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Introduction 
and 

Review



Recent advances in formulations  
for observables in QFTs: 

positive geometries

Geometries with some notion of "positivity"  
substituting other concepts such as "locality"

Generalization of convex polytopes

(picture by A. Gilmore)

this talk focus on amplitudes in N=4 sYM: amplituhedra

—————————————————————
Introduction



 Regions with boundaries of all codimension, each bdry again a 
positive geometry 

 Equipped with a unique differential form with logarithmic 
singularities along all boundaries: the canonical form 

for physically relevant positive geometries  
the canonical form is a physical quantity

 appropriate boundaries = locality

Given a set of external kinematic data, there exists a geometrical 
object defined by imposing particular positivity constraints 

 appropriate factorisation into smaller pieces when approaching one of 
the boundaries = unitarity 

From positivity:

Positive geometries

Introduction
—————————————————————



(N. Arkani-Hamed, J. Trnka)

(D. Damgaard, LF, T. Lukowski, M. Parisi)

non-chiral spinor-helicity space 
tree level amplitudes

momentum twistor space : planar sector 
MHV part factorized out: Wilson loops ->  
tree and loop amplitudes

(λ, xλ, χ)
An,k = An,2 Wn,k

1. Amplituhedron

2. Momentum Amplituhedron  

Amplituhedra in N=4 sYM
—————————————————————

Can we generalize this construction to include: 
loops   <- this talk 
non-planar sector

(λ, η | λ̃, η̃)



—————————————————————
Amplituhedron

Tree Amplituhedron  : relevant for Nk'MHV Wilson loops 
Image of the positive Grassmannian G+(k',n) through the map

𝒜tree
n,k′ 

ΦZ : G+(k′ , n) → G(k′ , k′ + 4) → G(4,n)

where

 bosonized momentum-twistor superspace Z

I = 1,2,…, k′ + 4
a = 1,2,…, k′ 

YI
a =

n

∑
i=1

cai ZI
i

{matrix Z positive}

zi = (
λα

i

μ̃ ·α
i = xα ·αλα)

Momentum twistors
C ↦ ↦Y z



—————————————————————
Amplituhedron

Tree Amplituhedron  : relevant for Nk'MHV Wilson loops 
Image of the positive Grassmannian G+(k',n) through the map

𝒜tree
n,k′ 

ΦZ : G+(k′ , n) → G(k′ , k′ + 4) → G(4,n)

zi = (
λα

i

μ̃ ·α
i = xα ·αλα)

Momentum twistors
C ↦ ↦Y z

z = Y⊥Z = (CZ)⊥ Z

This map defines a subset in the kinematic space of  for whichzi

{⟨i i + 1 j j + 1⟩ ≥ 0, i < j

and the sequence {⟨1234⟩, ⟨1235⟩, …, ⟨123n⟩} has k′  sign flips}

The momentum twistors sit inside the bosonized space:

YI
a =

n

∑
i=1

cai ZI
i



Momentum Amplituhedron

Ỹ
·A·α =

n

∑
i=1

c ·αi Λ̃
·A

i YA
α =

n

∑
i=1

c⊥
αi ΛA

i

 bosonized spinor helicity variables(Λ̃, Λ)

·A = ( ·a, ·α) = 1,…, k + 2
A = (a, α) = 1,…, n − k + 2

{matrix Λ̃ positive and matrix Λ⊥ positive}

where

Φ(Λ,Λ̃) : G+(k, n) → G(k, k + 2) × G(n − k, n − k + 2) → G(2,n) × G(2,n)
C ↦ ↦Ỹ λ̃Y λ

—————————————————————

k = k′ + 2

Momentum Amplituhedron  : relevant for Nk-2MHV amplitudes 
Image of the positive Grassmannian G+(k,n) through the map

ℳtree
n,k



Momentum Amplituhedron

Φ(Λ,Λ̃) : G+(k, n) → G(k, k + 2) × G(n − k, n − k + 2) → G(2,n) × G(2,n)
C ↦ ↦Ỹ λ̃Y λ

—————————————————————
Momentum Amplituhedron  : relevant for Nk-2MHV amplitudes 
Image of the positive Grassmannian G+(k,n) through the map

