Internal boundaries of the amplituhedron

Paul Heslop
 Durham University maths dept 9/8/2022
 Amplitudes 2022
 August 8-12, 2022
 Prague, Czech Republic

based on 2207.12464 with Gabriele Dian, Alastair Stewart

outline

- Intro to Amplituhedron, positive geometry, canonical form
- Loop amplituhedron needs generalisation of positive geometry!
- Reason? Internal boundaries
- Suggests weighted positive geometries (WPGS)
- Deepest cuts

The amplituhedron
Toy model: polygons in $p^{2}, y, z_{c} \in p^{2}$

note

$$
\langle Y 1, i\rangle=(+, \ldots,+,-\ldots,-)
$$

$$
i=2,3,4,5
$$

Flips once from + to - Flipping

Natural Generalization

Loops too!! (Integrand)
L-Loop amplituhedron $A_{m, k l m}=$ amplituhedron Y together with L lines $L_{i}, i=1, \cdots, L \in G_{r}(2, m+k)$

$$
\left\langle Y L_{i} j j+1\right\rangle>0
$$

$$
\left\langle y\left(i L_{j}\right\rangle>0\right.
$$

loop flipping number.

Claim: canonical form of the ($n, k, 1, m=4$) amplituhedron = planar, l-loop, $N^{k} \mathrm{mHt}, n$-point amplitude (integrand)

Canonical Form

- Natural map from geometry to differential form: "canonical form"
- Eg Triangle: $\left.\left.A_{3,2,2}\right\rangle y d^{2} y\right\rangle\langle 123)^{2}$
$\Lambda[A]=[1,2,3]: \frac{\left\langle y d^{2}\right.}{\langle y / 12\rangle y 23\rangle\langle y 31\rangle}$

- Polygon: $A_{0,1,2} \Omega[0]=$ sum of triangles $=\sum_{i=2}^{n \cdot 1}[1, i, i+1]$

Positive geometry = region possessing a canonical form

Amplitude = Canonical Form of Amplituhedron

- Eg 2: $A_{5,1,4}$

$$
[12345]=\frac{\left\langle y d^{4} y\right\rangle(12345)^{2}}{\langle y(234)(y 2345)(y 3451)(y 4512)\langle y 5123)}
$$

- $A_{n, 1,4}=\sum_{i, i}[1, i, i+1, j, j+i]$
- This is precisely the n-point NMHV tree-level superamplitude in N=4 SYM !!
- Claim: The canonical form of the $(n, k, 4)$ amplituhedron is the n-point, $N^{k} \mathrm{MHFV}$, tree-level, planar scattering amplitude in $N=4$ SYM
- Similar geometry with fewer sign flips \rightarrow products of amplitudes
- Similar geometry without sign flip constraint \rightarrow square of super amplitude

Canonical form

- Canonical Form (and hence positive geometry) defined recursively via it's residues
- Canonical form = volume form; log divergences on the boundary
- residue on boundary=canonical form of boundary

canonical form of geometry on $f=0$
(True for all boundary components)
- Eventually reach dimension o boundaries
- $\Omega(\cdot)= \pm 1 \quad$ (depending on orientation) \Rightarrow Maximal residues of positive geometries $=+/-1$

Note:
Multiple residue $=$ Residues of residue of residue ... \downarrow

Boundary components of boundary components of boundary components....

(Small Aside) Multiple residue not unique Higher codimension boundaries not unique

- In general multiple residues depend on the order you take single residues
- Analogous statement true for boundaries
- Everything perfectly consistent!
(Boundary component of)^k geometry

Codimension k boundary component of geometry
(not clear what interpretation of this is for $k>1$)
simple example

Codimension 2 boundary $=[A, C]$
Boundary of sloping roof boundary $=[B, C]$ Boundary of flat roof boundary $=[A, B]$

