

based on 2207.12464 with Gabriele Dian, Alastair Stewart

Outline

- · Intro to Amplituhedron, positive geometry, canonical form
- . Loop amplituhedron needs generalisation of positive geometry!
- . Reason? Internal boundaries
- . Suggests weighted positive geometries (WPGs)

. Deepest cuts

Flips once from + to - Flipping Number 1

Natural Generalization [Arkani-Hamed, Truka + Thomas]

Toy model Polygons in P^2	"Tree Amplituhedron"	An, k, m	(physics M=4) k+m
$Y \in \vec{P} = Gr(1,3)^{}$	$\rightarrow Gr(k, k + m)$	k-planes	, k+m
$Z; \in P^2$	$\rightarrow P^{m+k-1}$	lines	in R ^{ktm}
<y i="" i+1="">>0 i=1n</y>		> D	(m=4)
<y1 i=""> has <y123 i=""> has k sign flips (max possible) One sign flip</y123></y1>			
$\left(\begin{array}{c} Polygons in P^2 = A_{n,1,2} amplituhedron \right)$			

Loops too!! (Integrand)

L-Loop amplituhedron $A_{n,k,l,m} = \text{amplituhedron Y}$ together with L lines L_i , $i = l, ..., L \in G_r(2, m+k)$

in Pm+k-

< YL; jj+1) 20

 $\langle Y L; L; \rangle > 0$ loop flipping number.

Claim: canonical form of the (n.k.l,m=4) amplituhedron = planar, l-loop, N MHV, n-point amplitude (integrand) Larkan-Hamed. Trikal

Canonical Form

• Natural map from geometry to differential form: "canonical form"

• Eg Triangle:
$$A_{31,1}$$

 $\Lambda[4] = [1, 2, 3] := \frac{\langle Y d^{2} Y \rangle \langle 123 \rangle^{2}}{\langle Y_{12} \rangle \langle Y_{23} \rangle \langle Y_{31} \rangle}$

• Polygon:
$$A_{n,1,2}$$
 $\mathcal{N}[\mathcal{O}] = \text{sum of triangles} = \sum_{i=2}^{n-1} [1, i, i+i]$

6 5 4

Positive geometry = region possessing a canonical form

Amplitude = Canonical Form of Amplituhedron

• Eg 2: A 5, 1,4

$$[12345] = \frac{\langle Yd^{4}Y \rangle \langle 12345 \rangle^{2}}{\langle Y1234 \rangle \langle Y2345 \rangle \langle Y3451 \rangle \langle Y4512 \rangle \langle Y5123 \rangle}$$

$$A_{n,1,14} = \sum_{i,j} [1, i, i, j, j+i]$$

- This is precisely the n-point NMHV tree-level superamplitude in N=4 SYM !!
- Claim: The canonical form of the (n,k,4) amplituhedron is the n-point, N^RMHV, tree-level, planar scattering amplitude in N=4 SYM (Arkan-Hamed, Truka)
- Similar geometry with fewer sign flips -> products of amplitudes
- Similar geometry without sign flip constraint -> square of superamplitude man, phy

Canonical form

- Canonical Form (and hence positive geometry) defined recursively via it's residues [Arkani-Hamed, Bai, Lam]
- Canonical form = volume form; log divergences on the boundary
- residue on boundary= canonical form of boundary

(True for all boundary components)

, Eventually reach dimension O boundaries

• $\mathcal{L}(\bullet) = \pm 1$ (depending on orientation)

Maximal residues of positive geometries = +/-1

Note:

Multiple residue = Residues of residue of residue ...

Boundary components of boundary components of boundary components

(Small Aside) Multiple residue not unique Higher codimension boundaries not unique

- In general multiple residues depend on the order you take single residues
- · Analogous statement true for boundaries
- Everything perfectly consistent!