ℳtree
n,k

This map defines a subset in the kinematic space  for which(λa
i , λ̃ ·a

i )
{⟨i i + 1⟩ ≥ 0,[i i + 1] ≥ 0,si,i+1,…,i+j ≥ 0 ,
 the sequence {⟨12⟩, ⟨13⟩, …, ⟨1n⟩} has k − 2 sign flips
 the sequence {[12], [13], …, ⟨[1n]} has k sign flips }

λ̃ = Ỹ⊥Λ̃ = (CΛ̃)⊥Λ̃λ = Y⊥Λ = (C⊥Λ)⊥Λ

The spinor-helicity variables sit inside the bosonized space:

⟨i j⟩ = λiaλa
j , [i j] = λ̃i ·aλ̃ ·a

j ,

si,i+1,…,i+j = (pi + pi+1 + … + pi+j)2

Ỹ
·A·α =

n

∑
i=1

c ·αi Λ̃
·A

i YA
α =

n

∑
i=1

c⊥
αi ΛA

i



Boundaries and Singularities

⟨i i + 1 j j + 1⟩ = 0Amplituhedron

Very different at tree level!

Full stratification not known

Tree level momentum amplituhedron is not a simple 
translation of the amplituhedron construction

—————————————————————
Amplituhedra encode physical singularities of amplitudes in 

the structure of their boundaries

Facets:

⟨i i + 1⟩ = 0 , [i i + 1] = 0 Collinear limits

Factorizationssi,i+1…,i+p = 0 , p = 2,…, n − 4
Momentum 

Amplituhedron

(LF, T. Lukowski, R. Moerman)
Full stratification known

Facets:

⟨i i + 1 j j + 1⟩ =
(pi + pi+1 + … + pj−1)2

⟨i i + 1⟩⟨ j j + 1⟩

Since the MHV amplitude factored out, no boundaries corresponding to ⟨i i + 1⟩ = 0

{



Loop Geometry 



Loop Amplituhedron
Loop Amplituhedron : Image of the map𝒜loop

n,k′ 

ΦZ : G+(k′ , n) × G(2,n)ℓ → G(k′ , k′ + 4) × G(2,k′ + 4)ℓ → G(4,n) × G(2,4)ℓ

where

YI
α =

n

∑
i=1

cαi ZI
i ℒI

γ(a) =
n

∑
i=1

dγi(a) ZI
i

a = 1,…, ℓ

—————————————————————

C ↦ YDa ℒ ≡ (ZA, ZB)

γ = 1,2

Each loop = line (AB) = point x in dual space-time

↦ z

d4ℓ =
d4zAd4zB

vol(GL(2))

ℓ ↔ zAzB

Integral over the space of lines (AB) = integral over a pair of points A and B, 
divided by the GL(2) redundancies labeling their positions on the line

(zA, zB)



Loop Amplituhedron
Loop Amplituhedron : Image of the map𝒜loop

n,k′ 

ΦZ : G+(k′ , n) × G(2,n)ℓ → G(k′ , k′ + 4) × G(2,k′ + 4)ℓ → G(4,n) × G(2,4)ℓ

—————————————————————

C ↦ YD ℒ ≡ (ZA, ZB) ↦ z

with

positive

D(a1)

⋮
D(aℓ)

C
(D(a1)

C ) …(C)

"Extended positivity" from idea of hiding pairs of adjacent particles

4k dimensional cell � of G+(k, n). Then, if C�
↵a(↵1, . . . ,↵4k) are positive co-ordinates

for the cell, and ⌦� = d↵�
1

↵�
1
. . .

d↵�
4k

↵�
4k

is the associated form in Y space, then it is easy

to show that

Z
d4�1 . . . d

4�k

Z
⌦��4k(Y ;Y0) =

Z
d↵�

1

↵�
1

. . .
d↵�

4k

↵�
4k

�4k|4k(C↵a(z)Za) (7.8)

where Za = (za|⌘a) are the super momentum-twistor variabes. This is precisely the

formula for computing on-shell diagrams (in momentum-twistor space) as described

in [17,19,34]. Thus, while the amplituhedron geometry and the associated form ⌦ are

purely bosonic, we have extracted from them super-amplitudes which are manifestly

supersymmetric. Indeed, the connection to the Grassmannian shows much more–the

superamplitude obtained for each cell is manifestly Yangian invariant [19].

8. Hiding Particles ! Loop Positivity in G+(k, n;L)

The direct generalization of “convex polygons” into the Grassmannian G(k, k + 4)

has given us the tree amplituhedron. We will now ask a simple question: can we

“hide particles” in a natural way? This will lead to an extended notion of positivity

giving us loop amplitudes.

