The Loop Momentum Amplituhedron

Livia Ferro
University of Herkfordshire

Amplikudes 2022, Prague, 9.08 .2022

Work in progress with T. Lukowski arXiV:220X.XXXXX

Ineroduction and Review

Ineroduction

Recent advances in formulations for observables in QFTs: posilive geometries

Geometries with some notion of "positiviky" substikuking other concepts such as "Localiky"

Generalization of convex polytopes
this lalk focus on amplitudes in $N=45 \% \mathrm{M}$: amplituhedra

Introduction

Positive geometries

* Regions with boundaries of all codimension, each bdry again a positive geometry
* Equipped with a unique differential form with logarithmic singularities along all boundaries: the canonical form
for physically relevant positive geometries the canonical form is a physical quantity

Given a set of external kinematic data, there exists a geometrical object defined by imposing particular positivity constraints
From positivity:

* appropriate boundaries = locality
* appropriate factorisation into smaller pieces when approaching one of the boundaries = unitarily

Amplituhedra in $N=4 s y M$

1. Ampliluhedron (N . Arkani-Hamed, J. Truka)

* momentum kwistor space $(\lambda, x \lambda, \chi)$: planar sector
* MHV part faclorized oul: Wilson loops $\rightarrow A_{n, k}=A_{n, 2} W_{n, k}$
* tree and loop amplitudes

2. Momentum Amplicuhedron
(D. Damgaard, LF, T. Lukowski, M. Parisi)

* non-chiral spinor-helicily space $(\lambda, \eta \mid \tilde{\lambda}, \tilde{\eta})$
* Eree level amplitudes

I Can we generalize this construction lo include:

* Loops <- this lalk
* non-planar sector

Amplituhedron

Tree Amplituhedron $\mathscr{A}_{n, k^{\prime}}^{\text {tree }}$: relevant for $\mathrm{N}^{\prime} M H V$ Wilson Loops Image of the positive Grassmannian $G_{+}\left(K^{\prime}, n\right)$ through the map

$$
\left.\begin{array}{rlrl}
\Phi_{Z}: G_{+}\left(k^{\prime}, n\right) & \rightarrow G\left(k^{\prime}, k^{\prime}+4\right) & \rightarrow G(4, n) \\
C & \mapsto & Y & \mapsto
\end{array}\right)
$$

Momentum Ewistors
$z_{i}=\binom{\lambda_{i}^{\alpha}}{\tilde{\mu}_{i}^{\dot{\alpha}}=x^{\alpha \dot{\alpha}} \lambda_{\alpha}}$
where

$$
Y_{a}^{I}=\sum_{i=1}^{n} c_{a i} Z_{i}^{I} \quad \begin{aligned}
& I=1,2, \ldots, k^{\prime}+4 \\
& a=1,2, \ldots, k^{\prime}
\end{aligned}
$$

Z bosonized momentum-kwistor superspace $\{$ matrix Z positive $\}$

Amplituhedron

Tree Amplituhedron $\mathscr{A}_{n, k^{\prime}}^{\text {tree }}$: relevant for $N^{k^{\prime}} M H V$ Wilson Loops Image of the positive Grassmannian $G_{+}\left(K^{\prime}, n\right)$ through the map

$$
\begin{array}{rlrlr}
\Phi_{Z}: G_{+}\left(k^{\prime}, n\right) & \rightarrow & G\left(k^{\prime}, k^{\prime}+4\right) & \rightarrow & G(4, n) \\
C & \mapsto & Y & \mapsto & z
\end{array}
$$

Momentum Ewistors

$$
z_{i}=\binom{\lambda_{i}^{\alpha}}{\tilde{\mu}_{i}^{\dot{\alpha}}=x^{\alpha \dot{\alpha}} \lambda_{\alpha}}
$$

The momentum kwistors sit inside the bosonized space:

$$
\left.z=Y^{\perp} Z=(C Z)^{\perp} Z\right)_{Y_{a}^{I}=\sum_{i=1}^{n} c_{a i} Z_{i}^{I}}
$$

