Non-planar BCFW Geometry

Shruti Paranjape
University of California, Davis
Center for Quantum Mathematics and Physics

Amplitudes 2022

Based on arxiv:2208.02262
SP, J Trnka, M Zheng

In this talk...

We will study tree-level $\mathcal{N}=4$ SYM via:

- BCFW recursion relations
- Grassmannian formulation

In this talk...

We will study tree-level $\mathcal{N}=4$ SYM via:

* BCFW recursion relations
* Grassmannian formulation

These methods have evinced special properties for planar amplitudes:

- Convex positive geometry for $\mathrm{N}^{k} \mathrm{MHV}$ amplitudes
* Holomorphic expressions for MHV amplitudes

Why Non-Planar On-Shell Diagrams?

- Show up in unitarity cuts of loop integrands

Why Non-Planar On-Shell Diagrams?

* Show up in unitarity cuts of loop integrands
* Do nice properties of planar graphs extend to the non-planar sector?

Why Non-Planar On-Shell Diagrams?

* Show up in unitarity cuts of loop integrands
- Do nice properties of planar graphs extend to the non-planar sector?
- BCFW gives a nice subset of diagrams to study

Why Non-Planar On-Shell Diagrams?

* Show up in unitarity cuts of loop integrands
* Do nice properties of planar graphs extend to the non-planar sector?
- BCFW gives a nice subset of diagrams to study
* At tree-level, we are re-expressing known results in terms of a sum of unknown results

$$
\text { Amplitude }=\sum \text { planar }=\sum \text { non-planar }
$$

Why Non-Planar On-Shell Diagrams?

- Show up in unitarity cuts of loop integrands
* Do nice properties of planar graphs extend to the non-planar sector?
- BCFW gives a nice subset of diagrams to study
* At tree-level, we are re-expressing known results in terms of a sum of unknown results

$$
\text { Amplitude }=\sum \text { planar }=\sum \text { non-planar }
$$

* Generalize the Grassmannian geometry configuration corresponding to these non-planar diagrams

Why Non-Planar On-Shell Diagrams?

* Show up in unitarity cuts of loop integrands
* Do nice properties of planar graphs extend to the non-planar sector?
- BCFW gives a nice subset of diagrams to study
* At tree-level, we are re-expressing known results in terms of a sum of unknown results

$$
\text { Amplitude }=\sum \text { planar }=\sum \text { non-planar }
$$

* Generalize the Grassmannian geometry configuration corresponding to these non-planar diagrams
* Get holomorphic expressions for non-planar BCFW diagrams

BCFW Recursion

Introducing a complex shift,

$$
\begin{aligned}
& \hat{\lambda}_{i}=\lambda_{i}+z \lambda_{j} \\
& \tilde{\tilde{\lambda}}_{j}=\tilde{\lambda}_{j}-z \tilde{\lambda}_{i}
\end{aligned}
$$

allows us to build amplitudes recursively.

BCFW Recursion

Introducing a complex shift,

$$
\begin{aligned}
& \hat{\lambda}_{i}=\lambda_{i}+z \lambda_{j} \\
& \tilde{\hat{\lambda}}_{j}=\tilde{\lambda}_{j}-z \tilde{\lambda}_{i}
\end{aligned}
$$

allows us to build amplitudes recursively.
Example: ($n 1$) shift for n-point MHV amplitude has one BCFW term,

On-Shell Diagrams

$\mathcal{N}=4$ SYM is BCFW-recursible
\Rightarrow every BCFW term can be constructed by BCFW-bridging together 3-point amplitudes where external legs are on-shell,

On-Shell Diagrams: MHV Example

($n 1$) shift n-point MHV has only one BCFW term,

On-Shell Diagrams: MHV Example

($n 1$) shift n-point MHV has only one BCFW term,

4- and 5-point for (41) and (51) shifts,

Grassmannian

Dual formulation of $\mathcal{N}=4$ SYM BCFW terms as auxiliary $k \times n$ matrix C,

$$
\oint \frac{d^{k \times n} C}{\operatorname{vol}(G L(k)) \prod \text { minors }} \delta^{2 k}(C \cdot \widetilde{\lambda}) \delta^{2(n-k)}\left(C^{\perp} \cdot \lambda\right) \delta^{0 \mid 4 k}(C \cdot \widetilde{\eta})
$$

where $C \in G_{+}(k, n)$.
How is this related to on-shell diagrams?