It is trivial to imagine what we might mean by hiding a single particle, but as

we will see momentarily, the idea of hiding particles is only natural if we hide pairs

of adjacent particles. To pick a concrete example, suppose we have some positive

matrix C with columns we’ll label (A1, B1, 1, 2, . . . ,m,A2, B2,m + 1, . . . n). We can

always gauge-fix the A1, B1 and A2, B2 columns so that the matrix takes the form

0

BBBBBBBBB@

A1 B1 1 2 . . . m A2 B2 m+ 1 . . . n

1 0 ⇤ ⇤ . . . ⇤ 0 0 ⇤ . . . ⇤
0 1 ⇤ ⇤ . . . ⇤ 0 0 ⇤ . . . ⇤
0 0 ⇤ ⇤ . . . ⇤ 1 0 ⇤ . . . ⇤
0 0 ⇤ ⇤ . . . ⇤ 0 1 ⇤ . . . ⇤
0 0 ⇤ ⇤ . . . ⇤ 0 0 ⇤ . . . ⇤
...

...
...

...
...

...
...

...
...

...
...

0 0 ⇤ ⇤ . . . ⇤ 0 0 ⇤ . . . ⇤

1

CCCCCCCCCA

We would now like to “hide” the particles A1, B1, A2, B2. We do this simply by

chopping out the corresponding columns. The remaining matrix can be grouped into

the form
0

B@
D(1)

D(2)

C

1

CA (8.1)

– 15 –

(D(2)

C )(D(1)

C )
D(1)

D(2)

C

(C)

Ck′ 

n − k′ 

n

D(1) D(2) D(ℓ)

(zA, zB)



Loop Amplituhedron
—————————————————————
Main obstacle in generalizing this to ordinary momentum space:

difficult to find a proper, global definition of  
off-shell loop momentum

In dual space (planar theory):

In momentum space:

uniquely defined  
up to a global shift

we can redefine e.g.  
diagram by diagram:  
the integrand changes

ℓ′ = ℓ + p1

ℓ

p1

∙ xx1

x2

x3

x4

p2

p3p4



Mimic the hiding particles approach for spinor helicity space

with some mutual positivity condition

But not enough space to take the perp: not clear what to do with λ

Remember that : try to extend it to include some  matrices 
encoding loops:

Ỹ = C ⋅ Λ̃ D

Approach 1
—————————————————————

′ ′ ℒ̃ = D ⋅ Λ̃′ ′ 

Moreover, the relation of  to loop momentum not clear ℒ̃, ℒ

Ck

n − k

n

D(1) D(2) D(ℓ) ?

Ỹ = C ⋅ Λ̃ ℒ̃ = D ⋅ Λ̃ Y = C⊥ ⋅ Λ ℒ = ? ⋅ Λ



Mimic the hiding particles approach for spinor helicity space

with some mutual positivity condition

But not enough space to take the perp: not clear what to do with λ

Remember that : try to extend it to include some  matrices 
encoding loops:

Ỹ = C ⋅ Λ̃ D

Approach 1
—————————————————————

′ ′ ℒ̃ = D ⋅ Λ̃′ ′ 

Ck

n − k

n

D(1) D(2) D(ℓ) ?

Ỹ = C ⋅ Λ̃ ℒ̃ = D ⋅ Λ̃ Y = C⊥ ⋅ Λ ℒ = ? ⋅ Λ

Moreover, the relation of  to loop momentum not clear ℒ̃, ℒ



BFCW in spinor helicity space for loop amplitudes:

singularities of an amplitude are determined by entirely by on-shell data. At tree-

level, the singularities are simply the familiar factorization channels,

(2.23)

where the left- and right-hand sides are both fully on-shell scattering amplitudes. At

loop-level, all the singularities of the integrand can be understood as factorizations

like that of (2.23), or those for which an internal particle is put on-shell; at least

for N = 4 SYM in the planar limit, these singularities are given by the “forward-

limit” [79] of an on-shell amplitude with one fewer loop and two extra particles,

where any two adjacent particles have equal and opposite momenta, denoted:

(2.24)

Combining these two terms, the singularities of the full amplitude are, [13]:

(2.25)

Here we have suggestively used the symbol “@” to signify “singularity of”. Of course,

the symbol @ is often used to denote “boundary” or “derivative”; we will soon see

that all of these senses are appropriate.

