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Geometry & EFT

Field space geometry for EFT

deriv. terms define metric on the scalar manifold:
derivative field redefs are just coordinate transforms.

Long history (primarily) applied to nonlinear sigma models, e.qg.

Non

geometric invariants to classify EFTs, easily capture field redefs.
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Fields ¢ are coordinates on space of field values (“target space”).
Use geometric quantities to connect Lagrangians and amplitudes,

Application to EFTs of the SM




Measuring Geometry

Amplitudes can be written in terms of geometric

guantities on scalar manifold, e.g. for Higgs EFT

Alonso, Jenkins, Manohar '15; Nagai, Tanabashi,
Tsumura, Uchida ’19; Cohen, NC, Lu, Sutherland "21;
Cheung, Helset, Parra-Martinez '21]

Connection is transparent in normal coordinates
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Geometry and Unitarity

Parts of 2 — n > 2 amplitudes that grow with

energy are derivatives of sectional curvatures
|[Cohen, NC, Lu, Sutherland 21]
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Higher-point amplitudes reconstruct coefficients in the laylor
expansion of geometric invariants on the EFT manifold.

It will be apparent in high-point amplitudes measured here
if something unusual is happening (say) over there -
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What’s the problem?

Target space geometric picture only contains information up to 2 derivatives (no positivity bounds &)
—ven worse, “invariants” are susceptible to derivative field redefinitions:

L= V() + 5005(D05°05° +00") > L=-V(9)+ 5 (6a5(6) ~ Va()h5(6)) 96°06" + 00"
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“ Just don’t do that” won't suffice. Field redef. w/out derivatives /
[ﬁuv ————————————| Uvj

1. Derivative redefinitions often arise in
basis transformations & using
equations of motion.

2. Inevitable IR consequence of non- Field redef. with derivatives ,
derivative field redefinitions in the UV. [LEFT ] >l EFT]
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Functional Geometry

The main idea [Cohen, NC, LLu, Sutherland "22]: go off-shell, and switch from studying fields at
one spacetime point (target space) to fields at every spacetime point (configuration space).
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The Global Approach
to Quantum Field
As we learned, this is not unlike an approach advocated by DeWitt; ROCOLY,

let’s use his absurdly condensed notation:

p(z) = ¢ / 2 62 () Ju(z) — 67,
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Functional Geometry
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The interesting objects will be M . ( D1 ) o (—iD_l )
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the amputated correlators M B T Ity Sy, 0y,
The sum of tree graphs assembled from
T Tk
. | - OF(=T) L . W
® k-point 1P| vertices 25(#’“’1 e _ Z : ZD_ _
_ o*(=D) graphs i~

® propagators iD (—iDg,) = SHTOHY

hese are “almost amplitudes”; obtain amplitudes & by setting J, = 0

and tacking on external wavefunctions | ] (¢/')e™*
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Functional Geometry

Define configuration space generalizations of the familiar “target space” geometric quantities:

“Metric”
2(__

(;Y

L1L2

“Connection”
53(~T)

— jDY?
¢ 5¢z5¢x15¢x2

Readuce to familiar target space geometric objects when restricted to constant field configurations
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Off-shell Recursion

These identifications also make sense because, remarkably, we can write an n+7-leg
correlator in terms of an n-leg correlator by acting with “covariant derivative” V.~ d — I
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0
¢ . S
(take the string x;---X;---Xx, and replace x; w/ y)

-unctional derivative w/ “connection” generates parallel transport on field space manifold.

A new form of off-shell recursion! Can be used to obtain Berends-Giele when J = 0 is enforced.
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On-shell Covariance

Does this “functional geometry” accommodate derivative field redefinitions?

Consider a general field redefinition (possibly w/ derivatives) ¢ (z) — ¢(z)

~S

(express functionally as ¢[¢])

~

At tree level, the (effective) action transforms as a scalar, I'[¢] = S[¢] = S M[(%H =1 [qb[éﬂ

Can use this to show that the /\7;13195 _ (5#1 .. 5?%) My, .oy, + Qg o(—T')
amputated correlators (also : 01 0Q¥n : "7 o N on shell
“metric”, “connection”) are . S g2 5;? S
covariant up to evanescent 4 belwx . Qf (—1) w &(-T) __;‘;_1 .
terms vanishing on shell: — CTT ST 0gYLoQY-2 v ogvr Lm0 ue| g T

= manifests invariance of amplitudes under derivative field redefinitions
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Another approach

“Geometry-Kinematics Duality” |(Cheung, Helset, Parra-Martinez 22
Treat momentum like a flavor index; an arbitrary theory of massless bosons is
classically equivalent to an NLSM with momentum-dependent target space metric.

Map NLSM flavor multiplet to a single scalar: sz — ¢(p)

Target space metric maps to a “kinematic metric™: gij — g(pl , p2)5 (p12)

Index sums map to momentum integrals: Z — f f (27r) D

See Julio’s talk on Friday
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Conclusions

® Feld space geometry a powerful bridge between UV theories, EFTs, and
amplitudes, but conventional geometry (“target space”) fails past 2 derivatives.

® Functional geometry (“configuration space”) provides a generalization that
1. reduces to conventional target space geometry in appropriate limits,
2. gives rise to new oft-shell recursion relating amputated correlators,

3. manifests on-shell covariance under general field redefinitions.
® [ntriguing relation to “geometry-kinematics duality” (see Julio’s talk)

® Much to learn from a geometric picture incorporating higher-derivative terms...

Thank you!
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