Grassmannian

Dual formulation of $\mathcal{N}=4$ SYM BCFW terms as auxiliary $k \times n$ matrix C,

$$
\oint \frac{d^{k \times n} C}{\operatorname{vol}(G L(k)) \prod \text { minors }} \delta^{2 k}(C \cdot \widetilde{\lambda}) \delta^{2(n-k)}\left(C^{\perp} \cdot \lambda\right) \delta^{0 \mid 4 k}(C \cdot \widetilde{\eta})
$$

where $C \in G_{+}(k, n)$.
How is this related to on-shell diagrams?
Each on-shell diagram corresponds to a particular cell in $G(k, n)$. Additionally, diagrams provide a parametrization $C\left(\alpha_{i}\right)$.

Solving the C-constraints gives $\alpha_{i}^{*}(\lambda, \tilde{\lambda})$, localizing the integral

$$
\frac{\delta^{4}(P)}{J} \delta^{8}(Q) \delta^{0 \mid 4(k-2)}\left(C^{*} \cdot \widetilde{\eta}\right) \times \prod_{i} \frac{1}{\alpha_{i}^{*}}
$$

Edge Variables

This parametrization, can be read off from the on-shell diagram for the corresponding BCFW term.

Example: (51)-shifted 5-point MHV
Perfect orientation \Rightarrow Boundary measurement \Rightarrow C-matrix

4

Another way to see this is that $C=\lambda$ for MHV and $\prod_{i} \frac{1}{\alpha_{i}}=\frac{1}{\prod_{\text {minors }}}$.

Multiple Descriptions Converge

In our example of ($n 1$)-shifted n-point MHV,

$$
\begin{aligned}
\mathcal{A}_{n}^{\mathrm{MHV}} & =\mathcal{A}_{3}^{\overline{\mathrm{MHV}} \stackrel{\mathrm{BCFW}}{\times} \mathcal{A}_{n-1}^{\mathrm{MHV}}} \\
& =\text { On-shell diagram } \\
& =(2 n-4) \text {-dimensional cells of } G_{+}(2, n) \\
& =\text { holomorphic poles }
\end{aligned}
$$

Multiple Descriptions Converge

In our example of ($n 1$)-shifted n-point MHV,

$$
\begin{aligned}
\mathcal{A}_{n}^{\mathrm{MHV}} & =\mathcal{A}_{3}^{\overline{\mathrm{MHV}} \stackrel{\mathrm{BCFW}}{\times} \mathcal{A}_{n-1}^{\mathrm{MHV}}} \\
& =\text { On-shell diagram } \\
& =(2 n-4) \text {-dimensional cells of } G_{+}(2, n) \\
& =\text { holomorphic poles }
\end{aligned}
$$

Two extra features arise in adjacent-shifted BCFW terms for MHV amplitudes:

- Positivity/convexity
* Holomorphicity

Positive Grassmannian Geometry

C-matrix is a matrix in kinematical λ-space.
For $C \in G_{+}(2, n)$, each column of $C \in \mathbb{P}^{1}$,

$$
C=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
z_{1} & z_{2} & \cdots & z_{n}
\end{array}\right)
$$

Positive Grassmannian Geometry

C-matrix is a matrix in kinematical λ-space.
For $C \in G_{+}(2, n)$, each column of $C \in \mathbb{P}^{1}$,

$$
C=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
z_{1} & z_{2} & \cdots & z_{n}
\end{array}\right)
$$

Positivity of minors gives $z_{i}-z_{j}>0$ for $i>j$

$$
\downarrow
$$

z_{i} are ordered and form a convex configuration in \mathbb{P}^{1}

Evaluating this cell gives the Parke-Taylor amplitude,

$$
\operatorname{PT}(1, \cdots, n)=\frac{\delta^{4}(P) \delta^{8}(Q)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \ldots\langle n 1\rangle}
$$

Holomorphicity

$P T(1, \cdots, n)$ only has poles when $\langle k k+1\rangle \rightarrow 0$.
This can be seen directly from the geometry in \mathbb{P}^{1},

Holomorphicity

$P T(1, \cdots, n)$ only has poles when $\langle k k+1\rangle \rightarrow 0$.
This can be seen directly from the geometry in \mathbb{P}^{1},

Similarly for lower poles,

$$
\begin{aligned}
& \begin{array}{l}
1234 \\
(12)=(23)=(13)= \\
P_{1} \sim P_{2} \sim P_{3}
\end{array}
\end{aligned}
$$

$(2 *)=0$
$P_{2} \rightarrow 0$

Now: Beyond Adjacent MHV

For adjacent-shifted NMHV and beyond:

* On-shell diagrams still correspond to cells in $G_{+}(k, n)$
- Is there a notion of holomorphicity?

Now: Beyond Adjacent MHV

For adjacent-shifted NMHV and beyond:

* On-shell diagrams still correspond to cells in $G_{+}(k, n)$
- Is there a notion of holomorphicity?

For non-adjacent BCFW shifts:

* How do we define a non-convex Grassmannian geometry?
*What about holomorphicity?

