Charges and fluxes on (perturbed) non-expanding horizons

Jerzy Lewandowski

Uniwersytet Warszawski, Instytut Fizyki Teoretycznej

A. Ashtekar, N. Khera, M. Kolanowski and J.L., *Non-expanding horizons: multipoles and the symmetry group,* JHEP 01 (2022) 028 [2111.07873],

Charges and Fluxes on (Perturbed) Non-expanding Horizons, JHEP 02 (2022) 001 [2112.05608]

BMS like structure of non-expanding horizons

BMS like structure of non-expanding horizons

On the non-expanding horizons by appropriate gauge selection, we introduce a structure similar to the BMS structure for null scri.

BMS like structure of non-expanding horizons

On the non-expanding horizons by appropriate gauge selection, we introduce a structure similar to the BMS structure for null scri.

The 1-dimensional extension of the BMS group

BMS like structure of non-expanding horizons

On the non-expanding horizons by appropriate gauge selection, we introduce a structure similar to the BMS structure for null scri.

The 1-dimensional extension of the BMS group

The symmetry of the structure is isomorphic to a 1-dimensional extension of the BMS group.

BMS like structure of non-expanding horizons

On the non-expanding horizons by appropriate gauge selection, we introduce a structure similar to the BMS structure for null scri.

The 1-dimensional extension of the BMS group

The symmetry of the structure is isomorphic to a 1-dimensional extension of the BMS group.

Application: gravitational radiation through settling down horizons

BMS like structure of non-expanding horizons

On the non-expanding horizons by appropriate gauge selection, we introduce a structure similar to the BMS structure for null scri.

The 1-dimensional extension of the BMS group

The symmetry of the structure is isomorphioc to a 1-dimensional extension of the BMS group.

Application: gravitational radiation through settling down horizons

The settling down horizon is described by a perturbation of a non-expanding horizon. The generators of the very BMS like symmetry are used to define charges and fluxes.

Non-expanding horizons

The idea:

Killing horizons to the zeroth order, null surfaces that have relevant properties of the black hole / cosmological horizons.

Ashtekar, Beetle, Dreyer, Fairhurst, Krishnan, JL, Wiśniewski - 2000

Mechanics

Ashtekar, Beetle, JL - 2001 4 dim **Korzyński, JL, Pawłowski - 2005** n dim **Ashtekar, Beetle, JL - 2001** a dim **Corzyński, JL, Pawłowski - 2005** n dim **Corzyński, JL, Pawłowski, JL, P

Geometry, DOF

Ashtekar, Beetle, JL - 2002

JL, Pawłowski - 2004

4 dim
n dim

Non-expanding horizons equations

Extremal horizons

If non-expanding horizon is also Killing horizon to the first order and it is extremal, then it satisfies the constraint:

$$^{(n)}\nabla_{(A}\omega_{B)} + \omega_{A}\omega_{B} - \frac{1}{2}{}^{(n)}R_{AB} + \frac{1}{n}\Lambda g_{AB} = 0$$

Ashtekar, Beetle, JL - 2001 JL, Pawlowski - 2004

Exact solutions constructed from extremal horizons

Pawlowski, JL, Jezierski - 2005

Today the equation is called Near Horizon Geometry equation

Kunduri, J. Lucietti 2009

4d spacetime and NHG solutions for genus =0

$$S = S_2$$

axial symmetry $\Lambda = 0$

$$\Rightarrow g_{AB}, \ \omega_A = g_{AB}^{\text{extremal Kerr}}, \ \omega_A^{\text{extremal Kerr}}$$

JL, Pawłowski 2002,

generalized to the Einstein-Maxwell case

uniqueness! no more solutions!

generalized to the Einstein-Yang-Mills case and somehow to the $\Lambda \neq 0$ case Kunduri, J. Lucietti 2009 Buk, JL 2022

no axial symmetry

⇒ only partial results known:

$$^{(n)}
abla_{[A}\omega_{B]}=0 \quad \Rightarrow K=\Lambda\geq 0, \; \omega_A=0 \quad$$
 Chruściel, Reall, Tod 2005 (non-rotating)

the linearized equation about axisymmetric solution admits only axisymmetric solutions - partly numeric

Chruściel, Szybka, Tod 2017

Applications to filing gaps in the BH uniqueness theorems

Chruściel, Costa, Heusler 2012

NHG solutions for genus > 0

$$\mathcal{S}, g_{AB}, \omega_A$$
 $^{(2)}\nabla_{(A}\omega_{B)} + \omega_A\omega_B + \frac{1}{2}(\Lambda - K)g_{AB} = 0$