Equation (2.25) can be understood as defining a “di↵erential equation” for scat-

tering amplitudes; and it turns out to be possible to ‘integrate’ it directly. This is

precisely what is accomplished by the BCFW recursion relations. For planar N =4

SYM, the all-loop BCFW recursion relations, when represented in terms of on-shell

diagrams are simply:

(2.26)

– 14 –"Boundary measurement" from on-shell diagrams -> matrices  and C D

(N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, J. Trnka)

BCFW bridge

merging of 
legs A and B

Forward limit
Factorization  

channels

Approach 2
—————————————————————
One parametrization of loop momentum given by BFCW construction



Then
ℓ ≡ λABλ̃AB + αλ1λ̃n d4ℓ =

d2λABd2λ̃AB

vol(GL(1))
dα⟨1λAB⟩[nλ̃AB]

Approach 2

BFCW in spinor helicity space for loop amplitudes:

singularities of an amplitude are determined by entirely by on-shell data. At tree-

level, the singularities are simply the familiar factorization channels,

(2.23)

where the left- and right-hand sides are both fully on-shell scattering amplitudes. At

loop-level, all the singularities of the integrand can be understood as factorizations

like that of (2.23), or those for which an internal particle is put on-shell; at least

for N = 4 SYM in the planar limit, these singularities are given by the “forward-

limit” [79] of an on-shell amplitude with one fewer loop and two extra particles,

where any two adjacent particles have equal and opposite momenta, denoted:

(2.24)

Combining these two terms, the singularities of the full amplitude are, [13]:

(2.25)

Here we have suggestively used the symbol “@” to signify “singularity of”. Of course,

the symbol @ is often used to denote “boundary” or “derivative”; we will soon see

that all of these senses are appropriate.

Equation (2.25) can be understood as defining a “di↵erential equation” for scat-

tering amplitudes; and it turns out to be possible to ‘integrate’ it directly. This is

precisely what is accomplished by the BCFW recursion relations. For planar N =4

SYM, the all-loop BCFW recursion relations, when represented in terms of on-shell

diagrams are simply:

(2.26)

– 14 –

(N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, J. Trnka)

merging of 
legs A and B

Forward limit
Factorization  

channels

—————————————————————
One parametrization of loop momentum given by BFCW construction

 can be parametrised in terms of external momenta ✅ 
positivity conditions not obvious ❌
λAB, λ̃AB
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for N = 4 SYM in the planar limit, these singularities are given by the “forward-
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Forward limit
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channels

—————————————————————
One parametrization of loop momentum given by BFCW construction

 can be parametrised in terms of external momenta ✅ 
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λAB, λ̃AB



singularities of loop-level integrands can be mapped 
between momentum twistors and momentum space

Direct translation between tree amplituhedron and momentum 
amplituhedron not possible but maybe it can be done at loop level!

singularities at tree level are different

but

(ℓ + ∑
j

pj)2 = 0

(ℓ1 − ℓ2)2 = 0

⟨ABi i + 1⟩ = 0

⟨(AB)1(AB)2⟩ = 0↔

↔

Back to Boundaries
—————————————————————

Amplituhedron vs Momentum Amplituhedron



Loop Momentum Amplituhedron



zA,B = (
λA,B

xλA,B)

-> inherited GL(2) on λA, λB

ℓ = λAλ̃A + λBλ̃B = λAλ̃B − λBλ̃A

xλA,B = ∑
i

d(A,B)ixiλi

ℓ = x − x1we made a choice how to relate  to dual space:  
this is a global choice

ℓ

λ̃a = ∑
j<i

dai
⟨ij⟩

⟨AB⟩
λ̃j

Direct translation: from momentum twistors to spinor-helicity variables

zi = ( λi

xiλi) for the loop

From amplituhedron:

Therefore:

Off-shell momentum in GL(2) invariant form:

λA,B = ∑
i

d(A,B)iλi

-> 

Loop Momentum Amplituhedron
—————————————————————

zA,B = ∑
i

d(A,B)izi

for external particles --

λ′ → λG , λ̃′ → G−1λ̃
and:



Φ̃(Λ,Λ̃) : G+(k, n) × G(2,n)ℓ → G(2,n) × G(2,n) × GL(2)ℓ

this map associates to every point  and   
the tree-level variables  and the loop momenta 

