Higher spin symmetry 1n gravity from
asymptotic Einstein's equations

Daniele Pranzetti

Perimeter Institute & Universita degli Studi di Udine

Based on work in collaboration with L. Freidel, R. Oliveri, A-M. Raclariu, S. Speziale

The Weyl BMS group and Einstein’s equations, JHEP 07, 170 (2021), [hep-th/2104.05793];
Gravity from symmetry: Duality and impulsive waves, JHEP 04, 125 (2022), [hep-th/2109.06342];
Sub-subleading Soft Graviton Theorem from Asymptotic Einstein’s Equations, JHEP 05, 186 (2022), [hep-th/2111.15607];

Higher spin dynamics in gravity and w1 +co celestial symmetries, [hep-th/2112.15573]

Marie
Sktodowska-

Curie Actions




In our quest for quantum gravity, an essential task is fo reach a proper understanding of the
degrees of freedom and of the symmetries of gravity associated with local subregions

In the bulk: spacetime diffeomorphisms = gauge symmetry

-> Gauge redundancies with a vanishing charge which cannot be used fo label physical states of QG

On the boundary: a subset of fransformations become physical symmetries

-> Non-vanishing charges located on codimension-2 spheres (or corners S') with a non-trivial algebra

< Goal: New description of quantfum geometry by understanding the nature of the universal
corner symmetry algebra gs D Su(2) of any subregion of space

0 Organizing principle for understanding quantum gravity [Laurent’s talk]
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0 Organizing principle for understanding quantum gravity [Laurent’s talk]

€ Loop quantum gravity:

[4 Local Hilbert space where the states of quantum geometry are labelled by boundary flux charges
(SU(2) spin quantum numbers at the punctures) [Rovelli, Smolin 1995]; [Ashtekar, Lewandowski 1997]

Discreteness of the area spectrum is the landmark of canonical LQG




e Decompose the bulk of spacetime into a collection of subregions and attach a symmetry algebra to
the corner of each subregion;

e The corner Hilbert space forms an irreducible representation of the local corner symmetry algebra,
and choices of states in this corner Hilbert space then encode quantum geomeftries;

Space = network of “bubbles” [Freidel, Livine 2019]

Corner symmetry charges = Coarse-grained information of
geometrical DOF inside each region it encloses

Reconciliation between discrete spectrum for the area operator (derived from the continuum theory)
and manifest Lorentz invariance [Freidel, Geiller, DP 2020] (see also [Wieland 2017])

¥ Corner symmetry group: Gg = (Diff(S) x H°) x (R®)” with H =SL(2,R), x SL(2,R); x SL(2,C)

[Ciambelli, Donnelly, Freidel, Geiller, Leigh, Livine, Moosavian, Oliveri, Perez, DP, Speranza, Speziale]

Celestial
3D Poincaré networks Kac-Moody modes

LQGs: SU(2) -> SL(2,C) -> Poincare
[Freidel, Livine, DP 2019]

BMS group



Outline

1. Gravity from symmetry

e Asymptotic Einstein equations as intertwiners

2. Soft graviton theorems

e Conservation laws for charges of asymptotic symmetries

3. Higher spin dynamics

e Canonical representation of wi.. loop algebra



Part 1: Gravity from symmetry




Wey| BMS group

Bondi-Sachs coordinates x* = (u,r, UA) .

TA TE
ds? = —2e2Pdu(dr + ®du) + rivyap (daA - —du) (daB - —du)

r2

2
The Bondi gauge conditions:

9r =0, gra=0, arﬁ:() (i)

BMSW boundary conditions:
Gur = —1+ O(T_Q)a JuA — O<1)7 GJuu — 0(1)7

Original BMS boundary conditions:

—1
Guu = —1+ O(T )7
[Bondi, van der Burg, Metzner, Sachs 1962]

Metric coefficients:

1 1 _
3 (§TAB + ECAB(CCDCCD)) + O (’I”‘ 4)