K - the Gauss curvature Λ - the cosmological constant

$$\chi_E(^2\!S) \le 0 \quad \Rightarrow \quad K = \Lambda \le 0, \qquad \omega_A = 0$$
 Dobkowski-Ryłko, Kamiński, (genus > 0)

Embeddable in extremal cases $\ \Lambda = - \frac{1}{9 M^2}$ of:

$$-(-1 - \frac{2M}{r} - r^2 \frac{\Lambda}{3})dt^2 + \frac{dr^2}{-1 - \frac{2M}{r} - r^2 \frac{\Lambda}{3}} + r^2 \frac{2dzd\bar{z}}{(1 - \frac{1}{2}z\bar{z})^2}$$

this is really minus

compactified by suitable subgroup of isometries

Extremal Killing horizon to the 2nd order: Uniqueness of the extremal Kerr horizon

Suppose $\mathcal{S}=S_2$ and g_{AB},ω_A,S_{AB} is axisymmetric and $\Lambda=0$

Then, the solution of the first and the second equation is unique, modulo the obvious rescaling

$$g_{AB} \mapsto a g_{AB}, \quad S_{AB} \mapsto b S_{AB}, \quad a, b = \text{const}$$

it corresponds to the horizon in the extremal Kerr spacetime

For every solution g_{AB}, ω_A, S_{AB} the horizon H, g_{ab}, ∇_a

is embeddable in the extremal Kerr spacetime of the corresponding horizon area.

Kolanowski, Lewandowski, Szereszewski 2019 Lewandowski, Pawłowski 2019 Lucietti, Li 2016

The Petrov type D equation

Non-extremal Killing horizon to the 2nd order satisfies

$$\Psi_2 = -\frac{1}{2} \left(K - \frac{\Lambda}{3} + i\Omega \right) \neq 0 \quad \text{and} \quad \bar{m}^A \bar{m}^{B(2)} \nabla_A^{(2)} \nabla_B \left(K - \frac{\Lambda}{3} + i\Omega \right)^{-\frac{1}{3}} = 0$$

The spacetime Weyl tensor of the Petrov type D at the horizon

Therefore we call it: the Petrov type D equation.

Actually, this equation is is a generalization of the extremity (NHG) equation

This equation knows the secrets of the BH uniqueness theorems: the spherical topology, the rigidity, no-hair

JL, Pawłowski, 2002 Dobkowski-Ryłko, Pawłowski, JL 2018 Szereszewski JL 2018

NEH of the Hopf bundle structure

JL, Ossowski 2019, 2021, 2022

Embeddable in the NUT type spacetimes - due to them we have learned a lot about the global structure, the Misner extension.

Conclusion: investigating the non-expanding horizons we can learn a lot about about bh spacetimes and other exact solutions to Einsteins equations.

Today we will apply the NEHs to the radiation.

Non-expanding surface is a manifold Δ

Non-expanding surface is a manifold Δ

endowed with a symmetric tensor q

Non-expanding surface is a manifold \triangle

endowed with a symmetric tensor q

of signature 0 + ... +

Non-expanding surface is a manifold Δ endowed with a symmetric tensor q of signature $0+\ldots+$

Non-expanding surface is a manifold

 Δ

endowed with a symmetric tensor

 \boldsymbol{q}

of signature

$$0 + ... +$$

and a torsion free covariant derivative

D

such that

$$Dq = 0$$

Non-expanding surface is a manifold

endowed with a symmetric tensor

 \boldsymbol{q}

of signature

$$0 + ... +$$

and a torsion free covariant derivative I

such that

$$Dq = 0$$

A neet Lemma:

Non-expanding surface is a manifold

 Δ

endowed with a symmetric tensor

 \boldsymbol{q}

of signature

$$0 + ... +$$

and a torsion free covariant derivative

D

such that

$$Dq = 0$$

A neet Lemma:

Every null vector field ℓ

Non-expanding surface is a manifold

endowed with a symmetric tensor

of signature

$$0 + ... +$$

and a torsion free covariant derivative

such that

$$Dq = 0$$

A neet Lemma:

Every null vector field ℓ , that is that is such that : $\ell \lrcorner q = 0$

$$\ell \lrcorner q = 0$$

Non-expanding surface is a manifold

endowed with a symmetric tensor

of signature

$$0 + ... +$$

and a torsion free covariant derivative

such that

$$Dq = 0$$

A neet Lemma:

Every null vector field ℓ , that is that is such that : $\ell \lrcorner q = 0$

$$\ell \lrcorner q = 0$$

generates a symmetry of q:

Non-expanding surface is a manifold

endowed with a symmetric tensor

of signature

$$0 + ... +$$

and a torsion free covariant derivative

such that

$$Dq = 0$$

A neet Lemma:

Every null vector field ℓ , that is that is such that : $\ell \lrcorner q = 0$ generates a symmetry of q: $\mathcal{L}_\ell q = 0$

$$\ell \lrcorner q = 0$$

$$\mathcal{L}_{\ell}q = 0$$

The rotation 1-form potential $\ \omega$

$$D_a \ell^b = \omega_a \ell^b$$

The rotation 1-form potential $\,\omega\,$

$$D_a \ell^b = \omega_a \ell^b$$
$$\ell' = f\ell \qquad \omega' = \omega + d \ln f$$

The rotation 1-form potential $\;\omega\;$

$$D_a \ell^b = \omega_a \ell^b$$

$$\ell' = f\ell \qquad \omega' = \omega + d \ln f$$

Surface gravity κ

$$\kappa = \ell^a \omega_a$$
$$\ell^a D_a \ell = \kappa \ell$$

The rotation 1-form potential $\;\omega\;$

$$D_a \ell^b = \omega_a \ell^b$$

$$\ell' = f\ell \qquad \omega' = \omega + d \ln f$$

Surface gravity κ

$$\kappa = \ell^a \omega_a$$

$$\ell^a D_a \ell = \kappa \ell$$

we can make:

$$\kappa' = 0$$

In this talk topology is trivial:

The rotation 1-form potential $\ \omega$

$$D_a \ell^b = \omega_a \ell^b$$

$$\ell' = f\ell \qquad \omega' = \omega + d \ln f$$

Surface gravity κ

$$\kappa = \ell^a \omega_a$$

$$\ell^a D_a \ell = \kappa \ell$$

we can make:

$$\kappa' = 0$$

$$\Delta = \bar{\Delta} \times \mathbb{R}$$

$$\Delta \subset M$$

 $\Delta \subset M$ becomes a co-dim 1 null surface

becomes a co-dim 1 null surface the spacetime Ricci

$$D_a \kappa = \mathcal{L}_\ell \omega_a + R_{ab}^{\bullet \ell} \ell^b$$

 $\Delta \subset M \qquad \text{becomes a co-dim 1 null surface}$ the spacetime Ricci

$$D_a \kappa = \mathcal{L}_\ell \omega_a + R_{ab}^{\bullet i} \ell^b$$

positivity assumptions and Raychaudhuri

 $\Delta \subset M$ becomes a co-dim 1 null surface the spacetime Ricci

$$D_a \kappa = \mathcal{L}_\ell \omega_a + R_{ab}^{\bullet i} \ell^b$$

positivity assumptions and Raychaudhuri

$$\Rightarrow R_{ab}\ell^b = 0 \Rightarrow D_a\kappa = \mathcal{L}_\ell\omega_a$$

via:

$$\ell' = f\ell$$

$$\ell' = f\ell \qquad \qquad \omega' = \omega + d {\rm ln} f$$
 we can make:
$$\kappa' = 0$$

$$\kappa' = 0$$

$$\mathcal{L}_{\ell'}\omega_a' = 0$$

 $\Delta \subset M$ becomes a co-dim 1 null surface the spacetime Ricci

$$D_a \kappa = \mathcal{L}_\ell \omega_a + R_{ab}^{\bullet i} \ell^b$$

positivity assumptions and Raychaudhuri

$$\Rightarrow R_{ab}\ell^b = 0 \Rightarrow D_a\kappa = \mathcal{L}_\ell\omega_a$$

via:

$$\ell' = f\ell$$

$$\ell' = f\ell \qquad \qquad \omega' = \omega + d {\rm ln} f$$
 we can make:
$$\kappa' = 0$$

$$\kappa' = 0$$

$$\mathcal{L}_{\ell'}\omega_a' = 0$$

 $\Delta \subset M$ becomes a co-dim 1 null surface the spacetime Ricci

$$D_a \kappa = \mathcal{L}_\ell \omega_a + R_{ab}^{\bullet i} \ell^b$$

positivity assumptions and Raychaudhuri

$$\Rightarrow R_{ab}\ell^b = 0 \Rightarrow D_a\kappa = \mathcal{L}_\ell\omega_a$$

