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BMS like structure of non-expanding horizons

On the non-expanding horizons by appropriate gauge selection, we introduce a
structure similar to the BMS structure for null scri.

The 1-dimensional extension of the BMS group

The symmetry of the structure is isomorphioc to a 1-dimensional extension of
the BMS group.

Application: gravitational radiation through
settling down horizons

The settling down horizon is described by a perturbation of a non-expanding horizon.
The generators of the very BMS like symmetry are used to define charges and fluxes.



Non-expanding horizons

The idea:

Killing horizons to the zeroth order, null surfaces that have relevant properties
of the black hole / cosmological horizons.

Ashtekar, Beetle, Dreyer, Fairhurst, Krishnan, JL, Wisniewski - 2000

Ashtekar, Beetle, JL - 2001 4 dim
Korzynski, JL, Pawtowski - 2005 n dim

Mechanics

Ashtekar, Beetle, JL - 2002 4 dim

Geometry, DOF b wtowski - 2004 n dim



Non-expanding horizons equations

Extremal horizons

If non-expanding horizon is also Killing horizon to the first order and it is extremal,
then it satisfies the constraint:

1 (n)

(”)V(AwB) +wAwB — 5

1
RAB _I_EAQAB =0

Ashtekar, Beetle, JL - 2001
JL, Pawlowski - 2004

Exact solutions constructed from extremal horizons
Pawlowski, JL, Jezierski - 2005

Today the equation is called Near Horizon Geometry equation
Kunduri, J. Lucietti 2009



4d spacetime and NHG solutions for genus =0

S =955
- — _extremal Kerr extremal Kerr
axial — JAB, WA = gin , WA
symmetry
A=0 JL, Pawftowski 2002,
generalized to the Einstein-Maxwell case
uniqueness! no more solutions!
generalized to the Einstein-Yang-Mills case
and somehow to the A ;fé () case Kunduri, J. Lucietti 2009
Buk, JL 2022
no axial

symmetry — ? only partial results known:

(MViawp =0 = K=A>0, wa=0 Chrusciel, Reall, Tod 2005

(non-rotating)

the linearized equation about axisymmetric solution admits Chrusciel, Szybka,
only axisymmetric solutions - partly numeric Tod 2017
Applications to filing gaps in the BH uniqueness theorems Chrusciel, Costa,

10 Heusler 2012



NHG solutions for genus > 0

1
S, JAB,wWA (Q)V(Aw3)+wAwB+§(A—K)gAB:O
K - the Gauss curvature A - the cosmological constant

9 Dobkowski-Rytko, Kaminski,
XE( S) <0 = K=AZO0, wya = 0 JL, Szereszewski 2018

(genus > 0)

Embeddable in extremal cases A — L of:
QN2
2IM A dr? 2dzdz
—(—1 7“2—)dt2 | 2]\2 = - r? Zl Z_
'3 r 3 1 r2 s (1 — 522)?
B T 3 2

this is really minus :
compactified by suitable

subgroup of isometries
11



Extremal Killing horizon to the 2nd order:
Uniqueness of the extremal Kerr horizon

Suppose S = SQ and gAap,WA, SAB Is axisymmetric and A=0

Then, the solution of the first and the second equation is unique, modulo the
obvious rescaling

gAB — agap, Sap—bSap, a,b= const

It corresponds to the horizon in the extremal Kerr spacetime

For every solution JgAB,WA, SAB the horizon H, dab, Va
iIs embeddable in the extremal Kerr spacetime of the corresponding horizon area.

Kolanowski, Lewandowski, Szereszewski 2019
Lewandowski, Pawfowski 2019 Lucietti, Li 2016
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The Petrov type D equation

Non-extremal Killing horizon to the 2nd order satisfies

2 3
<~
The spacetime Weyl tensor of the
Petrov type D at the horizon

W=

Therefore we call it: the Petrov type D equation.
Actually, this equation is is a generalization of the extremity (NHG) equation

This equation knows the secrets of the BH uniqueness theorems:
the spherical topology, the rigidity, no-hair

JL, Pawtowski, 2002 Dobkowski-Rytko, Pawtowski, JL 2018

Szereszewski JL 2018
13



NEH of the Hopf bundle structure

JL, Ossowski 2019, 2021, 2022

Embeddable in the NUT type spacetimes - due to them we have learned a lot
about the global structure, the Misner extension.