Small Problem

Loop amplitude has max residues different from +/-1 !!! 2 loop MHV:

$$
\begin{aligned}
& \operatorname{MHV}(2)=\frac{\left\langle A_{1} B_{1} \mathrm{~d}^{2} A_{1}\right\rangle\left\langle A_{1} B_{1} \mathrm{~d}^{2} B_{1}\right\rangle\left\langle A_{2} B_{2} \mathrm{~d}^{2} A_{2}\right\rangle\left\langle A_{2} B_{2} \mathrm{~d}^{2} B_{2}\right\rangle\langle 1234\rangle^{3}}{\left\langle A_{1} B_{1} A_{2} B_{2}\right\rangle\left\langle A_{1} B_{1} 14\right\rangle\left\langle A_{1} B_{1} 12\right\rangle\left\langle A_{2} B_{2} 23\right\rangle\left\langle A_{2} B_{2} 34\right\rangle} \times \\
& \times\left[\frac{1}{\left\langle A_{1} B_{1} 34\right\rangle\left\langle A_{2} B_{2} 12\right\rangle}+\frac{1}{\left\langle A_{1} B_{1} 23\right\rangle\left\langle A_{2} B_{2} 14\right\rangle}\right]+A_{1} B_{1} \leftrightarrow A_{2} B_{2}
\end{aligned}
$$

- Parametrise $4 \times 4 Z=\left(Z_{1} Z_{2} Z_{3} Z_{4}\right)$ as identity and the loops as

$$
\binom{A_{i}}{B_{i}}=\left(\begin{array}{cccc}
1 & a_{i} & 0 & -b_{i} \\
0 & c_{i} & 1 & d_{i}
\end{array}\right)
$$

Then (omitting the differential)

$$
\operatorname{MHV}(2)=-\frac{a_{2} d_{1}+a_{1} d_{2}+b_{2} c_{1}+b_{1} c_{2}}{a_{1} a_{2} b_{1} b_{2} c_{1} c_{2} d_{1} d_{2}\left(\left(a_{1}-a_{2}\right)\left(d_{1}-d_{2}\right)+\left(b_{1}-b_{2}\right)\left(c_{1}-c_{2}\right)\right)}
$$

- Now we take the residues in $b_{1}=0, c_{1}=0, b_{2}=0, c_{2}=0$
- complicated pole factorises revealing new pole

$$
-\frac{a_{2} d_{1}+a_{1} d_{2}}{a_{1} a_{2} d_{1} d_{2}\left(a_{1}-a_{2}\right)\left(d_{1}-d_{2}\right)} .
$$

- Now take the residue in a_{1} at $a_{1}=a_{2}$

$$
-\frac{\left(d_{1}+d_{2}\right)}{a_{2} d_{1} d_{2}\left(d_{1}-d_{2}\right)}
$$

- Now take residue in d_{1} at $d_{1}=d_{2}$,
\therefore Loop amplituhedron \neq positive geometry??

Examine the above residues geometrically.

- Start with amplituhedron. Carefully take boundaries corresponding to each of the above residues:

||
$\mathcal{R}_{1}:=\left\{a_{1}, a_{2}, d_{1}, d_{2} \mid a_{1}>a_{2}>0 \wedge d_{2}>d_{1}>0\right\}$
$\mathcal{R}_{2}:=\left\{a_{1}, a_{2}, d_{1}, d_{2} \mid a_{2}>a_{1}>0 \wedge d_{1}>d_{2}>0\right\}$
R_{1}, R_{L} same orientation

$d_{2}-d_{1}=0$ boundary.
\downarrow
"internal boundary" separating two regions of opposite orientation (so not oriented!)

Previously unnoticed feature:
The (loop) amplituhedron contains internal boundaries!

Simple toy example:

$$
x y+z>0, z>0
$$

$\Omega=2 /(z(z+x y))$
composite singularity

$y=0$ boundary:

Generalised positive geometry

Generalized canonical form recursive def:

$$
\begin{gathered}
\operatorname{Res}_{\mathcal{F}} \Omega=\lim _{f \rightarrow 0} f \Omega=d f \wedge\left(\omega_{\text {ext }}+2 \omega_{\text {int }}\right) \\
\begin{array}{l}
\text { canonical form of } \\
\text { standard (external) } \\
\text { boundary region }
\end{array}
\end{gathered}
$$

GPGS more complete than PGS: Anything that triangulates in GPGs is a GPG

- not true for positive geometries eg.