M _ b _
CI):Z—?—FO(?“ 2), /8:7“_2+O(T 3),
T4 =U" - % @PA +C4PUg + 23%) +0(r7?),

1 1 oD 1
YAB = qAB + ;CAB + 2948 (CepC™?) +

1
M, Ps,Ca,Tap — 0, F — 5 = Minkowski spacetime
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Building on [Ashtekar, Streubel 1981], [Barnich, Troessaert 2010], [Campiglia, Laddha 2014]

e BMSW group = group of residual diffeos preserving the Bondi gauge-fixing (i) and the boundary conditions (ii):

2-sphere Conformal class and conformal scale allowed to vary [Freidel, Oliveri, DP, Speziale 2021]

(See [Geiller, Zwikel 2022] for further relaxation)

Celestial
sphere

Erwyy =Y 0)Ia + W (o) (udy —10,) + T(0)dy + O(r™ )

BMS5SW = (Diff(S) X R%/) x Ry (Gg Preserving the null generator of 7

Kinematical subgroup

Transformation of the metric functionals: ﬁg(T,Y,W)gW[q)i] — aeg/u/[q)i + 65(T,Y,W)(I)i”€:0

O(a,s) = Covariant observable for Hs if: Ovw)Oa,s) = (Ly + (A = 5)W)Oa )
. : . . . o (A A)
/A = Conformal dimension, s = Spin Oa,s) 7= Oaa,.--AL) Oa,—s) = O , >0



e BMSW group = group of residual diffeos preserving the Bondi gauge-fixing (i) and the boundary conditions (ii):

Celestial
sphere

Building on [Ashtekar, Streubel 1981], [Barnich, Troessaert 2010], [Campiglia, Laddha 2014]

2-sphere Conformal class and conformal scale allowed to vary [Freidel, Oliveri, DP, Speziale 2021]

(See [Geiller, Zwikel 2022] for further relaxation)

BMSW = (Diff(S) x Rf}) x R  Gg

Kinematical subgroup

Erwyy =Y 0)Ia + W (o) (udy —10,) + T(0)dy + O(r™ )

Preserving the null generator of 7

Covariant observable

NAB

jA

M

TaB

Dimension-Spin (4, s)

(37'2)

(37'1)

(3,0)

(3,0)

(3,1)

(3,2)

Nap :=Cap

Bondi news tensor

M =M + %NABCAB

Covariant mass

NAB ._ NJAB _ _AB

Shifted news

M :

Geroch tensor

4

J4 = 1DpNAP

Covariant current

lEAC (DADBCCB + %NCBCAB)

Dual covariant mass [Godazgar, Pope 2019]

Corner charges = Covariant observables for the kinematical subgroup



e Gravity from symmetry [Freidel, DP 2021]

Asymptotic Einstein equations can be reconstructed by identifying the combinations of covariant observables
of the homogeneous subgroup and their derivatives that transform homogeneously under arbitrary BMSW

Holomorphic frame: m = m”0,  with normalization m*m 4 = 1

Sphere metric: gap = (mamp +mpma), sphere volume form: €ap = —i(mamp —mpma)

By assigning helicity +1 to m4 and -1 to M4,

we can convert spin-s fensors into scalars of a given helicity:

O, = OAI...ASmAl ---mAS, O_, = OAlmAsmAl e MmA, with O_,=0, and



e Gravity from symmetry [Freidel, DP 2021]

Asymptotic Einstein equations can be reconstructed by identifying the combinations of covariant observables
of the homogeneous subgroup and their derivatives that transform homogeneously under arbitrary BMSW

Holomorphic frame: m = m”0,  with normalization m*m 4 = 1

Sphere metric: gap = (mamp +mpma), sphere volume form: €ap = —i(mamp —mpma)

By assigning helicity +1 to m4 and -1 to M4,

we can convert spin-s fensors into scalars of a given helicity:

Os = Oayam™ - -m?e, O_s =0M " Aemy - 1y with  O_, =0, and l—j .
. s D = maD4
Bondi mass loss formula J = %D./\/',
¥> Mc =DJ + iC’./\/‘, <  Leading soft th. Mc = M +iM
I&~  Asymptotic EEs™ : P=DMc+CJ, >  Subleading soft th.
T =DP+ 3CMc <  Sub-subleading soft th.