This map defines a subset in the kinemakic space of z_{i} for which

$$
\{\langle i i+1 j j+1\rangle \geq 0, i<j
$$

and the sequence $\{\langle 1234\rangle,\langle 1235\rangle, \ldots,\langle 123 n\rangle\}$ has k^{\prime} sign flips $\}$

Momentum Amplituhedron

Momentum Amplituhedron $M_{n, k}^{\text {tree }}$: relevant for N^{k-2} MHV amplitudes Image of the positive Grassmannian $G_{+}(k, n)$ through the map

$$
\begin{aligned}
\Phi_{(\Lambda, \tilde{\Lambda})}: G_{+}(k, n) & \rightarrow G(k, k+2) \times G(n-k, n-k+2) & \rightarrow & G(2, n) \times G(2, n) \\
C & \mapsto & \tilde{Y} & Y
\end{aligned}
$$

where

$$
\tilde{Y}_{\dot{\alpha}}^{\dot{A}}=\sum_{i=1}^{n} c_{\dot{\alpha} i} \tilde{\Lambda}_{i}^{\dot{A}} \quad Y_{\alpha}^{A}=\sum_{i=1}^{n} c_{\alpha i}^{\perp} \Lambda_{i}^{A} \quad\left\{\begin{array}{l}
A=(a, \alpha)=1, \ldots, n-k+2 \\
\dot{A}=(\dot{a}, \dot{\alpha})=1, \ldots, k+2 \\
k=k^{\prime}+2
\end{array}\right.
$$

($\tilde{\Lambda}, \Lambda$) bosonized spinor helicily variables $\left\{\right.$ malrix $\tilde{\Lambda}$ positive and matrix Λ^{\perp} positive $\}$

Momentum Amplituhedron

Momentum Amplibuhedron $M_{n, k}^{\text {tree }}$: relevant for N^{k-2} MHV ampliludes Image of the positive Grassmannian $G_{+}(k, n)$ through the map

$$
\begin{array}{cccccc}
\Phi_{(\Lambda, \tilde{\Lambda})}: G_{+}(k, n) & \rightarrow G(k, k+2) \times G(n-k, n-k+2) & \rightarrow & G(2, n) \times G(2, n) \\
C & \mapsto & \tilde{Y} & Y & \mapsto & \tilde{\lambda}
\end{array}
$$

The spinor-helicity variables sit inside the bosonized space:

$$
\lambda=Y^{\perp} \Lambda=\left(C^{\perp} \Lambda\right)^{\perp} \Lambda \quad \tilde{\lambda}=\tilde{Y}^{\perp} \tilde{\Lambda}=(C \tilde{\Lambda})^{\perp} \tilde{\Lambda}
$$

$$
\tilde{Y}_{\dot{\alpha}}^{\dot{\alpha}}=\sum_{i=1}^{n} c_{\dot{i} i} \tilde{\Lambda}_{i}^{A} \quad Y_{\alpha}^{A}=\sum_{i=1}^{n} c_{1 \dot{a}}^{\perp} \Lambda_{i}^{A}
$$

This map defines a subset in the kinemakic space $\left(\lambda_{i}^{a}, \tilde{\lambda}_{i}^{\dot{a}}\right)$ for which

$$
\left\{\langle i i+1\rangle \geq 0,[i i+1] \geq 0, s_{i, i+1, \ldots, i+j} \geq 0\right.
$$

the sequence $\{\langle 12\rangle,\langle 13\rangle, \ldots,\langle 1 n\rangle\}$ has $k-2$ sign flips
the sequence $\{[12],[13], \ldots,\langle[1 n]\}$ has k sign flips $\}$

$$
\begin{aligned}
& \langle i j\rangle=\lambda_{i a} \lambda_{j}^{a},[i j]=\tilde{\lambda}_{i a} \tilde{\lambda}_{j}^{\tilde{i}}, \\
& s_{i, i+1, \ldots, i+j}=\left(p_{i}+p_{i+1}+\ldots+p_{i+j}\right)^{2}
\end{aligned}
$$