(Boundary component of) ^k geometry

(not clear what interpretation of this is for k > 1)

Codimension k boundary component of geometry

Simple example

Codimension 2 boundary = [A,C] Boundary of sloping roof boundary = [B,C] Boundary of flat roof boundary = [A,B]

Small Problem

Loop amplitude has max residues different from +/-1 !!! 2 loop MHV: 11+ H

$$\begin{split} \mathrm{MHV}(2) &= \frac{\langle A_1 B_1 \mathrm{d}^2 A_1 \rangle \langle A_1 B_1 \mathrm{d}^2 B_1 \rangle \langle A_2 B_2 \mathrm{d}^2 A_2 \rangle \langle A_2 B_2 \mathrm{d}^2 B_2 \rangle \langle 1234 \rangle^3}{\langle A_1 B_1 A_2 B_2 \rangle \langle A_1 B_1 14 \rangle \langle A_1 B_1 12 \rangle \langle A_2 B_2 23 \rangle \langle A_2 B_2 34 \rangle} \times \\ & \times \left[\frac{1}{\langle A_1 B_1 34 \rangle \langle A_2 B_2 12 \rangle} + \frac{1}{\langle A_1 B_1 23 \rangle \langle A_2 B_2 14 \rangle} \right] + A_1 B_1 \leftrightarrow A_2 B_2 \,. \end{split}$$

• Parametrise 4×4 $Z = (Z_1 Z_2 Z_3 Z_4)$ as identity and the loops as

$$\begin{pmatrix} A_i \\ B_i \end{pmatrix} = \begin{pmatrix} 1 & a_i & 0 & -b_i \\ 0 & c_i & 1 & d_i \end{pmatrix} \ .$$

Then (omitting the differential)

$$MHV(2) = -\frac{a_2d_1 + a_1d_2 + b_2c_1 + b_1c_2}{a_1a_2b_1b_2c_1c_2d_1d_2\left((a_1 - a_2)\left(d_1 - d_2\right) + (b_1 - b_2)\left(c_1 - c_2\right)\right)}$$

- Now we take the residues in $b_1 = 0, c_1 = 0, b_2 = 0, c_2 = 0$
- complicated pole factorises revealing new pole

$$-\frac{a_2d_1+a_1d_2}{a_1a_2d_1d_2(a_1-a_2)(d_1-d_2)}.$$

• Now take the residue in a_1 at $a_1 = a_2$

$$-\frac{(d_1+d_2)}{a_2d_1d_2(d_1-d_2)}.$$

• Now take residue in d_1 at $d_1 = d_2$, max res=2

Loop amplituhedron 7 positive geometry !!??

Examine the above residues geometrically. Start with amplituhedron. Carefully take boundaries corresponding to each of the above residues:

$$a_i > 0, \quad d_i > 0, \quad -(a_1 - a_2)(d_1 - d_2) > 0 \quad = \quad -\frac{a_2d_1 + a_1d_2}{a_1a_2d_1d_2(a_1 - a_2)(d_1 - d_2)}$$

 $\mathcal{R}_1 := \{a_1, a_2, d_1, d_2 \mid a_1 > a_2 > 0 \land d_2 > d_1 > 0\}$ $\mathcal{R}_2 := \{a_1, a_2, d_1, d_2 \mid a_2 > a_1 > 0 \land d_1 > d_2 > 0\}$

same orientation

"internal boundary" separating two regions of opposite orientation (so not oriented!)

Previously unnoticed feature:

The (loop) amplituhedron contains internal boundaries!

Simple toy example:

Xy+z>0, z>0

$$\int z/(z(z+xy))$$

Composite singularity [Arkani Hamed, Cachazo, Cheung, and Kaplan]

Generalised positive geometry Generalized canonical form recursive def:

 $k_{\varrho_{\mathcal{S}}} \mathcal{L} = \lim_{f \to 0} f\Omega = df \wedge (\omega_{\text{ext}} + 2\omega_{\text{int}})$

canonical form of standard (external) boundary region cànonical form of internal boundary region

· Agrees with the formula

External boundary Internal boundary

GPGs more complete than PGs: Anything that triangulates in GPGs is a GPG

• not true for positive geometries eg.