* Equivalent to the Bianchi identities in the NP formalism [Newman, Penrose 1962]

Evolution Eq.s = Covariant observables for the full BMSW
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Part 2: Soft graviton theorems
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Asymptotic conditions and renormalization

N
Q o := o Q1:=J, Qo=Mc, Qi1:=P, Q:=T
: 1
EEs: Qs :DQs—l + ( ;S)CQS—Qa S = _1707172
N — (’)(|u|—a) Coa > 3 N lirf QS(% z) =0 radiative vacuum Ij_r
U—r 100
T+
In order to integrate the recursion relation, we need to assume that I+

“non-radiative
corner phase space

This allows us to define the charge aspects as integrals over their flux:

u , , QS<U,Z> — QE(U, Z) T QE(U,Z)
Qs(u,z)z/ du' Qs(u',z) — —_—
+00 Linear in C, C fields Higher orders

Renormalized charges: 4o := lim Mg, ¢ := lim P—uDMc, ¢:= lim T4

U——0Q0 U——0Q0 U—r—00
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Charge action

EEs

\ K
qs = qs|C, N] + Radiative phase space [Ashtekar, Streubel 1981]: {N(u, 2),C(v, 2")} = 55(’@ —u')d(z, 2")

Use basic bracket of the radiative phase space at null infinity to compute the symmetry action on C':

0r,C(1,2) ={Qs(1),C(1,2)}  where  Qu(r) = /S r(D(z)  s=0,1.2

e Supertranslation charge: QT) = / T'(2z)qo(2)
S

6rC ={Q(T),CY =T0,C —2D*T — & =T0,

™ Generators of

GBMS = BMSWI,_ 1, .,

[Campiglia, Laddha 2014];
e Super-Lorentz charge: QYY) = /SY(Z)Ql(Z) / [Miguel’s talk]

U
5vC = {Q(Y),C} = 5 (6r-pyC) + Y DC + gcm/ S &y =2 DYO,+YD
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Charge action

EEs

v K
qs = ¢s|C, N] + Radiative phase space [Ashtekar, Streubel 1981]: {N(u,2),C(v',2")} = 55(16 —u")d(z,2")

Use basic bracket of the radiative phase space at null infinity fo compute the symmetry action on C':

0-,C(1,2) = {Qu(1),C(w.2)}  where  Qu(r) = /5 r(0a(2)  s=0.1,2

e Spin-2 charge: Q(Z) := / Z(z)q2(2) [Freidel, DP, Raclariu 2021-I]
S

pseudo-vector field
Linear action 2

62C={Q(2),Ct=--- — &, =2D*),' + guDZD + %D%@u

New non-local (phase space) symmetry action
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Universal behaviour of scattering amplitudes (at tree level) [Miguel's talk]

In the limit w — 0: (out|a (wi)S|in) = (s§£> + s 4 s§3>) (out|S|in) + O(w?)

t t 1
Soft factors: Leading Subleading Sub-subleading

[Weinberg 1965] [Cachazo, Strominger 2014]

) 1K u s L
Large-r mode expansion of C' near 77 :  C(u,) = 8?/ dw {ai Twi)e™" — aS™(wi)e “"“}
0

In order fo have a well defined scattering problem in GR [Strominger 2013] :

qs(z>|1f - q8<i<z))|:z+ — (out| q8<z)|zj S—§5 qs(e(z))|I; in) =0

antipodal match

Infinite number of Conservation laws = Symmetries of the S-matrix

14



Universal behaviour of scattering amplitudes (at tree level) [Miguel's talk]

In the limit w — 0: (out|a (wi)S|in) = (559 + s 4 s§3>) (out|S|in) + O(w?)

t t 1
Soft factors: Leading Subleading Sub-subleading

[Weinberg 1965] [Cachazo, Strominger 2014]

) 1K u s L
Large-r mode expansion of C' near 77 :  C(u,) = 8?/ dw {ai Twi)e™" — aS™(wi)e “"“}
0

In order fo have a well defined scattering problem in GR [Strominger 2013] :

qs(z>|1f - q8<‘;<z))|:z+ — (out| q8<z)|zj S—§5 qs(e(z))|I; in) =0

antipodal match

Infinite number of Conservation laws = Symmetries of the S-matrix

Truncated Ward identities: Leading, subleading, sub-subleading soft th.s

(S 1
(out|[g?, S]fin) = —(out|[g2, ]lin) RS

Asymptotic Einsteins eq.s <—  Ward identities

Asymptotic dynamics as charge conservation eq.s
[Strominger 2014]; [Kapec, Lysov, Pasterski, Strominger 2014]; [Campiglia, Laddha 2014]; [Freidel, DP, Raclariu 2021-I]
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Recap of parts 1 & 2