Boundaries and Singularities
Amplituhedra encode physical singularities of amplitudes in the structure of their boundaries

Momentum Facets: $\left\{\begin{array}{lll}\langle i i+1\rangle=0, & {[i i+1]=0} \\ s_{i, i+1 \ldots, i+p}=0, & p=2, \ldots, n-4\end{array} \quad\right.$ Collinear Limits
Full stratification known (LF, T. Lukowski, R. Moerman)

AmpliEuhedron
Facets:

$$
\langle i i+1 j j+1\rangle=0
$$

Full stratification not known
Since the MHV amplitude factored out, no boundaries corresponding to $\langle i i+1\rangle=0$
Very different at tree level!

$$
\langle i i+1 j j+1\rangle=\frac{\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}}{\langle i i+1\rangle\langle j j+1\rangle}
$$

Tree level momentum amplituhedron is not a simple translation of the amplituhedron construction

Loop Geomelry

Amplituhedron
Loop Amplituhedron $\mathscr{A}_{n, k^{\prime}}^{\text {loop }}$: Image of the map

$$
\begin{array}{rlrl}
\Phi_{Z}: G_{+}\left(k^{\prime}, n\right) \times G(2, n)^{\ell} & \rightarrow G\left(k^{\prime}, k^{\prime}+4\right) \times G\left(2, k^{\prime}+4\right)^{\ell} & \rightarrow G(4, n) \times G(2,4)^{\ell} \\
C & D_{a} & \mapsto & Y \\
\hline
\end{array}
$$

where

$$
\begin{array}{r}
\left.Y_{\alpha}^{I}=\sum_{i=1}^{n} c_{\alpha i} Z_{i}^{I} \quad \mathscr{L}_{\gamma(a)}^{I}=\sum_{i=1}^{n} d_{\gamma i(a)} Z_{i}^{I}\right) \\
\text { Each loop }=\text { line }(A B)=\text { poin } \\
\ell \leftrightarrow z_{A} z_{B}
\end{array}
$$

Integral over the space of lines $(A B)=$ integral over a pair of points A and B, divided by the $G L(2)$ redundancies labeling their positions on the line

$$
d^{4} \ell=\frac{d^{4} z_{A} d^{4} z_{B}}{\operatorname{vol}(\operatorname{GL}(2))}
$$

Amplituhedron
Loop Amplituhedron $\mathscr{A}_{n, k^{\prime}}^{\text {loop }}$: Image of the map

$$
\begin{array}{rcrccc}
\Phi_{Z}: G_{+}\left(k^{\prime}, n\right) \times G(2, n)^{\ell} & \rightarrow G\left(k^{\prime}, k^{\prime}+4\right) \times G\left(2, k^{\prime}+4\right)^{\ell} & \rightarrow G(4, n) \times G(2,4)^{\ell} \\
C & D & \mapsto & Y & \mathscr{L} \equiv\left(Z_{A}, Z_{B}\right) & \mapsto \\
\left(z_{A}, z_{B}\right)
\end{array}
$$

with
(C) $\binom{D_{\left(a_{1}\right)}}{C} \cdots\left(\begin{array}{c}D_{\left(a_{1}\right)} \\ \vdots \\ D_{\left(a_{\ell}\right)} \\ C\end{array}\right)$ positive

"Extended positivity" from idea of hiding pairs of adjacent particles

Loop Amplikuhedron
Main obstacle in generalizing this to ordinary momentum space: difficult to find a proper, global definition of off-shell loop momentum
In dual space (planar theory):

uniquely defined up to a global shift
In momentum space:
we can redefine e.g. $\ell^{\prime}=\ell+p_{1}$ diagram by diagram: the integrand changes

Approach 1

Mimic the hiding particles approach for spinor helicily space
Remember that $\tilde{Y}=C \cdot \tilde{\Lambda}$: Ery to extend it to include some D matrices encoding loops:

$$
" \tilde{\mathscr{L}}=D \cdot \tilde{\Lambda}^{\prime \prime}
$$

with some mutual posikivity condition
But not enough space to take the perp: not clear what to do with λ