via:

$$\ell' = f\ell$$

$$\ell' = f\ell \qquad \qquad \omega' = \omega + d\ln f$$

we can make: $\kappa' = 0$

$$\kappa' = 0$$

$$\mathcal{L}_{\ell'}\omega_a' = 0$$

we can ask even more:

$$q_{AB}$$
 , ω_A'

$$q_{AB}$$
 , ω_A' $q^{AB}D_A\omega_B'=0$

 $\Delta \subset M$ becomes a co-dim 1 null surface the spacetime Ricci

$$D_a \kappa = \mathcal{L}_\ell \omega_a + R_{ab}^{\bullet i} \ell^b$$

positivity assumptions and Raychaudhuri

$$\Rightarrow R_{ab}\ell^b = 0 \Rightarrow D_a\kappa = \mathcal{L}_\ell\omega_a$$

via:

$$\ell' = f\ell$$

$$\ell' = f\ell \qquad \qquad \omega' = \omega + d\ln f$$

we can make:
$$\kappa'=0$$

$$\mathcal{L}_{\ell'}\omega_a' = 0$$

we can ask even more:

$$D_A q_{BC} = 0 \ D_A D_B f = D_B D_A f$$

$$q_{AB}$$
 , ω_A' $q^{AB}D_A\omega_B'=0$

$$\Delta = S_2 \times \mathbb{R}$$

$$\Delta = S_2 \times \mathbb{R}$$

the condition:

$$S_2$$
 q_{AB} , ω_A

$$\Delta = S_2 \times \mathbb{R}$$

the condition:

$$q^{AB}D_A\omega_B=0$$

$$S_2$$
 q_{AB} , ω_A

$$\Delta = S_2 \times \mathbb{R}$$

the condition:

$$q^{AB}D_A\omega_B=0$$

determines ℓ up to

$$S_2$$
 q_{AB} , ω_A

$$\Delta = S_2 \times \mathbb{R}$$

 q_{AB} , ω_A

the condition:

$$q^{AB}D_A\omega_B=0$$

determines ℓ up to

$$\ell = a\ell', \qquad a = \text{const}$$

$$\Delta = S_2 \times \mathbb{R}$$

 q_{AB} , ω_A

the condition:

$$q^{AB}D_A\omega_B=0$$

determines ℓ up to

$$\ell = a\ell', \qquad a = \text{const}$$

This abiguity will imply the extension of the BMS group

$$\Delta = S_2 \times \mathbb{R}$$

$$S_2$$
 q_{AB} , ω_A $q^{AB}D_A\omega_B=0$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$S_2$$
 q_{AB} , ω_A $q^{AB}D_A\omega_B=0$

$$\Delta = S_2 imes \mathbb{R}$$
 Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$S_2$$
 q_{AB} , ω_A $q^{AB}D_A\omega_B=0$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$S_2$$
 q_{AB} , ω_A $q^{AB}D_A\omega_B=0$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$\ell = \psi \overset{\circ}{\ell}$$

the meaning of the **BMS** like structure

$$S_2$$
 q_{AB} , ω_A $q^{AB}D_A\omega_B=0$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

the 2-area elements

$$\ell = \psi \ell \Leftrightarrow \begin{pmatrix} 1 - \overset{\circ}{\nabla} \overset{A}{\omega}_{A} \end{pmatrix} \overset{\circ}{\epsilon} = K \epsilon$$

$$0 & 0 & 0 & 0 \\ \text{the meaning of the} \qquad D_{a} \ell =: \overset{\circ}{\omega}_{a} \ell$$

$$0 & 0 & 0 & 0 \\ D_{a} \ell =: \overset{\circ}{\omega}_{a} \ell$$

BMS like structure

$$S_2$$
 q_{AB} , ω_A $q^{AB}D_A\omega_B=0$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

the 2-area elements

$$\ell = \psi \ell \Leftrightarrow \begin{pmatrix} 1 - \overset{\circ}{\nabla} \overset{A}{\omega}_{A} \\ \overset{\circ}{\epsilon} = K \epsilon \end{pmatrix}$$
 the meaning of the BMS like structure