14



Conclusion: investigating the non-expanding horizons
we can learn a lot about about bh spacetimes and other
exact solutions to Einsteins equations.

Today we will apply the NEHs to the radiation.

15
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such that Dq — (0

A neet Lemma:
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Rotation 1-form potential

The rotation 1-form potential W

> Dal! =l
V' = f¢ w' =w+dinf
qa D KT Surface gravity K
Kk = *w,
(“D ¥ =kt

< > we can make:
k' =0

In this talk topology is trivial: A\ = A X IR
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Embedded non-expanding horizons in 4d

A:SQXR

the condition:
P Dawp =0
determines / upto

¢ =al’, a = const

This abiguity will imply the
extension of the BMS group
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I
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O

A =5 xR Universal structure |4 ]
. BN o / )
< / amPIQU|ty ........ > 5 - ()42q
.« a constant
1 o) o o/ CL%..
1= 71 o= e Y
V. o o
. .
pull béék of [q, f] Is the equivalence class
the round the BMS like structure

sphere metric

D

ﬁ"
|

3
g + E x; T ]
=1

for real constants o and «;, with

3
in @ cos ¢, sin #sin @, cos and  — af i) =—1
(sin @ cos ¢, sin @ sin ¢, cos ) anc a5+ Y (ay)° = -1,
i=1
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>
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The symmetry generators
A = SQ X R
((9, L, U) — (ZEA, U) d = kv, dylations

k = const

S = Sav super translations

T 328(9790)

- JAB
. | — O rotations
A Q—CO@ R=c¢ X pda >g=x(9,so)
Ay = —2x

B =q ¢ BaA boosts

N O
|
dQJ

O

@)
dAB

74



The symmetry generators

A = SQ X R
(6, 0,0) = (z*, )

-l

UV = CcOonst

v,
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A = SQ X R
((9, L, U) — (:CA, U) d = kv, dylations
< N k = const
/A
y S = 88?) super translations
T £= 0y s = s(0, p)
°cAB 9
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The symmetry generators

A = SQ X R
((9, L, U) — (:CA, U) d = kv, dylations
< N k = const
/A
y S = 88?) super translations
T £= 0y s = s(0, p)
°cAB
v = const R=¢ Xx,B0a _
X = x(0, )
Ay = —2x
B — q ¢’BaA_|— U¢&U o S
¢ = @0, ¢)
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Ambiguities In the Lorenz transformations
A = SQ X R
(0.0, = v+ f(0,9) = ('4,0)

>

Le=a,

>
S

dAB
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Ambiguities In the Lorenz transformations

A = SQ X R
(6, 0,0 =v+ f(8,0) = (z'*,0) k'O,

SOy

| 0=0,
N I

5AB¢7BQ/4 -+ ’U/¢8U/

82



Comparison with BMS

§*=d*+ 8"+ R*+ B*
."

< 4 »
- dilation ' rotation boost
additional generaftor super translation g 4
surface gravity ' :

V.o

BMS generators
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Comparison with BMS

§*=d*+ 8"+ R*+ B*
."

< 4 N

- dilation ' rotation boost
additional generaftor super translation g 4
surface gravity ' :

‘.o

S BMS generators
Example: a horizon in the Kerr

spacetime:

That is why we accept that additional to BMS symmetry
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Spacetime extension important for the charges

symmetry of the horizon

S

4

>
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f/ X/

>
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symmetry of the horizon spacetime .extension
< Wy Xja =¢§
I 3
g/' X/ (»CXgaa,)ga = (
qa D gT
} U The Newman-Unti coordinates
YA g vV = COH%Y
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A | " N N ~
X = (vfi+ f2)0y + HO4 —rf10, —rX"0p + rX*04 +r°X"0, .
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5 Xa e
f/' X/ (L:Xgaa)ga =0
q9 D gT
} U The Newman-Unti coordinates
} V= com%Y