But suggests further generalisation: weighted Positive Geometry (WPG)

First recall:
Orientation $=$ volume form $0 \sim \lambda 0, \lambda>0$

Generalise: "weighted orientation"

- Define geometry by a piecewise constant Z-valued weight function w (and orientation form 0)

Weighted Positive Geometry (WPG):

- Natural additive structure (geometries can overlap - makes proofs easier!)
- $\left(w_{1}, O_{1}\right) \oplus\left(w_{2}, O_{2}\right)=\left(w_{1}+\operatorname{sign}(\lambda) w_{2}, O_{1}\right)$
- where $O_{1}=\lambda O_{2}$

- Natural Projection operator onto boundaries (discontinuities):
$\Pi_{\mathcal{C}}(w, O)=\left(\left.w^{+}\right|_{\mathcal{C}},\left.O^{+}\right|_{\mathcal{C}}\right) \oplus\left(\left.w^{-}\right|_{\mathcal{C}},\left.O^{-}\right|_{\mathcal{C}}\right)$

Residue of canonical form is canonical form of the projection:
$\operatorname{Res}_{\mathcal{C}} \Omega(w, O)=\Omega\left(\Pi_{\mathcal{C}}(w, O)\right)$
eq

$\operatorname{Res}_{y=0, x=0} \Omega=-\operatorname{Res}_{x=0, y=0} \Omega=3$

WPGS \rightarrow GPGS and $P G S$

- GPGS are WPGs with $w=1$ (in the GPG), O everywhere else
- Positive Geometries (PGS) are WPGS with $w= \pm 1,0$ everywhere (so a GPG) AND induced weight on all nested boundary components is $\pm 1,0$.
- WPGS are a concrete realisation of the more abstract Grothendieck group of pseudo-positive geometries (formal sum) introduced in

Characterising Generalised Positive Geometries?

- any region defined by is a GPG
- canonical form given uniquely via cylindrical decomposition:
(algorithm one uses to convert integration over region into multiple integral)
- $\mathcal{R}_{i}:=\left\{x_{1}, \cdots, x_{d}\right\}$ st

$$
\left\{\begin{array}{c}
a_{1}<x_{1}<b_{1} \\
a_{2}\left(x_{1}\right)<x_{2}<b_{2}\left(x_{1}\right) \\
\cdots \\
\cdots \\
a_{d}\left(x_{1}, \cdots, x_{d-1}\right)<x_{d}<b_{d}\left(x_{1}, \cdots, x_{d-1}\right)
\end{array}\right.
$$

changing variables to:

$$
x_{j}^{\prime}=-\frac{x_{j}-a_{j}}{x_{j}-b_{j}}
$$

$$
\mathcal{R}_{i}:=\left\{x_{1}^{\prime}, \cdots, x_{d}^{\prime}\right\} \quad \text { st } \quad x_{j}^{\prime}>0 \quad \text { for all } j
$$

$$
\Omega\left(\mathcal{R}_{i}\right)=\prod_{j=1}^{d} \frac{d x_{j}^{\prime}}{x_{j}^{\prime}}
$$

$$
=\prod_{j=1}^{d}\left(\frac{1}{x_{j}-a_{j}}-\frac{1}{x_{j}-b_{j}}\right) d x_{j}
$$

Only if change of variables rational Multilinear inequalities ensures this

Characterising Generalised Positive Geometries?

- Multi-linear régions = very wide class
- Includes ALL anp anedron geometries = multi-linear (inequalities defined by determinants which are multi-linear functions of the matrix components)
- But non exhaustive: there are GPGS which are not multi-linear regions
- (eg
hyperbolic: $x y+1>0, x>0$ is multi-linear but... region involving a circle $x^{\wedge} 2+y^{\wedge} 2-1<0, y>0$ is not)
- Most general characterisation? Boundaries rational varieties?

Deepest cuts

- All loop proposal for a multiple (2L-3)-dim residue of loop amplitudes
- Geometrical configuration: All loop lines intersect in a common point (or all in a plane)

$$
A_{i}=A
$$

$$
L_{i}=\left(A_{i} B_{i}\right)
$$

- Canonical form of this configuration can be written down at arbitrary loop order

But how to get this result algebraically?

- We find that sequences of single residues don't give this result!
- Eg 3 loop:

"Intersect and slide"

- A new pole appears at:

$$
\left\langle A B_{1} B_{2} B_{3}\right\rangle=0
$$

- Geometrically: two regions with opposite orientation separated by an internal boundary

$$
\begin{array}{ll}
\mathcal{R}^{\mathrm{dc}}=\mathcal{R}_{1}^{\mathrm{dc}} \cup \mathcal{R}_{2}^{\mathrm{dc}} & \\
\mathcal{R}_{1}^{\mathrm{dc}}=\mathcal{A}_{d c}^{(3)} \cap\left\{\left\langle A B_{1} B_{2} B_{3}\right\rangle>0\right\} & \text { positive orientation } \\
\mathcal{R}_{2}^{\mathrm{dc}}=\mathcal{A}_{d c}^{(3)} \cap\left\{\left\langle A B_{1} B_{2} B_{3}\right\rangle<0\right\} & \text { negative orientation }
\end{array}
$$

Higher loops?