¢ Symmetry principle as a powerful organizing tool: existence of a spin-2 charge
€ Clear connection between the spin-2 conservation equation and the SSL soft theorem

€ Unlike the spin-0 and -1 symmetries responsible for the leading and subleading soft theorems,
the spin-2 symmetry is not simply an asymptotic diffeomorphism:

Non-local transformation represented by a pseudo-vector field acting on scri

Classical GR at null infinity — Tree-level Feynman diagrams

Quantum asymptotic Einsteins eq.s from quantization of the symmetry charge bracket

= Application to non-perturbative derivation of scattering amplitudes [Abhay’s talk]

[ Spin-2 charge as one of the canonical generators for a bigger symmetry algebra that
can be represented in the gravitational phase space?

[0 Are there physical observables associated to these new charges?

15



Part 3: Higher spin dynamics

16




Weyl scalars

Completing the null frame with the fields: ¢ = 0., n=e 290, — 09, +r2T20,)

Weyl scalars: Uy = _C€m£m7 Uy = _Cﬁnéma Uy = _Oémfnna U3 = _Cnmnéa Uy = —Chmnm

Asymptotic expansions around future null infinity:

> \I/(S) \IJO \IJO \IJO \IIO
Uy = O Uy = — 4+ O(r Uy =—+0(r Uy =—+0(r Uy, =—+0(r
=3 = +007), B TOUT), = k00T, W= SR 06T
Incoming radiation Outgoing radiation at ZT

® Spacetime interpretation: Covariant observables = Asymptotic Weyl scalars
\112— 7“3+S Qs for S = _27_1707172
0 N 0 0 0 (0)
Vi=Q.="7, W=0.,=7, ¥=Q=Mc, ¥W=0=P ¥ =0-=

17



w Higher spin charges [Freidel, DP, Raclariu 2021-I1] :

NP charges [Newman, Penrose 1968]

(=2....n+1 {>n+2
v v
OO\I’(n) n n n n —)" =
U= =0, vl =e Lelv g :%D”Qwﬁ--- for  n>0
n=0 '

such that: O, =DQ, 1+ u ; s)

CO,_9 for s> —1

The higher spin charges are associated to the remaining free data at Z* and encoded in the expansion modes of ¥,

1 1 1 2mamapg (n)
— ~Cup + 45 (CopCP v I
Y4B = 045 + —Cap + 5445 (Cop >+?;rn+3((n+3)(n+2) ooreer >

18



w Higher spin charges [Freidel, DP, Raclariu 2021-1I] :

NP charges [Newman, Penrose 1968]

(=2....n+1 {>n+2
v v
OO\I’(n) n n n n —)" =
U= =0, vl =e Lelv g :%D"Qn+2+--- for  n>0
n=0 '
: (1+s)

such that: Q,=DQ, 1+ CQs o for s2=>-1

2

The higher spin charges are associated to the remaining free data at Z* and encoded in the expansion modes of ¥,

1 1 1 2mamapg (n)
— ~Cup + 45 (CopCP v I
Y4B = 045 + —Cap + 5445 (Cop >+?;rn+3((n+3>(n+2) ooreer )

Evidence:
i) Explicitly verified to all orders up to s =3

ii) Satisfied for all spin-s at linearized order from Bianchi identities of NP formalism [Newman, Penrose 1968]
iii) Satisfied for all spin-s in self-dual gravity [Ball, Narayanan, Salzer, Strominger 2021]; [Costello, Paquette 2022]

iv) Direct evidence that these charges form a canonical representation of a Witoo loop algebra
on the gravitational phase space from the linearized contribution to the charge bracket

18



Higher spin charges

Renormalized higher spin generators
with k oscillators:

Q5 (u, ) Z s—)n) D7 QF (u, 2), k=1,2,...,s+1

’n:
Higher spin charge aspects:

¢¥(z) = lim §¥(u,2) — qi(z) = D572 N, (2), Ns(z) = —_—. /OO duu® N (u, 2)

U——00

Neg. helicity (sub)s-leading soft graviton operator
(or higher spin memory observables)

Action of the quadratic spin-s charge on the gravitational phase space: {q2(2),C(v’,2')}

Ward identities for higher spin charges qs —— Tower of free-level soft graviton theorems

19



Higher spin charges

Renormalized higher spin generators u, 2) w)®” nDs n Ok (u, L —1.9 st
with k oscillators: qS Z s _ n) Q, ( ) gLy ..y ST

n=0

Higher spin charge aspects:

U——00

¢¥(z) = lim §¥(u,2) — qi(z) = D572 N, (2), Ns(z) = —_—. /OO duu® N (u, 2)

Neg. helicity (sub)s-leading soft graviton operator
(or higher spin memory observables)

Action of the quadratic spin-s charge on the gravitational phase space: {q2(2),C(v’,2')}

Ward identities for higher spin charges qs —— Tower of free-level soft graviton theorems

8

Linearized charge bracket Qs(T) == - / d*z q7s(2)qs(2)
S

{Qs(1), Qo (7)1} = {Q2(7), Qu ()} +{Q4(7), Q% (T)} = Qu s 1 [(8' + 1) 7' D7 — (s + 1)7 D7

Wi4+o00 loop algebra [Freidel, DP, Raclariu 2021-1I]
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Higher spin memory observables

Gravitational wave (displacement) memory
[Zel’dovich, Polnarev 1974]; [Braginsky, Thorne 1987]; [Christodoulou 1991]:

Change in displacement of initially comoving observers 7,7
a¢ ~ [[ B

Displacement memory = A(source properties) + / (flux of gravitational waves)

1 1w

- / D*N() =AM+ - / du'C(u" )N (u)

2 Ju, 4 /o,
Nozspin—OTnemory obs. integraarof flux

For spin-l memory see [Pasterski, Strominger, Zhiboedov 2016]; [Nichols 2018]

20

gH (1) 0
y
€4 (o)
|




Higher spin memory observables

Gravitational wave (displacement) memory ) 7

[Zel’dovich, Polnarev 1974]; [Braginsky, Thorne 1987]; [Christodoulou 1991]:

Change in displacement of initially comoving observers 7,7

ag ~ [ [ ROuivse ;

Displacement memory = A(source properties) —|—/ (flux of gravitational waves)

1o ] [
5/ D*N (u) =AM—|—1/ du'C(u" )N (u)

TV
No=spin—0 memory obs. integral of flux

For spin-l memory see [Pasterski, Strominger, Zhiboedov 2016]; [Nichols 2018] €4 (10)

Allowing for initial relative velocity and acceleration(s): Higher spin-memory obs oF

Curve deviation (generalization of displacement memory) [Grant, Nichols 2019] /\
| n /\
A&(ug,ur) = = ¥ [(n+ 1) Ny (uo,u1) — (uy — o) Nn—1(uo, u1)] 0 € u=us \/ Vf\\vﬁ' >

- 2r
n>0

where Af(u) = §(u) — &flat (u)

Gravitational memory effects are now being implemented in numerical relativity waveforms
for binary black hole mergers [Khera, Krishnan, Ashtekar, De Lorenzo 2020]; [Mitman et al. 2020]
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Outlook

¢ We have proposed a set of evolution equations for higher spin-s charges expressed as the recursion relations:

: (14 s)

Qs =DQs_ 1+ 5 CQ, o for s>-1

New non-local symmetries associated to pseudo-vector fields

€ To linear order the Wiy loop algebra has a canonical realisation in the gravitational phase space
in ferms of the Poisson bracket of the higher spin charges

[J The relevance of the recursion relation in encoding the expression of the vacuum EEs at subleading orders
in a large-r expansion needs to be firmly established in the case s>3

[J Does the Wi4oo structure survives at quadratic order in the bracket and
the inclusion of the the mixed helicity sector?

[J How much of the radiation signal can be reconstructed from these higher spin charges?

