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We have multiple ways of  thinking about UV divergences

Fascinating connections with algebraic geometry, topology,
and combinatorics, but also new computational tools

loop momentum 
blowing up

space-time points 
colliding

worldline segments 
shrinking
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On the other hand, most of  the intuition for IR divergences
comes from the loop momentum space
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Question:
What is the meaning of  IR divergences

in Schwinger parameters?
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1. Worldline interpretation

2. Divergences as redundancies

3. Computational scheme
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Feynman integrals in Schwinger parametrization

(Translating back to the loop momenta:                                      )

Momentum flowing 
through edge    along  

(concrete examples later on)

Schwinger parameters

Space-time dimension
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The integrand                     features Symanzik polynomials
(concrete examples later on)

In this talk,
but can be easily included
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Overall GL(1) redundancy
(reparametrization invariance)

Schwinger parameters
(~lengths of  the edges)
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Modding out by the GL(1) redundancy

Fixing the GL(1) gauge, e.g.,

UV divergence factored out, 

“Feynman parameters”

This talk

Integrate out
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Big picture:
Singularities as saddle points of  the worldline action                .

How many constraints on the external kinematics?

for
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Codimension-0 Codimension-1 Codimension-2 and higher
(any value of  external kinematics) (e.g.                )

[SM, Telen ‘21]
[Hannesdottir, SM ‘22]

UV/IR
divergences

Normal/anomalous
thresholds

Absence puts
interesting constraints

[related talks/posters by
Cordova, Correia, Hannesdottir, 

He, Henn, McLeod, Pokraka, 
Zhiboedov, ...]

(e.g.                  )

[this talk]
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Simplest example of  an IR divergence

collinear
limit

Cross-check: 
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p3p2
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Massless
corner

Massive
corners
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Next-to-simplest example of  an IR divergence

soft-collinear
limit

Cross-check: Related to
[Yelleshpur ‘19]
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Worldline scalings can become quite involved

We’ll see that they can be entirely classified for any diagram 

(e.g., four-loop contribution to the QCD cusp anomalous dimension)
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IR divergences come from worldline
segments expanding at different rates

(cf. UV divergences)

1. Worldline interpretation
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1. Worldline interpretation

2. Divergences as redundancies

3. Computational scheme
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First change the variables

Integration measure:

All divergences at infinity:
IR

UV

for every edge 
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UV/IR divergences comes from approaching
infinity from different directions

(avoid kinematic singularities with                              )

We can linearize this problem using tropical geometry! 

[SM ‘21]

(Other applications of  tropical geometry: [Tourkine, Cachazo, Early, Guevara, Sepulveda, Borges, 
Umbert, Panzer, Borinsky, Arkani-Hamed, He, Lam, Spradlin, Salvatori, Lukowski, Parisi, 

Williams, Drummond, Foster, Gurdogan, Kalousios, Papathanasiou, Henke, Eberhardt, SM, ...])
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Tropical approximation of  the integrand

where

Exponentially 
accurate at infinity

Keep only the leading monomials
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Example: collinear divergence in D=4

Divergence as

p1 p4

p3p2
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divergence
Enhanced symmetry from GL(1) to GL(1)2

(divergent ray)

Invariant under 
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What kind of  a divergence?

power-law

logarithmic

finite
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How bad of  a divergence?

e.g., collinear e.g., soft-collinear generalizations

or or or

coneray cone
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Modding out by the enhanced GL(1)k+1 redundancy
(specialize to logarithmic from now on)

Volume of  the cone 

Fix the GL(1)k+1 

redundancy
Simplified Symanzik 

polynomials
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Example: collinear divergence in D=4-2

Fix Set  

p1 p4

p3p2
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Example: soft-collinear divergence in D=4-2

Fix Set  

p1 p4

p3p2
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Example: cusp anomalous dimension at four loops

In agreement with [Henn, Smirnov, Smirnov, Steinhauser ‘16-20]
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Rich literature on closely related topics

• Sector decomposition & expansion by regions

[Binoth, Heinrich, Bogner, Weinzierl, Kaneko, Ueda, Borowka, Jones, Kerner,
Schlenk, Zirke, Jahn, Langer, Magerya, Poldaru, Villa, Pak, Smirnov, Smirnov, 

Ananthanarayan, Ramanan, Sarkar, Semenova, ...]

• Feynman integrals as GKZ hypergeometric functions

[enormous literature in the 20th century,
de la Cruz, Klausen, Tellander, Helmer, Feng, Chang, Chen, Zhang,
Abreu, Britto, Duhr, Gardi, Matthew, Mastrolia, Telen, SM, ...]

We want to exploit the extra combinatorics of  Symanzik polynomials

[poster by Datta]
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Divergence is a GL(1)k+1 redundancy
computed by fixing         Schwinger parameters

(cf. fixing gauge in gauge theory)

2. Divergences as redundancies
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1. Worldline interpretation

2. Divergences as redundancies

3. Computational scheme
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No need to do it “by hand” for every Feynman diagram

Rays generated by subdiagrams
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Feynman polytopes

• Where are the divergences?
• What type are they?
• How do they nest/overlap?

UV-like

IR-like
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• Numerical computations of  finite integrals
[Panzer, Borinsky ‘19-20]

Previously studied in the UV case with generic kinematics

• Blow-ups of  the Schwinger parameter space
[Bloch, Esnault, Kreimer, Brown, Schultka ‘05-19]

IR singularities need non-generic kinematics
(Feynman polytopes are in general not generalized permutohedra)
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Lots of  applications to IR divergences, including all-loop results
(details in [Arkani-Hamed, Hillman, SM ‘22])
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If  there’s time:
Glimpse at the Laurent expansion

in dimensional regularization, D=4-2  

(inspired by [Brown, Kreimer ‘11] in BPHZ renormalization 
and [Brown, Dupont ‘19] in string theory amplitudes)
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Simplest example

All integrals manifestly finite
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Series[%, {  ,0,0}]
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Combinatorics of  UV/IR divergences
is summarized by Feynman polytopes

3. Computational scheme
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1. Worldline interpretation

2. Divergences as redundancies

3. Computational scheme
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Thank you!