Moreover, the relation of $\tilde{\mathscr{L}}, \mathscr{L}$ to Loop momentum not clear

Approach 1

Mimic the hiding particles approach for spinor helicily space
Remember that $\tilde{Y}=C \cdot \tilde{\Lambda}$: Ery to extend it to include some D matrices encoding loops:
with some mutual posi But not enough space t zar what to do with λ

$$
\tilde{Y}=C \cdot \tilde{\Lambda} \quad \tilde{\mathscr{L}}=D \cdot \tilde{\Lambda}
$$

$$
Y=C^{\perp} \cdot \Lambda \quad \mathscr{L}=? \cdot \Lambda
$$

Moreover, the relation of $\tilde{\mathscr{L}}, \mathscr{L}$ to loop momentum not clear

Approach 2

One parametrization of loop momentum given by BFCW construction
BFCW in spinor helicily space for loop amplitudes:
(N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, J. Truka)

"Boundary measurement" from on-shell diagrams \rightarrow matrices C and D

Approach 2

One parametrization of loop momentum given by BFCW construction
BFCW in spinor helicily space for loop amplitudes:
(N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, J. Truka)

Then

$$
\ell \equiv \lambda_{A B} \tilde{\lambda}_{A B}+\alpha \lambda_{1} \tilde{\lambda}_{n} \quad d^{4} \ell=\frac{d^{2} \lambda_{A B} d^{2} \tilde{\lambda}_{A B}}{\operatorname{vol}(\operatorname{GL}(1))} d \alpha\left\langle 1 \lambda_{A B}\right\rangle\left[n \tilde{\lambda}_{A B}\right]
$$

- $\lambda_{A B}, \tilde{\lambda}_{A B}$ can be parametrised in terms of external momenta
- positivity conditions not obvious

Approach 2

One parametrization of loop momentum given by BFCW construction
BFCW in spinor helicily space for loop amplitudes:
(N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, J. Trnka)

- $\lambda_{A B}, \tilde{\lambda}_{A B}$ can be parametrised in terms of external momenta
- positivity conditions not obvious

Back ko Boundaries

Amplituhedron vs Momentum Amplituhedron
singularikies al bree level are different but
singularilies of loop-level integrands can be mapped between momentum kwistors and momentum space

$$
\begin{aligned}
\left(\ell+\sum_{j} p_{j}\right)^{2}=0 & \leftrightarrow \quad\langle A B i i+1\rangle=0 \\
\left(\ell_{1}-\ell_{2}\right)^{2}=0 & \leftrightarrow \quad\left\langle(A B)_{1}(A B)_{2}\right\rangle=0
\end{aligned}
$$

Direct Eranstakion between tree amplikuhedron and momentum amplituhedron not possible but maybe it can be done at loop level!

Loop Momentum Amplikuhedron

Loop Momentum Amplikuhedron

Direct Eranslation: from momentum Ewistors to spinor-helicily variables for external particles $z_{i}=\binom{\lambda_{i}}{x_{i} \lambda_{i}}$ - for the loop $z_{A, B}=\binom{\lambda_{A, B}}{x \lambda_{A, B}}$

From amplituhedron: $z_{A, B}=\sum_{i} d_{(A, B) i} z_{i}$
Therefore:

$$
\left.\lambda_{A, B}=\sum_{i} d_{(A, B) i} \lambda_{i}\right) \rightarrow \text { inherited } G L(2) \text { on } \lambda_{A}, \lambda_{B}
$$

off-shell momentum in $\in L(2)$ invariant form:

$$
\ell=\lambda_{A} \tilde{\lambda}^{A}+\lambda_{B} \tilde{\lambda}^{B}=\lambda_{A} \tilde{\lambda}_{B}-\lambda_{B} \tilde{\lambda}_{A} \quad \lambda^{\prime} \rightarrow \lambda G, \tilde{\lambda}^{\prime} \rightarrow G^{-1} \tilde{\lambda}
$$

and:

$$
x \lambda_{A, B}=\sum_{i} d_{(A, B) i} x_{i} \lambda_{i} \rightarrow \tilde{\lambda}_{a}=\sum_{j<i} d_{a i} \frac{\langle i j\rangle}{\langle A B\rangle} \tilde{\lambda}_{j}
$$