BMS like structure

ambiguity
$$\cdots$$
 $q' = \alpha^2 q$ $\alpha^2 q$ α

$$S_2$$
 q_{AB} , ω_A $q^{AB}D_A\omega_B=0$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

the 2-area elements

BMS like structure

ambiguity
$$\cdots$$
 $q' = \alpha^2 q'$ $\alpha^2 q' = \alpha^2 q'$ $\alpha^2 q' = \alpha^2 q'$ a constant $\alpha' = \alpha \ell$ $\alpha = \alpha \ell$

is the equivalence class the BMS like structure

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

$$\ell = \psi \overset{\circ}{\ell}$$

ambiguity
$$\cdots$$
 $q'=\alpha^2 q'$ $\alpha^2 q'=\alpha^2 q'$ $\alpha^$

the BMS like structure

$$\underline{\alpha}^{-1} = \alpha_0 + \sum_{i=1}^{3} \alpha_i \, \hat{r}^i$$
, for real constants α_0 and α_i , with

$$\hat{r}^i = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

and
$$-\alpha_0^2 + \sum_{i=1}^3 (\alpha_i)^2 = -1,$$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

ambiguity
$$\cdots$$
 $q' = \alpha^2 q'$ $\alpha^2 q' = \alpha^2 q'$ $\alpha^2 q' = \alpha^2 q'$ a constant $\alpha^2 q' = \alpha^2 q'$ $\alpha^2 q'$

the BMS like structure

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

ambiguity
$$\cdots$$
 $q'=\alpha^2 q'$ $\alpha^2 q'=\alpha^2 q'$ a constant $\alpha' = \alpha \ell$ $\ell' = \alpha \ell$ $\alpha' = \alpha \ell$ is the equivalence class

the BMS like structure

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

ambiguity
$$q' = \alpha^2 q'$$

$$\ell = \psi \ell$$

$$\ell = \psi \ell$$

$$\ell = \frac{a \circ}{\alpha}$$

the BMS like structure

$$\mathcal{L}_{\xi} \, \mathring{q}_{ab} = 2\mathring{\phi} \, \mathring{q}_{ab} \quad \mathcal{L}_{\xi} \, \mathring{\ell}^a = -(\mathring{\phi} + k) \, \mathring{\ell}^a$$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\circ}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

ambiguity
$$q'=\alpha^2 q'$$

$$\ell=\psi \ell$$

$$\ell=\psi \ell$$

$$\ell=\frac{a \circ \ell}{\alpha}$$

$$\ell=\frac{a \circ \ell}{\alpha}$$
is the equivalence class

the BMS like structure

$$\mathcal{L}_{\xi} \,\mathring{q}_{ab} = 2\mathring{\phi} \,\mathring{q}_{ab} \quad \mathcal{L}_{\xi} \,\mathring{\ell}^{a} = -\big(\mathring{\phi} + k\big) \,\mathring{\ell}^{a} \qquad k \text{ is a constant} \\ \mathring{\phi} = \sum_{m} a_{m} Y_{1,m}$$

$$\Delta = S_2 \times \mathbb{R}$$

Universal structure $[\overset{\circ}{q},\overset{\smile}{\ell}]$

$$[\overset{\circ}{q},\overset{\circ}{\ell}]$$

ambiguity
$$\cdots$$
 $q'=\alpha^2 q'$ α a constant $\ell=\psi\ell$ $\ell=-\ell$ α $\ell=-\ell$ α is the equivalence class

the BMS like structure

the SYMMETRIES are all the $\ \Delta
ightarrow \Delta$ that preserve $[q, \ell]$

$$k$$
 is a constant $\mathring{\phi} = \sum_{m} a_{m} Y_{1,m}$

$$\mathcal{L}_\xi\,\mathring{q}_{ab} = 2\mathring{\phi}\,\mathring{q}_{ab} \quad \mathcal{L}_\xi\,\mathring{\ell}^a = -\big(\mathring{\phi} + k\big)\,\mathring{\ell}^a \qquad k \text{ is a constant} \\ k = 0 \text{ corresponds to the BMS} \qquad \mathring{\phi} = \sum_m a_m Y_{1,m}$$