- Above 3 loop result unique (different orderings of intersect / slide give same result up to sign)
- From 4 loops: different orderings of intersect / slide give different results
- All include further $\langle A B B B\rangle$ type poles / internal boundaries
- One can analyse the boundary of boundary ... Corresponding to multiple residues to very high loop order
- No explicit all loop formula but
- Impossible without amplituhedron
- Huge amounts of info about the amplitude
- Determine higher 4-point amplitude/correlator to even higher (that ten-) loop order?
- Construct the relevant f-graphs (rather than using a basis)

Maximal loop-loop residue

All in one point AND all in one plane AND only three loop lines remaining

CLAIM: ANY way you reach this configuration gives the same answer (up to a numerical factor = number of internal boundaries crossed)

Final comments:

- Internal boundaries first found in
- Amplituhedron-lit. (non max winding number) $=$ amplitude \times amplitude
- Sum of amplituhedron-like = squared amplituhedron $=$ limit of correlahedron
- Squared amplitude contains non-unit max residues (but more trivially -almost disconnected sum of positive geometries)
- This talk: So does loop amplitude, not a positive geometry!
- Loop amplituhedron = GPG or WPG

Future:

- Look back at amplituhedron boundary structure (+ relation to symbol etc.):
- Use cuts via amplituhedron to determine amplitude / correlator at higher loops (constructive approach?)
- Applications of weighted positive geometry? - Cosmological polytope , negative geometries non-planar amplitude momentum amplituhedron etc.?

Amplituhedron, Amplituhedron-like geometries
Amplituhedron:

$$
\mathscr{A}_{n, k}:=\left\{\begin{array}{l|ll}
Y \in G r(k, k+4) & \begin{array}{ll}
\langle Y i i+1 j j+1\rangle>0 & 1 \leq i<j-1 \leq n-2 \\
\langle Y i i+11 n\rangle(-1)^{k}>0 & 1 \leq i<n-1 \\
\{\langle Y 123 i\rangle\}
\end{array} & \frac{\text { has } k \text { sign flips as } i=4, . ., n}{}
\end{array}\right\} \begin{aligned}
& \text { for } Z \in G r_{>}(k+4, n)
\end{aligned} \quad \begin{aligned}
& \text { (tree } \\
& \text { level) }
\end{aligned}
$$

Natural generalization Amplituhedron-like:

$$
\mathscr{H}_{n, k}^{(f)}:=\left\{\begin{array}{l|l|l}
Y \in G r(k, k+4) & \begin{array}{l}
\langle Y i i+1 j j+1\rangle>0 \\
\langle Y i i+11 n\rangle(-1 \backslash f>0 \\
\langle\langle Y 123 i\rangle\}
\end{array} & \begin{array}{l}
1 \leq i<j-1 \leq n-2 \\
1 \leq i<n-1 \\
\text { has } f \text { sign flips as } i=4, \ldots, n
\end{array}
\end{array}\right\}
$$

$0 \leqslant f \leqslant k$

We only consider

$$
k=n-4 \quad \mathscr{A}_{n, k}=\mathscr{H}_{n, k}^{(k)}
$$

Loop versions also ($k=n-4$)

Loops too!! (Integrand)
L-Loop amplituhedron $A_{\text {nkim }}=$ amplituhedron Y together with L lines $L_{i}, i=1, \cdots, L \in G_{r}(2, m+k)$

Claim: canonical form of the amplituhedron = planar, -loop, $N^{k} \mathrm{MHV}$, amplitude (integrand)