But suggests further generalisation: Weighted Positive Geometry (WPG)

First recall:

Orientation = volume form $0 \sim \lambda 0$, λo

 Define geometry by a piecewise constant Z-valued weight function w (and orientation form O)

weighted Positive Geometry (WPG):

- Natural additive structure (geometries can overlap makes proofs easier!)
- $(w_1, O_1) \oplus (w_2, O_2) = (w_1 + \operatorname{sign}(\lambda)w_2, O_1)$
- where $O_1 = \lambda O_2$

• Natural Projection operator onto boundaries (discontinuities): $\Pi_{\mathcal{C}}(w, O) = (w^+|_{\mathcal{C}}, O^+|_{\mathcal{C}}) \oplus (w^-|_{\mathcal{C}}, O^-|_{\mathcal{C}})$

Residue of canonical form is canonical form of the projection:

$$\operatorname{Res}_{\mathcal{C}}\Omega(w,O) = \Omega(\Pi_{\mathcal{C}}(w,O))$$

eg

$$\operatorname{Res}_{y=0,x=0}\Omega = -\operatorname{Res}_{x=0,y=0}\Omega = 3$$

WPGS -> GPGS and PGS

- GPGs are WPGs with w = 1 (in the GPG), D everywhere else
- Positive Geometries (PGs) are WPGs with $w = \pm 1, 0$ everywhere (so a GPG) AND induced weight on all nested boundary components is $\pm 1, 0$.
 - WPGs are a concrete realisation of the more abstract Grothendieck group of pseudo-positive geometries (formal sum) introduced in [Arkani-Hamed, Bai, Lam]

Characterising Generalised Positive Geometries?

- any region defined by multi-linear inequalities is a GPG
- canonical form given uniquely via cylindrical decomposition: (algorithm one uses to convert integration over region into multiple integral)

$$\begin{cases} a_1 < x_1 < b_1 \\ a_2(x_1) < x_2 < b_2(x_1) \\ \dots \\ a_d(x_1, \dots, x_{d-1}) < x_d < b_d(x_1, \dots, x_{d-1}) \end{cases}$$

$$\mathcal{R}_i := \{x_1, \cdots, x_d\}$$
 st

changing variables to:

$$x'_{j} = -\frac{x_{j} - a_{j}}{x_{j} - b_{j}},$$
 $\mathcal{R}_{i} := \{x'_{1}, \cdots, x'_{d}\}$ st $x'_{j} > 0$ for all j

$$\Omega(\mathcal{R}_i) = \prod_{j=1}^d \frac{dx'_j}{x'_j} =$$

$$\prod_{j=1}^{d} \left(\frac{1}{x_j - a_j} - \frac{1}{x_j - b_j} \right) dx_j$$

Push forward

Only if change of variables rational Multilinear inequalities ensures this

Characterising Generalised Positive Geometries?

- Multi-linear regions = very wide class
- Includes ALL amplituhedron geometries = multi-linear (inequalities defined by determinants which are multi-linear functions of the matrix components)
- · But non exhaustive: there are GPGs which are not multi-linear regions
- (eg hyperbolic: x y + 1 > 0, x > 0 is multi-linear but... region involving a circle $x^2 + y^2 - 1 < 0$, y > 0 is not)
- · Most general characterisation? Boundaries rational varieties?

Deepest cuts

- All loop proposal for a multiple (2L-3)-dim residue of loop amplitudes [Arkani-Hamed, Langer, Srikant, Truka]
- Geometrical configuration: All loop lines intersect in a common point (or all in a plane) $A_i = A$

· Canonical form of this configuration can be written down at arbitrary loop order

But how to get this result algebraically?

We find that sequences of single residues don't give this result!
Eq 3 loop:

"Intersect and slide"

• A new pole appears at:

 $\langle AB_1B_2B_3\rangle = 0$

Geometrically: two regions with opposite orientation separated by an internal boundary

$$\begin{aligned} \mathcal{R}^{\rm dc} &= \mathcal{R}_1^{\rm dc} \cup \mathcal{R}_2^{\rm dc} \\ \mathcal{R}_1^{\rm dc} &= \mathcal{A}_{dc}^{(3)} \cap \{ \langle AB_1B_2B_3 \rangle > 0 \} & \text{positive orientation} \\ \mathcal{R}_2^{\rm dc} &= \mathcal{A}_{dc}^{(3)} \cap \{ \langle AB_1B_2B_3 \rangle < 0 \} & \text{negative orientation} \end{aligned}$$

 $AB_1B_2B_3 > 0$ $(AB_1B_2B_3) > 0$ Higher loops?