- we made a choice how to relate ℓ to dual space: $\ell=x-x_{1}$
- this is a global choice

Loop Momentum Amplituhedron

Loop Momentum Amplituhedron $M_{n, k}^{\text {loop. Image of the map }}$

$$
\begin{aligned}
\tilde{\Phi}_{(\Lambda, \tilde{\Lambda})}: G_{+}(k, n) \times G(2, n)^{\ell} & \rightarrow G(2, n) \times G(2, n) \times G L(2)^{\ell} \\
C & D_{a}
\end{aligned} \mapsto \quad \lambda \quad \tilde{\lambda} \quad \ell_{a}
$$

where

$$
\begin{gathered}
\lambda=Y^{\perp} \Lambda=\left(C^{\perp} \Lambda\right)^{\perp} \Lambda \quad \tilde{\lambda}=\tilde{Y}^{\perp} \tilde{\Lambda}=(C \tilde{\Lambda})^{\perp} \tilde{\Lambda} \quad \text { tree } \\
\ell_{a}=\left(\sum_{i} d_{A i} \lambda_{i}\right)\left(\sum_{j<i} d_{B i} \frac{\langle i j\rangle}{\langle A B\rangle} \tilde{\lambda}_{j}\right)-\left(\sum_{i} d_{B i} \lambda_{i}\right)\left(\sum_{j<i} d_{A i} \frac{\langle i j\rangle}{\langle A B\rangle} \tilde{\lambda}_{j}\right) \quad \text { Loop }
\end{gathered}
$$

this map associates to every point C and D_{a} the tree-level variables $(\lambda, \tilde{\lambda})$ and the loop momenta l_{a}

Momentum Amplituhedron

Loop Momenkum Amplibuhedron $M_{n, k}^{\text {loop: Image of the map }}$

$$
\begin{aligned}
\tilde{\Phi}_{(\Lambda, \tilde{\Lambda})}: G_{+}(k, n) \times G(2, n)^{\ell} & \rightarrow G(2, n) \times G(2, n) \times G L(2)^{\ell} \\
C & D_{a}
\end{aligned} \stackrel{\lambda}{\lambda} \quad \tilde{\lambda} \quad \ell_{a}
$$

Posikivily inherited from the amplikuhedron:
米 for every element $C \in G_{+}(k, n)$ and $(\lambda, \tilde{\lambda}) \in M_{n, k}^{\text {tree }}$, define

$$
\check{C}=Q C
$$

with

$$
Q_{i j}=\frac{\langle i-1 i\rangle \delta_{i+1, j}+\langle i i+1\rangle \delta_{i-1, j}+\langle i+1 i-1\rangle \delta_{i, j}}{\langle i-1 i\rangle\langle i i+1\rangle}
$$

map relaking spinor-heliciky $G_{+}(k, n)$ with momentum kwistor $G_{+}(k-2, n)$ (N. Arkani-Hamed, F. Cachazo, C. Cheung)

Imporkankly this implies $\check{C} \in G_{+}(k-2, n)$

Loop Momentum Amplituhedron
Loop Momentum Amplibuhedron $M_{n, k}^{\text {loop: Image of the map }}$

$$
\begin{aligned}
\tilde{\Phi}_{(\Lambda, \tilde{\Lambda})}: G_{+}(k, n) \times G(2, n)^{\ell} & \rightarrow G(2, n) \times G(2, n) \times G L(2)^{\ell} \\
C & D_{a}
\end{aligned} \mapsto \quad \lambda \quad \tilde{\lambda} \quad \ell_{a}
$$

