\right) + \frac{\partial G_{J}}{\partial t}$$

where

$$\mathcal{F}_{J,0}^{A_1} = \int d^3z \, \frac{\delta G_J}{\delta h_1(z)} \frac{\delta C(y)}{\delta E^1(z)} - \frac{\delta C(y)}{\delta h_1(z)} \frac{\delta G_J}{\delta E^1(z)}$$

- Red marked terms are equal to the polymerized classical terms
- non-temporal GF: need to factor out ∂h
- temporal GF: No ∂h allowed \Rightarrow non-polymerized variables

Lemma 2: Temporal Gauge-Fixing is key

Given a system:

- 1. we have at least one temporal GF condition $\frac{\partial G_I}{\partial t} \not\approx 0$,
- 2. which depends further on at most one canonical pair (Q^0, P_0) .
- 3. Polymerization is such that (no partial derivatives)

$$Q^0 \mapsto h_{Q^0}(Q^0; \lambda_{Q^0}), \qquad P_0 \mapsto h_{P_0}(P_0; \lambda_{P_0})$$

and that
$$\int d^3z \Big(\frac{\delta h_{Q^0}(z')}{\delta Q^0(z)}\Big) \Big(\frac{\delta h_{P_0}(z'')}{\delta P_0(z)}\Big) \not\approx \delta^{(3)}(z',z'')$$

⇒ Gauge-fixing and Polymerization **do not** commute!

Note: This result holds for arbitrary polymerizations of the other canonical variables

Consequences

Given an effective system

- directly check if polymerized classical solutions of $N_{\rm class}, N_{\rm class}^a$ solve stability equations $\overset{ullet}{G}_J pprox 0$
- if this is **not** the case,
 - 1. solutions N, N^a have non-standard polymerization
 - reverse-engineering dynamical consistent GF conditions: non-stand. polymerization and/or wrong classical limit
- ⇒ Result: Physical Hamiltonian **changes** due to
 - 1. polymerization ambiguities
 - 2. different classical limit

Conclusion

Summary

- Analyzed whether GF and Polymerization commute
 For most systems this is **not** the case
- But for some systems we can proof that this is the case
- Pay attention when polymerizing gauge fixed Hamiltonians (to not break dynamical consistency)

Outlook

- Operators of diffeomorphism constraints do not exist in full theory \Longrightarrow work with $Q^{xx}C_xC_x$ and $\{G, \{G, Q^{xx}C_xC_x\}\}$
- Did not consider inverse triad corrections
- Extend analysis to quantized systems

Thank you for your attention!