Positive Geometry for Adjacent NMHV

Two types of BCFW terms:

$=\sum$ on-shell diagrams $=\sum$ codimension $n-5$ cells of $G_{+}(3, n)$
$=\sum$ Grassmannian configurations in \mathbb{P}^{2}

Positive Geometry for Adjacent NMHV

Two types of BCFW terms:

$=\sum$ on-shell diagrams $=\sum$ codimension $n-5$ cells of $G_{+}(3, n)$
$=\sum$ Grassmannian configurations in \mathbb{P}^{2}
For $n=6$, there's 1 condition on a generic configuration of points

Example: (61) shifted NMHV_{6}

There are three BCFW terms that correspond to three codimension 1 cells in $G_{+}(3,6)$,

Example: (61) shifted NMHV_{6}

There are three BCFW terms that correspond to three codimension 1 cells in $G_{+}(3,6)$,

Example: (61) shifted NMHV_{6}

There are three BCFW terms that correspond to three codimension 1 cells in $G_{+}(3,6)$,

Summing over these cells gives

$$
\mathcal{A}_{6}^{(3)}=\mathcal{R}_{1}+\mathcal{R}_{3}+\mathcal{R}_{5}
$$

where the R-invariants are

$$
\mathcal{R}=\frac{\delta^{4}(P) \delta^{8}(Q) \delta^{4}\left([56] \eta_{4}+[64] \eta_{5}+[45] \eta_{6}\right)}{\left.\left.s_{123}\langle 12\rangle\langle 23\rangle[45][56]\langle 1| 23 \mid 4\right]\langle 3| 45 \mid 6\right]}
$$

Holomorphicity for Adjacent NMHV: Diagram 1

NMHV has mixed poles. How do we recognize them as being boundaries of the Grassmannian geometry in \mathbb{P}^{2} ?

Holomorphicity for Adjacent NMHV: Diagram 1

NMHV has mixed poles. How do we recognize them as being boundaries of the Grassmannian geometry in \mathbb{P}^{2} ?

$$
\begin{aligned}
& n-1 \text { (2) } 2=A_{2}^{\hat{n}} 2=A_{k=2}^{\text {tree }}(i+1, i+2, \ldots, n-1, \hat{n}, I) \times \frac{1}{\left(P_{2}+p_{n}\right)^{2}} \\
& \times A_{k=2}^{\text {tree }}(I, \hat{1}, 2, \ldots, i-1, i) .
\end{aligned}
$$

$\mathrm{NMHV}=\mathrm{MHV} \times \mathrm{MHV} \times$ pole which is $\mathrm{MHV} \times \mathrm{MHV} \times \mathrm{MHV}$,

$=\mathcal{R}_{1, i+1, n}$
$=P T(1, \ldots, i, I) P T(I, i+1, \ldots, n-1, \hat{n})$ $\left.\times P T(\hat{n}, n, 1) \cdot\langle 1| P_{1} \mid n\right]^{3} \times \Delta$
where $\left.\lambda_{I}=P_{2} \mid n\right]$
\Rightarrow a holomorphic description of poles!

Holomorphicity for Adjacent NMHV: Diagram 2

Holomorphicity for Adjacent NMHV: Diagram 2

We can attach $\overline{M H V}$ to our previous expression for NMHV,

Holomorphicity for Adjacent NMHV: Diagram 2

Remarkably, the previous MHV \times MHV \times MHV structure from Diagram 1 extends to Diagram 2.
Thus $\mathcal{R}_{1, i+1, n}$ inspires the more general configurations $\mathcal{R}_{1, i+1, j+1}$ that cannot be seen as a simple rewriting of BCFW terms,

$$
\begin{aligned}
& =\mathcal{R}_{1, i+1, j+1} \\
& =P T\left(1, \ldots, i, I_{1}\right) P T\left(I_{1}, i+1, \ldots, j, I_{2}\right) \\
& \quad \times P T\left(I_{2}, j+1, \ldots, n, 1\right)\left\langle 1 P_{1} P_{3} \mid 1\right\rangle^{3} \times \Delta \\
& \text { where } \lambda_{I_{1}}=\langle 1| P_{3} P_{2}, \lambda_{l_{2}}=\langle 1| P_{1} P_{2}
\end{aligned}
$$

Combinations of these show up in non-adjacent BCFW! Let's see how.

