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Overview

Current goals (work in progress — ~2 months behind schedule):

1. Extend the definition of holonomy observables for the Ponzano—Regge
model (Barrett and Hellmann 2012) to the Turaev—Viro model (~)

2. Perform explicit computations of these observables (X)
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1. Extend the definition of holonomy observables for the Ponzano—Regge
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2. Perform explicit computations of these observables (X)

Why?
m Quantum groups in LQG are not (yet) fully understood

m Work on the canonical formulation points to the origins of quantum groups
(Dupuis et al. 2020; Noui, Perez and Pranzetti 2010, 2011, 2012, 2014), but
the root of unity case is still murky (Rennert 2018)

m Developing a “holonomy representation” of the TV model is in parallel to
the problem above (covariant vs. canonical)

m Adapt tools that use holonomies to the TV model, e.g., coupling of particles
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The Turaev-Viro model is

m a TQFT built from (the category of representations of) the quantum group
uq(sl(2,C))
m a spinfoam model for 3d Euclidean LQG with A > 0 and
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TV model is the theory with 6 = g (s1(2 C))M at ¢ a root of unity
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Uq(sl(2,C)) is the g-deformation of U(sl(2,C)) with generators {K, K~!, E, F}

When gq is a root of unity, its representation theory is nontrivial — useful to

deal with a reduced algebra

uq(sl(2,C)) = Uqg(sl(2,C))/I;
odd p

p
=1 p= {
p/2 evenp

Turaev—Viro model:
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Holonomy observables
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Holonomy observables F(ge) computed for the PR model in (Barrett and
Hellmann 2012)

(F) o< lim (T(je)k(P(je, O, Flge) =] ] DY), (U)OI s
eel’

(F) o< Iim (T (je))x (C(je))x = Im(T(je))r,  Oe =te
qg—1 qg—1
These are ¢ — 1 limits of spin observables for the TV
model: Wilson networks in the TQFT formalism

Z4[M'w]

<FW> = A 5

(FW7 Ve7q>v), e Ve, vier &y
But there is no group SLg(2,C) with

U(sly(2,C)) = Uq(s1(2,C))

How to extend to the TV model?
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The argument
m If 6 =6’ the TQFTs are isomorphic
s IEHSH, yM= M
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The argument
m If 6 =6’ the TQFTs are isomorphic
s IEHSH, yM= M
m For su(2), U(su(2)) = (U(su(2)))* = O(SU(2)) (Fourier transform between
su(2) and SU(2); between spins and holonomies)

m Finding a 1-to-1 duality for ugq(sl(2,C)) allows for the definition of the
holonomy observables

m Expectation: (F') = (I'yy) (gauge invariant case)
For odd p (¢P = 1): (Aziz and Majid 2019; Glushchenkov and Lyakhovskaya
1997; Lyubashenko and Majid 1994):

(uq(sl(2,C)))" = 04(SL(2,C)) = Oq(SL(2,C))/J
aP=1=dP, ¥ =0, P =0
F: 064(SL(2,C)) — ugq(sl(2,C)) is invertible

For even p (the TV case), things are (unfortunately) not so simple. ..
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m The theory of the uq(sl(2, C)) Hopf algebra
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Thank you!
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