C Da
(λ, λ̃) ℓa

C Da

where

λ̃ ℓa

ℓa = (∑
i

dAiλi) ∑
j<i

dBi
⟨ij⟩

⟨AB⟩
λ̃j − (∑

i

dBiλi) ∑
j<i

dAi
⟨ij⟩

⟨AB⟩
λ̃j

Loop Momentum Amplituhedron
—————————————————————
Loop Momentum Amplituhedron : Image of the mapℳloop

n,k

↦ λ

tree

loop

λ̃ = Ỹ⊥Λ̃ = (CΛ̃)⊥Λ̃λ = Y⊥Λ = (C⊥Λ)⊥Λ



Φ̃(Λ,Λ̃) : G+(k, n) × G(2,n)ℓ → G(2,n) × G(2,n) × GL(2)ℓ

C Da λ̃ ℓa

Loop Momentum Amplituhedron
—————————————————————
Loop Momentum Amplituhedron : Image of the mapℳloop

n,k

↦ λ

Positivity inherited from the amplituhedron:

Qij =
⟨i − 1 i⟩δi+1, j + ⟨i i + 1⟩δi−1, j + ⟨i + 1 i − 1⟩δi, j

⟨i − 1 i⟩⟨i i + 1⟩

Č = QC

Č ∈ G+(k − 2,n)

 for every element  and , define C ∈ G+(k, n) (λ, λ̃) ∈ ℳtree
n,k

with

Importantly this implies

map relating spinor-helicity  with momentum twistor G+(k, n) G+(k − 2,n)
(N. Arkani-Hamed, F. Cachazo, C. Cheung)



Φ̃(Λ,Λ̃) : G+(k, n) × G(2,n)ℓ → G(2,n) × G(2,n) × GL(2)ℓ

C Da λ̃ ℓa

Loop Momentum Amplituhedron
—————————————————————
Loop Momentum Amplituhedron : Image of the mapℳloop

n,k

↦ λ

 same positivity conditions as for loop amplituhedron:

positive

D(a1)

⋮
D(aℓ)

Č
(

D(a1)

Č ) …(Č)

Positivity inherited from the amplituhedron:

Č = QC

 for every element  and , define C ∈ G+(k, n) (λ, λ̃) ∈ ℳtree
n,k



Example: MHV amplitudes

since ,  is an empty matrix and there is no positivity 
condition involving it

k − 2 = 0 Č

->  positive and  positiveC Da

(1 0 … β1 β2 0 … 0
1 0 … 0 0 0 β3 β4)

i

j

Ki,j :

Loop Momentum Amplituhedron
—————————————————————

for MHV amplitudes: no need to triangulate tree level

at one loop, amplituhedron triangulated by so-called kermits

ℳ1−loop
n,2 = ∪i<j Φ̃(Λ,Λ̃)(C, Ki,j)



Example: MHV amplitudes

Loop Momentum Amplituhedron
—————————————————————

The differential form

Ω1−loop
n,2 = Ωtree

n,2 ∧ ∑
i<j

ΩKi, j

ΩKi, j
= dlog

(ℓ − ℓ*1 i)2

(ℓ − ℓ*1 i+1)2
∧ dlog

(ℓ − ∑i
a=1 pa)2

(ℓ − ℓ*1 i+1)2
∧ dlog

(ℓ − ℓ*1 j)2

(ℓ − ℓ*1 j+1)2
∧ dlog

(ℓ − ∑j
a=1 pa)2

(ℓ − ℓ*1 j+1)2

where

spurious singularities

ℓ*ij =
1

⟨ij⟩ (λi

j−1

∑
l=1

⟨lj⟩λ̃l − λj

i−1

∑
l=1

⟨li⟩λ̃l)and

ℳ1−loop
n,2 = ∪i<j Φ̃(Λ,Λ̃)(C, Ki,j)



Conclusions 
and  

Open Questions



Conclusions and Open Questions

 singularities of loop integrands can be mapped between spinor 
helicity and momentum twistor spaces -> allows for direct 
translation from loop amplituhedron  
 loop momentum written in GL(2) invariant way 
 global definition of loop momentum fixed by the map Φ̃(Λ,Λ̃)

 definition still relies on positivity conditions that are not very 
natural from the point of view of spinor helicity space: improve? 
 finding triangulations: is it possible to solve BCFW to find GL(2) 
loop momentum? 
 still planar loop integrand: generalize to non-planar sector? 
... 

—————————————————————
Main features of our construction:

Challenges:



Thank you!