- Above 3 loop result unique (different orderings of intersect / slide give same result up to sign)
- From 4 loops: different orderings of intersect / slide give different results
- All include further <ABBB> type poles / internal boundaries

- One can analyse the boundary of boundary Corresponding to multiple residues to very high loop order
- No explicit all loop formula but very quick predictive algorithm!
- Impossible without amplituhedron
- Huge amounts of info about the amplitude
- Determine higher 4-point amplitude/correlator to even higher (that ten-) loop order?
- Construct the relevant f-graphs (rather than using a basis)

Maximal loop-loop residue

All in one point AND all in one plane AND only three loop lines remaining

CLAIM: ANY way you reach this configuration gives the same answer (up to a numerical factor = number of internal boundaries crossed)

Final comments:

- Internal boundaries first found in squared amplituhedron (pian, PH)
- Amplituhedron-like (non max winding number) = amplitude x amplitude
- Sum of amplituhedron-like = squared amplituhedron = limit of correlahedron [Edon, Mason, 74]
- Squared amplitude contains non-unit max residues (but more trivially -- almost disconnected sum of positive geometries)
- This talk: So does loop amplitude, not a positive geometry!
- Loop amplituhedron = GPG or WPG

Future:

 Look back at amplituhedron boundary structure (+ relation to symbol etc.):

Eg [Dennen, Prlina, Spradlin, Stankowicz, Stanojevic, Volovich]

 Use cuts via amplituhedron to determine amplitude / correlator at higher loops (constructive approach?)

• Applications of weighted positive geometry? - Cosmological polytope [Arkani-Hamed, Benincasa, Tostnikov], Negative geometries [Arkani-Hamed, Henn, Truka], NON-planar amplitude [Arkani-Hamed, Bourjally, Cachazo, Postnikov, and Truka], Momentum amplituhedron [Damgaard, L. Ferro, T. Lakowski, and R. Moerman] etc.?

Amplituhedron, Amplituhedron-like geometries

Amplituhedron: [Arkani-Hamed, Thomas, Truka]

-

$$\begin{aligned} \mathscr{A}_{n,k} &:= \left\{ Y \in Gr(k, k+4) \middle| \begin{array}{l} \langle Yii+1jj+1 \rangle > 0 \\ \langle Yii+11n \rangle (-1)^{k} > 0 \\ \langle Y123i \rangle \rbrace \\ & \text{has } k \text{ sign flips as } i = 4, .., n \\ \text{for } Z \in Gr_{>}(k+4, n) \end{aligned} \right\} \\ \text{for } Z \in Gr_{>}(k+4, n) \end{aligned}$$

$$\begin{aligned} \text{Homogeneralization} \\ \text{Amplituhedron-like: min, and} \\ \mathscr{H}_{n,k}^{(f)} &:= \left\{ Y \in Gr(k, k+4) \middle| \begin{array}{l} \langle Yii+1jj+1 \rangle > 0 \\ \langle Yii+11n \rangle (-1) \end{pmatrix} > 0 \\ \langle Yii+11n \rangle (-1) \end{pmatrix} > 0 \\ \langle Yii+11n \rangle (-1) \end{pmatrix} > 0 \\ \text{for } Z \in Gr_{+}(k+4, n) \\ \text{$$

Loops too!! (Integrand)

L-Loop amplituhedron $A_{n,k,l,m} = amplituhedron Y$ together with L lines L_i , $i = 1, ..., L \in G_r(2, m+k)$

in Pm+k-

< YL; jj+1) 20

 $\langle Y L; L; \rangle > 0$ loop flipping number.