Positivily inherited from the amplituhedron:

* for every element $C \in G_{+}(k, n)$ and $(\lambda, \tilde{\lambda}) \in \mathscr{M}_{n, k}^{\text {tree }}$, define

$$
\check{C}=Q C
$$

* same positivily condikions as for loop amplituhedron:
(と̆) $\binom{D_{\left(a_{1}\right)}}{\check{C}} \cdots\left(\begin{array}{c}D_{\left(a_{1}\right)} \\ \vdots \\ D_{\left(a_{\ell}\right)} \\ \check{C}\end{array}\right)$ positive

Loop Momentum Amplituhedron

Example: MHV amplibudes

* since $k-2=0, \check{C}$ is an emply matrix and there is no positivily condition involving it
$\rightarrow C$ posilive and D_{a} posilive
* for MHV amplikudes: no need to Eriangulate tree level
* at one Loop, amplituhedron Eriangulated by so-called kermits

$$
K_{i, j}:\left(\begin{array}{cccccccc}
1 & 0 & \ldots & \beta_{1} & \beta_{2} & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & 0 & 0 & \beta_{3} & \beta_{4}
\end{array}\right)
$$

$$
\mathscr{M}_{n, 2}^{1-\text { loop }}=\cup_{i<j} \tilde{\Phi}_{(\Lambda, \tilde{\Lambda})}\left(C, K_{i, j}\right)
$$

Loop Momentum Amplituhedron

Example: MHV amplitudes

$$
\mathscr{M}_{n, 2}^{1-\text { loop }}=\cup_{i<j} \tilde{\Phi}_{(\Lambda, \tilde{\Lambda})}\left(C, K_{i, j}\right)
$$

The differential form

$$
\Omega_{n, 2}^{1-\text { loop }}=\Omega_{n, 2}^{\mathrm{tree}} \wedge \sum_{i<j} \Omega_{K_{i, j}}
$$

where

$$
\Omega_{K_{i, j}}=\operatorname{dlog} \frac{\left(\ell-\ell_{1 \mathrm{i}}^{*}\right)^{2}}{\left(\ell-\ell_{1 \mathrm{i}+1}^{*}\right)^{2}} \wedge \operatorname{dlog} \frac{\left(\ell-\sum_{\mathrm{a}=1}^{\mathrm{i}} \mathrm{p}_{\mathrm{a}}\right)^{2}}{\left(\ell-\ell_{1 \mathrm{i}+1}^{*}\right)^{2}} \wedge \operatorname{dlog} \frac{\left(\ell-\ell_{1 \mathrm{i}}^{*}\right)^{2}}{\left(\ell-\ell_{1 \mathrm{j}+1}^{*}\right)^{2}} \wedge \operatorname{dlog} \frac{\left(\ell-\sum_{\mathrm{a}=1}^{\mathrm{j}} \mathrm{p}_{\mathrm{a}}\right)^{2}}{\left(\ell-\ell_{1 \mathrm{j}+1}^{*}\right)^{2}}
$$

spurious singularities
and $\quad \ell_{i j}^{*}=\frac{1}{\langle i j\rangle}\left(\lambda_{i} \sum_{l=1}^{j-1}\langle l j\rangle \tilde{\lambda}_{l}-\lambda_{j} \sum_{l=1}^{i-1}\langle l i\rangle \tilde{\lambda}_{l}\right)$

Conclusions

 andOpen Questions

Conclusions and Open Questions

Main features of our construction:
singularities of loop integrands can be mapped between spinor helicity and momentum Ewistor spaces \rightarrow allows for direct translation from loop amplituhedron
loop momentum written in $G L(2)$ invariant way
global definition of loop momentum fixed by the map $\tilde{\Phi}_{(\Lambda, \tilde{\Lambda})}$

Challenges:
definition still relies on positivity conditions that are not very natural from the point of view of spinor helicily space: improve? finding triangulations: is it possible to solve BCFW to find $G L(2)$ loop momentum?still planar loop integrand: generalize ko non-planar sector?...