Exciting recent results relating celestial charges to canonical multipole moments of the
linearized gravitational field in the bulk parametrizing a generic post-Minkowskian metric
without incoming radiation [Compere, Oliveri, Seraj 2022]
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Universal behaviour of scattering amplitudes

(out|a ()S]in) = (S + S + SE) (out|S|in) + O(¢?)

n 12
Sf) :g (Px - €7) : Leading
— pr-q
n + +
1 1K Pr - )q - Jg - €
Soft factors: Si) ) Z ( ])?i > ) ; Subleading
k=1
[Cachazo, Strominger 2014]
g2 _ _F — (% J - q)?
= 7 4 Z Dk q Sub-subleading
k=1
. A Y > outy AN WU out A\ - — WU
Large-r mode expansion of C near Z7: Cl(u,2) = Sz dw [a_ (wz)e™™ —af™(w)e }
0

[He, Lysov, Mitra, Strominger 2014]

Radiative data bracket -> Standard commutator for the modes :

q = wWZ : (outgoing) graviton momentum

T+ __

+ _+ .
€y = ELEy

. graviton polarization

Pk, Ji © momenta and angular momenta of other (hard) particles

22

s (wi), al (W3] = (2w)3%5(w W)z, )

Flat retarded coordinates on the plane

“ (14+2z,z4+2,—i(z— 2),1 — 22)

b
LN

€Z(Q> :é;(q) — ﬁ<_2717 7’7_5)
u EkWk _ _ . _ _
Dy = (14 212k, 25 + 2, —0(2k — 2k), 1 — 212k)




o0
e” S~

’
] ] out
' ® Q) p3
. Seama
~o .
R ©:
~\ n in :
X P Py
out ’
P s
Y

Celestial Holograph
graphy Conformal primary boost eigenstates

reformulation of the gravitational scattering problem (A —1) At <
in a basis of asymptotic boost eigenstates Op X — 5 / duu™2" N (u, 2)
[Pasterski, Shao, Strominger 2017] 0

Lorentzian CCFT with global conformal group SL(2,R)r x SL(2,R),

Celestial OPE of two gravitons in the antiholomorphic collinear limit 212 = 21 — 22 — 0

Euler beta function
n—|—1

ZB Ar —1+mn, A2i2+1)1§ 3n0A+A (22) + O(21y)
n=0

Ox, (21)Ox, (22)

~N —
2212

[Fan, Fotopoulos, Taylor 2019]; [Pate, Raclariu, Strominger, Yuan 2019]

o Infinite fower of soft theorems governed by a Wi4oo structure

[Guevara, Himwich, Pate, Strominger 2021]; [Strominger 2021]



Higher spin charges

Renormalized higher spin generators with £ oscillators:

~k L - (_u>s—n s—n Ak L
qs (u,2) -—Z (s—n)!D Qr(u, z), k=1,2,...,5+1

n=0
Higher spin charge aspects:

. R 1(=1 s+1 o0 N
qs(2) = ullfjloo s (u, 2) — qs(z) = DTNy (2), Ng(z) := 5%/ du u®N (u, z)

Neg. helicity (sub)s-leading soft graviton operator

Action of the quadratic spin-s charge on the gravitational phase space:

2 S
(2(2), O )} = 2 ST (1) (0 1) (WD + 3)s ()0 *DEC( 2\ DS 55, )
" n=0
[Freidel, DP, Raclariu 2021-II]

Ward identities for higher spin charges ¢s ——  Tower of free-level conformally soft graviton theorems

(1+s)
2

Celestial Holography C Q,=DQ, 1+ C'Qs_o
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Wil+o0o structure

Canonical derivation on GR phase space:

8

Qs(7) := ;/sdQZ q7s(2)qs(z) with 74(2,2) GV(S;(:iC)s?,B:s;l)

Linearized charge bracket

{Qs(7), Qo (T} ={Q3(7), Qu (7))} +{Q5(7), Q% ()} = Qus 1 (8" + 1) 7' D7 — (s + 1)7D7]

& Qs Qf;;/,n/] =i[m(l+s)—m'(1+s)]Q ! with  m,n,m/,n’ >0

m—+m’—1,n+n’

Wi4+oco loop algebra [Freidel, DP, Raclariu 2021-1I]

[Guevara, Himwich, Pate, Strominger 2021]; [Strominger 2021]
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