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

dylations

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

k = const

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

k = const

super translations

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$S = s\partial_v$$

super translations

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$S = s\partial_v$$

super translations

$$s = s(\theta, \varphi)$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$S = s\partial_v$$

super translations

$$s = s(\theta, \varphi)$$

rotations

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \stackrel{\circ}{\ell} = \partial_v$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$S = s\partial_v$$

super translations

$$s = s(\theta, \varphi)$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

rotations

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$\uparrow \quad \mathring{\ell} = \partial_v$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$S = s\partial_v$$

$$s = s(\theta, \varphi)$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

$$\chi = \chi(\theta, \varphi)$$

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v) = (x^A, v)$$

$$v = \text{const}$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$S = s\partial_v$$

$$s = s(\theta, \varphi)$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

$$\chi = \chi(\theta, \varphi)$$

$$\Delta \chi = -2\chi$$

$$\Delta \chi = -2\chi$$

$$\Delta = S_2 \times \mathbb{R}$$
$$(\theta, \varphi, v) = (x^A, v)$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$\uparrow \quad \stackrel{\circ}{\ell} = \partial_v$$

$$S = s\partial_v$$

$$s = s(\theta, \varphi)$$

$$v = \text{const}$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

$$\chi = \chi(\theta, \varphi)$$

$$\Delta \chi = -2\chi$$

$$\Delta \chi = -2\chi$$

boosts

$$\Delta = S_2 \times \mathbb{R}$$
$$(\theta, \varphi, v) = (x^A, v)$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$\stackrel{\circ}{\ell} = \partial_v$$

$$S = s\partial_v$$

$$s = s(\theta, \varphi)$$

$$v = \text{const}$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

$$\chi = \chi(\theta, \varphi)$$

$$\Delta \chi = -2\chi$$

$$\Delta \chi = -2\chi$$

boosts

 $B = \overset{\circ}{q} \overset{AB}{\phi}_{.B} \partial_A$

$$\Delta = S_2 \times \mathbb{R}$$
$$(\theta, \varphi, v) = (x^A, v)$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$\uparrow \quad \stackrel{\circ}{\ell} = \partial_v$$

$$S = s\partial_v$$

$$s = s(\theta, \varphi)$$

$$v = \text{const}$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

$$\chi = \chi(\theta, \varphi)$$

$$\Delta \chi = -2\chi$$

$$\Delta \chi = -2\chi$$

$$B = \overset{\circ}{q} \overset{AB}{\phi}_{,B} \partial_A + v \overset{\circ}{\phi} \partial_v$$

boosts

$$\Delta = S_2 \times \mathbb{R}$$
$$(\theta, \varphi, v) = (x^A, v)$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$\uparrow \quad \stackrel{\circ}{\ell} = \partial_v$$

$$S = s\partial_v$$

super translations

$$s = s(\theta, \varphi)$$

$$v = \text{const}$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

$$\chi = \chi(\theta, \varphi)$$

$$\Delta \chi = -2\chi$$

$$\Delta \chi = -2\chi$$

$$B = \overset{\circ}{q} \overset{AB}{\phi}_{,B} \overset{\circ}{\partial}_A + v \overset{\circ}{\phi} \partial_v$$
 boosts

$$\phi = \phi(\theta, \varphi)$$

$$\Delta = S_2 \times \mathbb{R}$$
$$(\theta, \varphi, v) = (x^A, v)$$

$$d = kv\partial_v$$

dylations

$$k = \text{const}$$

$$\uparrow \quad \stackrel{\circ}{\ell} = \partial_v$$

$$S = s\partial_v$$

super translations

$$s = s(\theta, \varphi)$$

$$v = \text{const}$$

$$R = \stackrel{\circ}{\epsilon}^{AB} \chi_{,B} \partial_A$$

$$\chi = \chi(\theta, \varphi)$$

$$\Delta \chi = -2\chi$$

$$\Delta \chi = -2\chi$$

$$B = \overset{\circ}{q} \overset{AB}{\phi}_{,B} \partial_A + v \overset{\circ}{\phi} \partial_v$$

$$\overset{\circ}{\phi} = \overset{\circ}{\phi}(\theta, \varphi)$$

$$\overset{\circ}{\Delta}\overset{\circ}{\phi}=-2\overset{\circ}{\phi}$$

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v' = v + f(\theta, \phi)) =: (x'^A, v') \qquad kv' \partial_{v'}$$

$$\Delta$$

$$\Delta$$

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v' = v + f(\theta, \varphi)) =: (x'^A, v') \qquad kv' \partial_{v'}$$

$$\uparrow \stackrel{\circ}{\ell} = \partial_{v'}$$

$$\Delta$$

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v' = v + f(\theta, \phi)) =: (x'^A, v') \qquad kv' \partial_{v'}$$