Claim: canonical form of the (n.k.l,m=4) amplituhedron = planar, 1-loop, N MHV, n-point amplitude (integrand) IArkani-Hamed. Trikal

AMPLITUNEDRON -> AMPLITUDES (N=4 SYM planar, perturbative integrands) Amplituhedron-like -> products of amplitudes

Main claim:

 $\int \left(\mathcal{F} \right)_{n,n+4} = H_{n,n-4}^{(f)} = A_{n,f} * A_{n,n-f-4} .$

products of superamplitudes

M=4

canonical form

• Loop version too!

$$\left(\prod_{a=1}^{m} \langle I_a \rangle_{k_1+m}\right) * \left(\prod_{b=1}^{m} \langle J_b \rangle_{k_2+m}\right) = \frac{(-1)^{(k_1k_2+k_2)m}}{m!} \sum_{\sigma \in S_m} \prod_{a=1}^{m} \langle Y(I_a \cap J_{\sigma(a)}) \rangle_{k_1+k_2+m}$$

$$\left\langle Y(I \cap J) \right\rangle = \sum_{i \in M(I)} \langle Yi \rangle \langle \overline{i}J \rangle \operatorname{sgn}(i\overline{i}) \xrightarrow{M(I) = \binom{I}{m}} \operatorname{set} o f \text{ ordered} m \text{ elements in } I$$

K1+k2 nlane

- · Correlahedron gives all half BPS single trace correlators [see SAGEX review]
- All correlators = new observation!! Consequence from [caron-Huot, coronado]
- · previously thought just stress-tensor multiplet
- · Equivalent to all IIB gravity amplitudes in AdS

Proofs (are hard!) (amplituhedron-like -> products of amplitudes)

- Alternative definition of amplituhedron-like (analogue of original amplituhedron definition via a positive C matrix Y=C.Z but now C splits into two pieces)
- Partial proof of equivalence of definitions (prove defn1 contains defn2, assuming equivalence of amplituhedron definitions)
- Prove products of onshell diagrams give a tessellation of amplituhedron-like geometries (defn2)

. Tree level only. Similar proof should work for loops. Not done in general but interesting special cases.

"squared amplituhedron"

- Simpler object (to describe);
- physical inequalities
- no flipping constraint
- ie union over all flipping constraints

Squared amplituhedron:

$$\mathscr{H}_{n,n-4,l} := \mathscr{H}_{n,n-4,l}^+ \cup \mathscr{H}_{n,n-4,l}^-$$

Cyclic + twisted cyclic

$$\mathscr{H}_{n,k,l}^{\pm} := \begin{cases} Y, (AB)_1, ..., (AB)_l & | \langle Yii + 1jj + 1 \rangle > 0 \\ \pm \langle Yii + 11n \rangle > 0 & 1 \le i < n-1 \\ \langle Y(AB)_j ii + 1 \rangle > 0 & \forall j, \forall i = 1, ..., n-1 \\ \pm \langle Y(AB)_j 1n \rangle > 0 & \forall j \\ \langle Y(AB)_i (AB)_j \rangle > 0 & \forall i \ne j \end{cases}$$
for $Z \in Gr_{\flat}$ $(k + 4, n)$

physical inequalities only

squared amplituhedron = union of amplituhedron-like

squared amplituhedron $\mathscr{H}_{n,n-4,l} = \bigcup_{f,l'} \mathscr{H}_{n,n-4,l}^{(f,l')}$

 $H_{n,n-4,L} = \sum_{s,L} H_{n,n-4,L} = \sum_{s,L} A_{n,s,L} * A_{n,n-4-5,L-L}$

Orientations match precisely!

(agreeing with correlahedron)

Squared amplituhedron -> Square of amplitude!

 $= \left(A_{n} \right)_{n-4, L}$

Problem:

- Canonical form (amplitude from amplituhedron) means max residues = 0, +/-1
- the maximal residues of the squared amplituhedron are not only +/-1

$$Qg.(A)_{6,2} = 2A_{6,2} + A_{6,1} + A_{6,1}$$

max residues = 0, +/-2, +/-4