Spacetime extension important for the charges

A .
— (ofs+ )0, + H'On - 110, - rX°0, + rX *04+r2X Oy -

S T U S
f/' X/ (L:Xgaa)ga =0
q9 D gT | ' '
v The Né.wmagn-Ur.!ii coordinates
A v = con% } Lo
NS Lo
/ \ a:rbi’;ra;y
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

dga,b (/\ )
dA

, )‘2 (12.(}(1,1)(/\)

A=0 A 2 d)\?
2

A
—. oga,b + A 1,"(1,1) + ? 2}"(1,1) 2 akEE

.(]a,b()\) - o.(]a,b + A I)\:() + ...
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

d.(/ ab (/\)
dA

1 /\2 (12 .(/(1,1)(/\)

=0 + 5 e
A\,
- O.(/u,b + A 1,"(1,1) + ? Zh'u,b + ...

.(/u,b(/\) - O.(Iu,b + A |)\:() + ...

and a surface:
ZC)

4
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

d.(/ ab (/\)
dA

1 /\2 (12 .(/(1,1)(/\)

=0 + 5 e
A\,
- O.(/u,b + A 1,"(1,1) + ? Zh'u,b + ...

.(/u,b(/\) - O.(Iu,b + A |)\:() + ...

such that D_:

and a surface:
ZC)

4
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

| 2 12 .
. __ o, d.(/u,b(/\) 1 A° d .(}(,,1,(/\)
.qu,b(/\) = Gab T+ A a\ |)\:() ! 9 )2 |)\:() o ol
1 )‘2 2
- o.(]u,b + A7 vab + ? / vab t+ .« .
such that J_: i) is null and approaches a NEH in the future to all the orders in p)

and a surface:
ZC)

4
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

(l(j 1(/\) /\2 (12 g 1(/\)
o0 Jab \ Jab
.(/u,b(/\) = Gab + A a\ |)\:() ! 9 )2 |)\:() 5= ..
1 )‘2 2
- O.(/u,b + AT vab + ? / lab + . .
such that J_: i) is null and approaches a NEH in the future to all the orders in p)

ii) the expansion (Jand shear 0 of fvanish for \ = ()
and a surface:

-
-

4
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

dgap(A) A2 d? gp(N)
0 Jab \ Jab
.(/u,b(>\) = Gab + A N |)\:() ! 9 )2 |)\:() o ol
1 )‘2 2
- O.(/u,b + A7/ vab + ? / lab + . .
such that J_: i) is null and approaches a NEH in the future to all the orders in p)
ii) the expansion @ and shear g of {vanish for )\ = ()

and a surface:

-
-

O(A)jx=0 =0

4
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

d.(/ ab ()‘)
dA

1 /\2 (12 .(/a,b()‘)

=0 + 5 e
A\,
- O.(/u,b + A lh'u,b + ? zhfu,b + ...

.(/u,b(/\) - o.(/u,b + A |)\:() + ...

such that J_: i) is null and approaches a NEH in the future to all the orders in p)
ii) the expansion @ and shear g of {vanish for )\ = ()

O(M)jp=0 =0 (A)jx=0 =0

and a surface:
ZC)

4
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

dgap(A) A2 d? gp(N)
o0 Jab 1 Jab
.(/u,b(>\) = Gab + A N |)\:() ! 9 )2 |)\:() o ol
1 )‘2 2
- O.(/u,b + AT vab + ? / lab + . .
such that J_: i) is null and approaches a NEH in the future to all the orders in p)

ii) the expansion (Jand shear 0 of fvanish for \ = ()

O(M)jp=0 =0 (A)jx=0 =0

and a surface:

4

>
Q Then, due to the Raychudhury equation
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

(l.(/u.b(/\) 1 )‘2 (12 .(/u.b(/\)

0
.(/u.b(/\) = GJab + A I\ I/\:() | 5 q)\2 |)\:() o I
1 M
—. O.(](I.b + )\ ,"(1.1) + ? h'u,b o oA
such that J_: i) is null and approaches a NEH in the future to all the orders in p)

ii) the expansion (Jand shear 0 of fvanish for \ = ()