$$\uparrow \stackrel{\circ}{\ell} = \partial_{v'}$$

$$\delta^{AB} \chi_{,B} \partial'_{A}$$

$$\Delta = S_2 \times \mathbb{R}$$

$$(\theta, \varphi, v' = v + f(\theta, \phi)) =: (x'^A, v') \qquad kv'\partial_{v'}$$

$$\uparrow \stackrel{\circ}{\ell} = \partial_{v'} \qquad \qquad s\partial_{v'}$$

$$\stackrel{\circ}{\Delta}^{AB}\chi_{,B}\partial'_{A}$$

$$\stackrel{\circ}{q}^{AB}\stackrel{\circ}{\phi}_{,B}\partial'_{A} + v'\phi\partial_{v'}$$

Comparison with BMS

Comparison with BMS

Example: a horizon in the Kerr spacetime:

$$d = \partial_t + \Omega \partial_\phi$$

Comparison with BMS

Example: a horizon in the Kerr spacetime:

$$d = \partial_t + \Omega \partial_\phi$$

That is why we accept that additional to BMS symmetry

symmetry of the horizon

symmetry of the horizon

spacetime extension

$$X_{|\Delta} = \xi$$

symmetry of the horizon

spacetime extension

$$X_{|\Delta} = \xi$$
$$(\mathcal{L}_X g_{\alpha a}) \ell^a = 0$$

95

consider 1-dimensional family of metric tensors:

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} {}^2 h_{ab} + \dots$$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} {}^2 h_{ab} + \dots$$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} {}^2 h_{ab} + \dots$$

such that Σ :

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in $\,\lambda$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} {}^2 h_{ab} + \dots$$

such that Σ :

- i) is null and approaches a NEH in the future to all the orders in λ
- ii) the expansion $\, heta\,$ and shear $\,\sigma\,$ of $\,\ell\,$ vanish for $\,\lambda=0\,$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in λ

ii) the expansion $\,\theta\,{\rm and}\,{\rm shear}\,\,\sigma\,\,{\rm of}\,\,\ell\,{\rm vanish}\,\,{\rm for}\,\,\,\lambda=0$

$$\theta(\lambda)_{|\lambda=0} = 0$$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in λ

ii) the expansion $\, heta \,$ and shear $\, \sigma \,$ of $\, \ell \,$ vanish for $\, \, \lambda = 0 \,$

$$\theta(\lambda)_{|\lambda=0} = 0$$
 $\sigma(\lambda)_{|\lambda=0} = 0$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in λ

ii) the expansion $\, heta\,$ and shear $\,\sigma\,$ of $\,\ell\,$ vanish for $\,\lambda=0\,$

$$\theta(\lambda)_{|\lambda=0} = 0$$
 $\sigma(\lambda)_{|\lambda=0} = 0$

Then, due to the Raychudhury equation

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in λ

ii) the expansion $\, heta\,$ and shear $\,\sigma\,$ of $\,\ell\,$ vanish for $\,\lambda=0\,$

and a surface:

$$\theta(\lambda)_{|\lambda=0} = 0$$
 $\sigma(\lambda)_{|\lambda=0} = 0$

Then, due to the Raychudhury equation

$$\ell^a D_a(\theta) = -\frac{1}{2}\theta^2 - \sigma_{AB}\sigma^{AB} - R_{ab}\ell^a\ell^b$$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in $\,\lambda$

ii) the expansion $\, heta \, {
m and} \, {
m shear} \, \sigma \, {
m of} \, \, \ell \, {
m vanish} \, \, {
m for} \, \, \, \, \lambda = 0 \,$

and a surface:

$$\theta(\lambda)_{|\lambda=0} = 0$$
 $\sigma(\lambda)_{|\lambda=0} = 0$

Then, due to the Raychudhury equation

$$\ell^a D_a(\theta) = -\frac{1}{2}\theta^2 - \sigma_{AB}\sigma^{AB} - R_{ab}\ell^a\ell^b$$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in λ

ii) the expansion $\,\theta\,{\rm and}$ shear σ of $\ell\,{\rm vanish}\,$ for $\,\lambda=0\,$

$$\Sigma = 0 \qquad \qquad \theta(\lambda)_{|\lambda=0} = 0$$

Then, due to the Raychudhury equation

$$\ell^{a} D_{a}(\theta) = -\frac{1}{2} \theta^{2} - \sigma_{AB} \sigma^{AB} - R_{ab} \ell^{a} \ell^{b}$$

