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Overview

Current goals (work in progress — ∼2 months behind schedule):
1. Extend the definition of holonomy observables for the Ponzano–Regge

model (Barrett and Hellmann 2012) to the Turaev–Viro model (∼)
2. Perform explicit computations of these observables (7)

Why?
Quantum groups in LQG are not (yet) fully understood
Work on the canonical formulation points to the origins of quantum groups
(Dupuis et al. 2020; Noui, Perez and Pranzetti 2010, 2011, 2012, 2014), but
the root of unity case is still murky (Rennert 2018)
Developing a “holonomy representation” of the TV model is in parallel to
the problem above (covariant vs. canonical)
Adapt tools that use holonomies to the TV model, e.g., coupling of particles
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The Turaev–Viro model as a TQFT

The Turaev–Viro model is
a TQFT built from (the category of representations of) the quantum group
uq(sl(2,C))

a spinfoam model for 3d Euclidean LQG with Λ > 0 and

q = exp

(
i
8πG~

√
Λ

c

)

From Hopf algebras to TQFT (Oeckl 2005)

4∗ =  = d4

4∗ 3 f 7→ Vf ∈ ob( C), (∂4)∗ 3 ` 7→ V` ∈ ob( C),

Z4 = κ−χ4∗
∑
Vf

(∏
f

cdim(Vf)

)
d4(Vf , of), Z : nCob→ Hilb

TV model is the theory with C = uq(sl(2,C))M at q a root of unity
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uq(sl(2,C)) Hopf algebra

Uq(sl(2,C)) is the q-deformation of U(sl(2,C)) with generators {K,K−1, E, F}

When q is a root of unity, its representation theory is nontrivial −→ useful to
deal with a reduced algebra

uq(sl(2,C)) = Uq(sl(2,C))/I; Kp′ = 1, Ep
′

= 0, F p
′

= 0,

qp = 1, p′ =

{
p odd p
p/2 even p

Turaev–Viro model:

ZTV =

(
−

2r

(q − q−1)2

)−P∑
jf

(∏
f

(−1)2jf [2jf + 1]q

)∏
v

(−1)Jv
{
jv1 jv2 jv3

jv4 jv5 jv6

}
q

,

q = exp

(
iπ

r

)
= exp(i

√
Λ),

Vf

Vf

= ∆Vf
◦
(

idVf
⊗
∫
uq(sl(2,C))

)

The TV model has even p = 2r =⇒ p′ = r
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Holonomy observables

Holonomy observables F (ge) computed for the PR model in (Barrett and
Hellmann 2012)

〈F 〉 ∝ lim
q→1
〈Γ(je)〉K〈Γ(je, Oe)〉K, F (ge) =

∏
e∈Γ

D
(je)
mem

′
e
(Ue)O

mem
′
e

e ;

〈F 〉 ∝ lim
q→1
〈Γ(je)〉K〈Γ(je)〉K = lim

q→1
〈Γ(je)〉R, Oe = ιe

These are q → 1 limits of spin observables for the TV
model: Wilson networks in the TQFT formalism

〈ΓW 〉 =
Z4[ΓW]

Z4
, (ΓW, Ve,Φv), e 7→ Ve, v 7→ Φv

But there is no group SLq(2,C) with

U(slq(2,C)) = Uq(sl(2,C))

How to extend to the TV model?

Φ

Ψ

Υ
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Extension to Turaev–Viro

The argument
If C ∼= C′, the TQFTs are isomorphic
If H ∼= H′, HM∼= H′

M

For su(2), U(su(2)) ∼= (U(su(2)))∗ = O(SU(2)) (Fourier transform between
su(2) and SU(2); between spins and holonomies)
Finding a 1-to-1 duality for uq(sl(2,C)) allows for the definition of the
holonomy observables
Expectation: 〈F 〉 = 〈ΓW 〉 (gauge invariant case)

For odd p (qp = 1): (Aziz and Majid 2019; Glushchenkov and Lyakhovskaya
1997; Lyubashenko and Majid 1994):

(uq(sl(2,C)))∗ = oq(SL(2,C)) = Oq(SL(2,C))/J

ap = 1 = dp, bp = 0, cp = 0

F : oq(SL(2,C))→ uq(sl(2,C)) is invertible

For even p (the TV case), things are (unfortunately) not so simple. . .
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Summary and Plans for the Future

What is next?
If possible, gain more information on the case of even p
If impossible, work on simpler cases (e.g., Λ < 0 =⇒ q ∈ R)
Compute the observables explicitly
Study the contributions to the canonical approach and compare results

Find collaborators with experience in
The theory of the uq(sl(2,C)) Hopf algebra
Quantum groups in LQG

Thank you!
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