Antipodal Duality and an eight loop application

(6) Paul Foreman http://www-mindmapinspiration.com

Lance Dixon

LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, 2112.06243, 2204.11901
LD, Y.-T. (Andy) Liu, to appear
Amplitudes 2022
Charles University, Prague, CZ
10 August 2022
Amplitudes 2022

Transcendental Structure

- N=4 SYM amplitudes have "uniform weight" (transcendentality) $2 L$ at loop order L
- Weight ~ number of integrations, e.g.
$\ln (s)=\int_{1}^{s} \frac{d t}{t}=\int_{1}^{s} d \ln t$
$\mathrm{Li}_{2}(x)=-\int_{0}^{x} \frac{d t}{t} \ln (1-t)=\int_{0}^{x} d \ln t \cdot[-\ln (1-t)] \quad 2$
$\mathrm{Li}_{n}(x)=\int_{0}^{x} \frac{d t}{t} \mathrm{Li}_{n-1}(t)$
- QCD amps typically all weights from 0 to $2 L$

In planar N=4 SYM:
 Amplitudes $=$ Wilson loops

- Polygon vertices x_{i} are not positions but dual momenta,
$x_{i}-x_{i+1}=k_{i}$
- Transform like positions under dual conformal symmetry
Alday, Maldacena, 0705.0303
Drummond, Korchemsky, Sokatchev, 0707.0243
Brandhuber, Heslop, Travaglini, 0707.1153
Drummond, Henn, Korchemsky, Sokatchev,
0709.2368, 0712.1223, 0803.1466;

Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

Duality holds at both strong and weak coupling
 weak-weak duality, holds order-by-order

L. Dixon Antipodal Duality

Dual conformal invariance

- Wilson n-gon invariant under inversion:

$$
x_{i}^{\mu} \rightarrow \frac{x_{i}^{\mu}}{x_{i}^{2}}, \quad x_{i j}^{2} \rightarrow \frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}
$$

$$
x_{i j}^{2}=\left(k_{i}+k_{i+1}+\cdots+k_{j-1}\right)^{2} \equiv s_{i, i+1, \cdots, j-1}
$$

- Fixed, up to functions of invariant cross ratios:

$$
\hat{u}_{i j k l}=\frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}
$$

- $x_{i, i+1}^{2}=k_{i}^{2}=0 \quad \rightarrow$ no such variables for $n=4,5$

Hexagon function bootstrap

Loops

LD, Drummond, Henn, 1108.4461, 1111.1704;
Caron-Huot, LD, Drummond, Duhr, von Hippel, McLeod, Pennington,
4,5 1308.2276, 1402.3300, 1408.1505, 1509.08127; 1609.00669;

6,7 Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1903.10890, 1906.07116; LD, Dulat, 22mm.nnnnn (NMHV 7 loop)

- Results are generalized polylogarithms with the same symbol alphabet to all loop orders!
- Same method used for "Higgs" form factor; see below

6-gluon kinematics:

 3d, many different regionsMulti-particle factorization $u, w \rightarrow \infty$,

Generalized polylogarithms

Chen, Goncharov, Brown,...

- Define as iterated integrals, e.g.

$$
G\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)=\int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n}, t\right)
$$

- Or define differentially: $d F=\sum_{s_{k} \in \mathcal{L}} F^{s_{k}} d \ln s_{k}$
- A Hopf algebra "co-acts" on space of polylogarithms,

$$
\Delta: F \rightarrow F \otimes F
$$

- Derivative $d F$ is one piece of Δ : $\quad \Delta_{n-1,1} F=\sum_{s_{k} \in \delta} F^{s_{k}} \otimes \ln s_{k}$
- so we refer to $F^{s_{k}}$ as a $\{n-1,1\}$ coproduct of F
- s_{k} are letters in the symbol alphabet \mathcal{L}

Generalized polylogarithms (cont.)