Aside: Reducing to Three Lines

BCFW terms are a special subset of cells of $G_{+}(3, n)$,

$$
\mathcal{A}_{n}^{\text {NMHVVV }}=\sum_{i, j}
$$

Aside: Reducing to Three Lines

BCFW terms are a special subset of cells of $G_{+}(3, n)$,

For n-point NMHV, we have $n-5$ constraints on n points in \mathbb{P}^{2}, so we are left with 5 unconstrained lines,

Non-Adjacent MHV

For a non-adjacent BCFW shift, already at MHV, there is more than one diagram:

Top cells are no longer convex with respect to ordering $1,2, \cdots, n$.

Non-Adjacent MHV

For a non-adjacent BCFW shift, already at MHV, there is more than one diagram:

Top cells are no longer convex with respect to ordering $1,2, \cdots, n$. Cells are convex with respect to some ordering

\Rightarrow Parke-Taylor factors give holomorphicity.

Non-Adjacent NMHV

Example: (14) shifted NMHV_{5}

Again, convexity is lost and in this case, it cannot be restored by changing the ordering of external points.

Non-Planar On-Shell Diagrams

Non-adjacent BCFW terms generically correspond to non-planar on-shell diagrams.

Example: (51)-shifted 6-point NMHV has a contribution from

A Lack of Positivity

For a general (k1) shifted n-point amplitude,

Planar Expansion of Non-Adjacent NMHV

Kleiss-Kuijf relations read

$$
\mathcal{A}_{n}[1, \alpha, n, \beta]=(-1)^{|\beta|} \sum_{\sigma \in \alpha ய \beta} \mathcal{A}_{n}[1, \sigma, n]
$$

KK on each of the MHV lines allows us to rewrite each of the above non-planar non-convex geometries as a sum of planar convex ones!

where

$$
\sigma_{1}=\{2, \ldots, i\} \cup \sqcup\{i+1, \ldots, j\}^{T}, \quad \sigma_{2}=\{j+1, \ldots, k\} \cup\{k+1, \ldots, m\}^{T}
$$

Non-Adjacent BCFW and Holomorphicity

Two options:

- Non-planar geometry $=\sum$ convex configurations
$=\sum$ products of Parke-Taylor factors for particular external orderings

Non-Adjacent BCFW and Holomorphicity

Two options:

* Non-planar geometry $=\sum$ convex configurations $=\sum$ products of Parke-Taylor factors for particular external orderings
* Non-planar \mathcal{R}-invariants that are defined directly on the non-convex geometry

$$
\begin{aligned}
= & P T\left(1,2, \ldots, i, I_{1}, i+1, \ldots, j\right) \\
& \times P T\left(I_{1}, j+1, \ldots, k, I_{2}, k+1, \ldots, m\right) \\
& \times P T\left(I_{2}, m+1, \ldots, n, 1\right) \\
& \times\left\langle 1 P_{1} P_{3} \mid 1\right\rangle^{3} \Delta
\end{aligned}
$$

Non-Adjacent (1k)-Shifted N²MHV

Generalized \mathcal{R}-invariants $=\mathrm{PT} \times \mathrm{PT} \times \mathrm{PT} \times \mathrm{PT} \times \mathrm{PT} \times J \times \Delta$.

Interesting Features

* Non-planar diagrams evaluate to

$$
\sum \mathcal{R}_{1,\left\{P_{1}^{a}, P_{1}^{b}\right\},\left\{P_{2}^{a}, P_{2}^{b}\right\}, P_{3}}
$$

where the individual orderings $P_{1}^{a}, P_{1}^{b}, P_{2}^{a}, P_{2}^{b}, P_{3}$ are preserved. Is there any residual dual conformal symmetry?

* Understanding BCFW geometries as boundaries of top cells:

Summary

* Before: Adjacent BCFW-shifted MHV amplitudes enjoyed an associated positive geometry and all singularities were holomorphic poles on $G_{+}(2, n)$

Summary

* Before: Adjacent BCFW-shifted MHV amplitudes enjoyed an associated positive geometry and all singularities were holomorphic poles on $G_{+}(2, n)$
* After: NMHV and beyond are also associated to only holomorphic poles on $G_{+}(k, n)$ cells
* Non-adjacent BCFW gives rise to a subset of non-planar on-shell diagrams for $\mathrm{N}^{k} \mathrm{MHV}$
* These non-positive BCFW geometries can be expressed as a sum of positive geometries with different external particle orderings
* Associated non-planar holomorphic expressions and \mathcal{R}-invariants can be constructed

Outlook

- Do non-planar BCFW geometries exhibit any residual dual conformal symmetry?
* What can we say about non-BCFW non-planar on-shell diagrams?
* Can we use a similar geometric construction to enumerate equivalence classes of top cells?

Outlook

* Do non-planar BCFW geometries exhibit any residual dual conformal symmetry?
* What can we say about non-BCFW non-planar on-shell diagrams?
* Can we use a similar geometric construction to enumerate equivalence classes of top cells?

Thank you for listening!