O(M)jp=0 =0 (A)jx=0 =0

and a surface:

1
{ A"Da(0) = —560% — 0apo™” — Rapl*L"

>
Q Then, due to the Raychudhury equation
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

2 A2
0 (l.(/u.b(/\) A°d .(/u.b(/\)
.(/u.b(/\) = Gab + A N |)\:() | 9 )2 |)\=() o I
| )‘2 2
= O.(/u.b + A h’u.b + ? h'u.b + ...
such that J_: i) is null and approaches a NEH in the future to all the orders in p)

ii) the expansion Ha.h_d shear 0 of {vanish for )\ = ()

‘9(>‘)|>\=0 :O U()\)p\:o =0

and a surface:

1., -
¢ (°D,(6) = _592 —g40 P — Rypl(”

<

>
Q Then, due to the Raychudtpury equation
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

(l.(/u.b(/\)
dA

| A2 d? g.p(N)

x=0 2 d)N?
| A\
= O.(/u.b + A l,"u.b + ? zhfu.b ...

.(/u.b()\) - O.(]u.b + A |)\:() + ...

such that J_: i) is null and approaches a NEH in the future to all the orders in p)

ii) the expansion @ and shear 0 of fvanish for )\ = ()
and a surface: .

2 0(A)]r=0 :0 o(A)jr=0 =0

Q Then, due to the Raychudtpury equation

A 1 .
¢ (°D,(6) = _592 —g40 P — Rypl(”

D L 00ne0 =
ﬁﬁ(k)p\:o =0
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Settling down perturbed horizon

consider 1-dimensional family of metric tensors:

d.(/u.b()‘)
dA

1 )‘2 (12 .(/u.b(/\)

=0 + 5 e
. A\
= O.(/u,b + A : h'u.b + ? zh'u.b ...

.(]u,b(/\) - O.(/u.b + A |)\:() + ...

such that J_: i) is null and approaches a NEH in the future to all the orders in p)

ii) the expansion @ and shear 0 of fvanish for )\ = ()
and a surface: .

2 0(A)]r=0 :0 o(A)jr=0 =0

Q Then, due to the Raychudt}ury equation

A 1 .
¢ (°D,(6) = _592 —g40 P — Rypl(”

D L 00)ne0 =
ﬁﬁ(k)p\:o =0

We still use the symmetries of the background non-expanding horizon
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Settling down perturbed horizon
G (A)daxt dx” = —r2 y(\) dv? + 2dvdr + 2r B4(N\) dvdz? + 4 B(A) dzdaP

d
DAﬁA(O) =0 qAB(O)anB,U(O)V:O =0 JAB,v (O)|r:O =0

= ((k + o(x))v + s(x)) Oy + H ()04,

X — € — '7‘(1’8 —|— gb(:lf)a,- + '71X~rvav + I,XAaA + 'rzi a’l"

Charges and fluxes - we use Wald-Zoupas and Chandrasekaran-Flanagan-Prambhu:

9 — b c+@)v zt A da?
87rC ( +¢ dA (A) H” = 0 (A) ((k+ d)v + s)) J/detq(X) dz! A da
Fe[2a2](A) = %)‘2 167G (Eﬁq;iBavq,AB + C,f)aUQ”AA) \E’quv A dxt Adx? + O()\3)
d
F1E12)(0) = - FI, 2](0) 0

FalH1)(\) = A2

kvd,d's n0yq A8 /detqdv A dxt A da? + O(N\3
> 167rGH1,21 qABOwq etqdr X r° + O(M\7)




Summary

Fixing in a suitable way the gauge depending part of the 2-metric tensor and the
rotation 1-form, respectively endowes NHE with a structure similar to that of the scri
of asymptotically flat spacetime.

The symmetry group containes the BMS group plus one more generator: dilation.

Natural completeness and consistency conditions determine the extension to a
neighborhood of the horizon.

Our framework is compatible with that of Wald-Zoupas-Chandrasekaran-Flanagan-

Prambhu hence we can apply their charges and fluxes. One can also apply other
charges, for exampe those of Barnich, Donnelly, Freidel, Spezialle

Thank you