$$\frac{d}{d\lambda} \theta(\lambda)_{|\lambda=0} = 0$$

consider 1-dimensional family of metric tensors:

$$g_{ab}(\lambda) = {}^{\circ}g_{ab} + \lambda \frac{\mathrm{d}g_{ab}(\lambda)}{\mathrm{d}\lambda}|_{\lambda=0} + \frac{\lambda^2}{2} \frac{\mathrm{d}^2 g_{ab}(\lambda)}{\mathrm{d}\lambda^2}|_{\lambda=0} + \dots$$
$$=: {}^{\circ}g_{ab} + \lambda^1 h_{ab} + \frac{\lambda^2}{2} h_{ab} + \dots$$

such that Σ :

i) is null and approaches a NEH in the future to all the orders in λ

ii) the expansion $\, heta \, {
m and} \, {
m shear} \, \sigma \, {
m of} \, \, \ell \, {
m vanish} \, \, {
m for} \, \, \, \lambda = 0 \,$

$$\theta(\lambda)_{|\lambda=0} = 0$$
 $\sigma(\lambda)_{|\lambda=0} = 0$

Then, due to the Raychudhury equation

$$\ell^{a} D_{a}(\theta) = -\frac{1}{2} \theta^{2} - \sigma_{AB} \sigma^{AB} - R_{ab} \ell^{a} \ell^{b}$$

$$\frac{d}{d\lambda} \theta(\lambda)_{|\lambda=0} = 0$$

We still use the symmetries of the background non-expanding horizon

$$g_{\mu\nu}(\lambda)dx^{\mu}dx^{\nu} = -r^{2}\gamma(\lambda)dv^{2} + 2dvdr + 2r\beta_{A}(\lambda)dvdx^{A} + q_{AB}(\lambda)dx^{A}dx^{B}$$

$$D^{A}\beta_{A}(0) = 0 \qquad q^{AB}(0)\frac{d}{d\lambda}q_{AB,v}(0)_{|r=0} = 0 \qquad q_{AB,v}(0)_{|r=0} = 0$$

$$\xi = ((k+\phi(x))v + s(x))\partial_{v} + H^{A}(x)\partial_{A},$$

$$X = \xi - r(k+\phi(x)\partial_{r} + r\tilde{X}^{v}\partial_{v} + r\tilde{X}^{A}\partial_{A} + r^{2}\tilde{X}^{r}\partial_{r}$$

Charges and fluxes - we use Wald-Zoupas and Chandrasekaran-Flanagan-Prambhu:

$$Q_{\xi}[C](\lambda) = \frac{1}{8\pi G} \oint_{C} \left(k + \phi - \frac{1}{2} \beta_{A}(\lambda) H^{A} - \theta(\lambda) \left((k + \phi)v + s \right) \right) \sqrt{\det q(\lambda)} dx^{1} \wedge dx^{2}$$

$$\mathcal{F}_{\xi}[\Sigma_{1,2}](\lambda) = \frac{1}{2} \lambda^{2} \frac{1}{16\pi G} \int_{H_{1,2}} \left(\mathcal{L}_{\xi} q'_{AB} \partial_{v} q'^{AB} + \phi \partial_{v} q^{*}_{A}^{A} \right) \sqrt{\det q} dv \wedge dx^{1} \wedge dx^{2} + O(\lambda^{3})$$

$$\mathcal{F}[\Sigma_{1,2}](0) = \frac{d}{d\lambda} \mathcal{F}[\Sigma_{1,2}](0) = 0$$

$$\mathcal{F}_{d}[H_{1,2}](\lambda) = \frac{1}{2} \lambda^{2} \frac{1}{16\pi G} \int_{H_{1,2}} kv \partial_{v} q'_{AB} \partial_{v} q'^{AB} \sqrt{\det q} dv \wedge dx^{1} \wedge dx^{2} + O(\lambda^{3})$$

Summary

Fixing in a suitable way the gauge depending part of the 2-metric tensor and the rotation 1-form, respectively endowes NHE with a structure similar to that of the scri of asymptotically flat spacetime.

The symmetry group containes the BMS group plus one more generator: dilation.

Natural completeness and consistency conditions determine the extension to a neighborhood of the horizon.

Our framework is compatible with that of Wald-Zoupas-Chandrasekaran-Flanagan-Prambhu hence we can apply their charges and fluxes. One can also apply other charges, for exampe those of Barnich, Donnelly, Freidel, Spezialle

Thank you