Amplituhedron-like \rightarrow products of amplitudes
Main claim:

products of superamplitudes $\quad m=4$
canonical form

- LoOp version too!
s -product

$$
\begin{aligned}
&\left(\prod_{a=1}^{m}\left\langle I_{a}\right\rangle_{k_{1}+m}\right) *\left(\prod_{b=1}^{m}\left\langle J_{b}\right\rangle_{k_{2}+m}\right)=\frac{(-1)^{\left(k_{1} k_{2}+k_{2}\right) m}}{m!} \sum_{\sigma \in S_{m}} \prod_{a=1}^{m}\left\langle Y\left(I_{a} \cap J_{\sigma(a))}\right)\right\rangle_{k_{1}+k_{2}+m} \\
&\langle Y(I \cap J)\rangle=\sum_{i \in M(I)}\langle Y i\rangle\langle\bar{i} J\rangle \operatorname{sgn}(i \bar{i}) M(I)=\binom{I}{m} \text { s set of ordered } \\
& m \text { elements in } I
\end{aligned}
$$

correlahedron
$n+k$-plane 2 -planes

- Geometry $y \in G_{r}(n+k j n+k+4)\left\langle y x_{i} x_{j}\right)>0 \equiv G_{n j k}$

Large dimension but simple, no winding number constraint

- Correlahedron gives all half BPS single trace correlators
- All correlators = new observation!! Consequence from
- previously thought just stress-tensor multiplet
- Equivalent to all IIB gravity amplitudes in AdS

Proofs (are hard!)
 (amplituhedron-like \rightarrow products of amplitudes)

- Alternative definition of amplituhedron-like (analogne of original amplituhedron definition via a positive C matrix $y=C$. z but now C splits into two pieces)
- Partial proof of equivalence of definitions (prove defn1 contains defn2, assuming equivalence of amplituhedron definitions)
- Prove products of onshell diagrams give a tessellation of amplituhedron-like geometries (defn2)
- Tree level only. Similar proof should work for loops. Not done in general but interesting special cases.

"squared amplituhedron"

- Simpler object (to describe);
- physical inequalities
- no flipping constraint
- ie union over all flipping constraints
Squared amplituhedron: $\quad \mathscr{H}_{n, n-4, l}:=\mathscr{H}_{n, n-4, l}^{+} \cup \mathscr{H}_{n, n-4, l}^{-}$
$\left.\begin{array}{|cll}|Y i i+1 j j+1\rangle>0 & 1 \leq i<j-1 \leq n-2 \\ \pm\langle Y i i+11 n\rangle>0 & 1 \leq i<n-1 \\ \left\langle Y(A B)_{j} i i+1\right\rangle>0 & \forall j, \forall i=1, . ., n-1 \\ \pm\left\langle Y(A B)_{j} 1 n\right\rangle>0 & \forall j \\ \left\langle\boldsymbol{Y}(A B)_{i}(A B)_{j}\right\rangle>0 & \forall i \neq j\end{array}\right\}$
$\left.\begin{array}{|cll}|Y i i+1 j j+1\rangle>0 & 1 \leq i<j-1 \leq n-2 \\ \pm\langle Y i i+11 n\rangle>0 & 1 \leq i<n-1 \\ \left\langle Y(A B)_{j} i i+1\right\rangle>0 & \forall j, \forall i=1, . ., n-1 \\ \pm\left\langle Y(A B)_{j} 1 n\right\rangle>0 & \forall j \\ \left\langle\boldsymbol{Y}(A B)_{i}(A B)_{j}\right\rangle>0 & \forall i \neq j\end{array}\right\}$
for $Z \in G r_{>}(k+4, n)$
for $Z \in G r_{>}(k+4, n)$
physical inequalities only

squared amplituhedron = union of amplituhedron-like

$$
\begin{aligned}
\begin{array}{l}
\text { squared } \\
\text { amplituhedron : }
\end{array} \mathscr{H}_{n, n-4, l}=\bigcup_{f, l^{\prime}}
\end{aligned} \mathscr{H}_{n, n-4, l}^{\left(f, l^{\prime}\right)} H_{n, n-4, l}=\sum_{f, l^{\prime}} \begin{aligned}
& \text { orientations } \\
& \text { match precisely! }
\end{aligned}
$$

Squared amplituhedron \rightarrow Square of amplitude!

Problem:

- Canonical form (amplitude from amplituhedron) means max residues $=0,+/-1$
- the maximal residues of the squared amplituhedron are not only $+/-1$

$$
\lg \cdot\left(A^{2}\right)_{6,2}=2 A_{6,2}+A_{6,1}+A_{6,1}
$$

$$
\text { max residues }=0,+/-2,+/-4
$$