- $\{n-1,1\}$ coaction can be applied iteratively
- Define $\{n-2,1,1\}$ double coproducts, $F^{s_{k}, s_{j}}$, via derivatives of $\{n-1,1\}$ single coproducts $F^{s_{j}}$:

$$
d F^{s_{j}} \equiv \sum_{s_{k} \in \mathcal{L}} F^{s_{k, s_{j}}} d \ln s_{k}
$$

- And so on for $\{n-m, 1, \ldots, 1\} m^{\text {th }}$ coproducts of F.
- Maximal iteration, n times for weight n function, is the symbol,
$\mathcal{S}[F]=\sum_{s_{i_{1}, \ldots, s_{n}} \in \varepsilon} F^{s_{i_{1}, \ldots, s_{i_{n}}}} d \ln s_{i_{1}} \ldots d \ln s_{i_{n}} \equiv \sum_{s_{i_{1}, \ldots, s_{i_{n}} \in \varepsilon} F^{s_{i_{1}, \ldots, s_{i_{n}}}} s_{i_{1}} \otimes \ldots \otimes s_{i_{n}}}$
where now $F^{s_{1}, \ldots, s_{i_{n}}}$ are just rational numbers
Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Example: Harmonic Polylogarithms in one variable (HPL\{0,1\})

- Generalize classical polylogs
- Define HPLs by iterated integration:

$$
H_{0, \vec{w}}(x)=\int_{0}^{x} \frac{d t}{t} H_{\vec{w}}(t), \quad H_{1, \vec{w}}(x)=\int_{0}^{x} \frac{d t}{1-t} H_{\vec{w}}(t)
$$

- Or by derivatives:

$$
d H_{0, \bar{w}}(x)=H_{\bar{w}}(x) d \ln x \quad d H_{1, \bar{w}}(x)=-H_{\bar{w}}(x) d \ln (1-x)
$$

- Weight $n=$ length of binary string \vec{w}
- Number of functions at weight $n=2 L$ is number of binary strings: $2^{2 L}$
- Alphabet: $\mathcal{L}=\{x, 1-x\}$
- $z_{i}=x$ if $w_{i}=0, \quad z_{i}=1-x$ if $w_{i}=1$
\rightarrow Symbol $\mathcal{S}\left[H_{\bar{w}}(x)\right]=(-1)^{\# 1{ }^{\prime} s} z_{n} \otimes z_{n-1} \otimes \cdots \otimes z_{1}$
- Branch cuts dictated by first integration/entry in symbol
- Derivatives dictated by last integration/entry in symbol

Symbol alphabet for 6-gluon MHV amplitude

Goncharov, Spradlin, Vergu, Volovich, 1006.5703
9 letters:

$$
\begin{array}{r}
\mathcal{L}_{6}=\left\{\hat{u}, \hat{v}, \hat{w}, 1-\hat{u}, 1-\hat{v}, 1-\frac{\left.\hat{w}, \hat{y}, \hat{v}, y_{w}\right\}}{\text { parity-odd letters, algebraic in } \hat{u}, \hat{v}, \hat{w}}\right.
\end{array}
$$

Importantly, there is a parity-preserving 2d surface where all three $\hat{y}_{i} \rightarrow 1$, so can delete from symbol, leaving only 6 letters:

$$
\begin{gathered}
\widehat{k}_{i+3}^{\mu}=-\hat{k}_{i}^{\mu}, i=1,2,3 \\
\Rightarrow \widehat{\Delta}(\hat{u}, \hat{v}, \widehat{w})=(1-\hat{u}-\hat{v}-\widehat{w})^{2}-4 \hat{u} \hat{v} \widehat{w}=0
\end{gathered}
$$

Removing Amplitude (or Form Factor) Infrared Divergences

- On-shell amplitudes IR divergent due to long-range gluons
- Polygonal Wilson loops UV divergent at cusps, anomalous dimension $\Gamma_{\text {cusp }}$
- known to all orders in planar $\mathrm{N}=4 \mathrm{SYM}$:

Beisert, Eden, Staudacher, hep-th/0610251

- Both removed by dividing by BDS-like ansatz Bern, LD, Smirnov, hep-th/0505205, Alday, Gaiotto, Maldacena, 0911.4708
- Normalized [MHV] amplitude is finite, dual conformal invariant, also uniquely (up to constant) maintains important symbol adjacency relations due to causality (Steinmann relations for 3-particle invariants):

$$
A_{6}\left(\hat{u}_{i}\right)=\lim _{\epsilon \rightarrow 0} \frac{\mathcal{A}_{6}\left(s_{i, i+1}, \epsilon\right)}{\mathcal{A}_{6}^{\text {BDS-like }}\left(s_{i, i+1}, \epsilon\right)}=\exp \left[\frac{\Gamma_{\text {cusp }}}{4} A_{6}^{(1)}+R_{6}\right]
$$

Steinmann Relations

Steinmann (1960)
3-particle channels in amplitudes with $n \geq 6$ particles can cross threshold independently of any other invariants.
Most transparent in $3 \rightarrow 3$ scattering:

Can move s_{345} across 0 with all other invariants generic, and similarly for $s_{561}=s_{234}$. Furthermore, there is a region where both s_{345} and s_{561} can cross 0, and Steinmann \rightarrow

$$
\operatorname{Disc}_{s_{234}} \operatorname{Disc}_{s_{345}} \mathcal{A}_{6}\left(s_{i j}, s_{i j k}, \epsilon\right)=0
$$

Steinmann motivates basis change

- $\mathcal{L}_{6}=\left\{\hat{u}, \hat{v}, \widehat{w}, 1-\hat{u}, 1-\hat{v}, 1-\hat{w}, \hat{y_{n}}, \hat{y_{0}}, \hat{w}\right\}$
$\rightarrow \mathcal{L}_{6}^{\prime}=\left\{\hat{a}=\frac{\widehat{u}}{\hat{v},}, \hat{b}=\frac{\hat{v}}{\widehat{w} u}, \hat{c}=\frac{\hat{w}}{\hat{u} \hat{v}}, \hat{d}=\frac{1-\widehat{u}}{\hat{u}}, \hat{e}=\frac{1-\hat{v}}{\hat{v}}, \hat{f}=\frac{1-\widehat{w}}{\hat{w}}\right\}$

$$
\begin{aligned}
& \hat{a}=\frac{\hat{u}}{\hat{v} \widehat{W}}=s_{234}^{2} \times r\left(s_{i, i+1}\right) \\
& \hat{b}=\frac{\widehat{v}}{\widehat{w} \hat{u}}=s_{345}^{2} \times \check{r}\left(s_{i, i+1}\right) \\
& \hat{c}=\frac{\widehat{w}}{\hat{u} v}=s_{123}^{2} \times \dot{r}\left(s_{i, i+1}\right)
\end{aligned}
$$

$\operatorname{Disc}_{S_{234}} \operatorname{Disc}_{S_{345}} \mathcal{A}_{6}=0 \Rightarrow \operatorname{Disc}_{\hat{a}} \operatorname{Disc}_{\hat{b}} A_{6}=0$

$$
\Rightarrow \mathcal{S}\left[A_{6}\right]=\cdots \otimes \hat{e} \otimes \bar{b} \otimes \ldots+\ldots
$$

+ dihedral

Bootstrap Goldilocks "Higgs" amplitude [planar N=4 form factor] to 8 loops

LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, 2012.12286, 2204.11901

Loops 3,4,5
6,7,8

- Matrix elements of operator $G_{\mu \nu}^{a} G^{\mu \nu a}$ with n gluons in planar $\mathrm{N}=4 \mathrm{SYM}$
- Hgg form factor ($n=2$) "too simple",
no kinematic dependence beyond overall $\left(-s_{12}\right)^{-L \epsilon}$
- Hggg $(n=3)$ is "just right", depends on only 2 dimensionless ratios
- 8 loop results for function of 2 variables are a "data mine" for discovering e.g. antipodal duality

Hggg kinematics is two-dimensional

$$
\begin{aligned}
& k_{1}+k_{2}+k_{3}=-k_{H} \\
& s_{123}=s_{12}+s_{23}+s_{31}=m_{H}^{2}
\end{aligned}
$$

$\mathrm{N}=4$ amplitude is S_{3} invariant

$$
s_{i j}=\left(k_{i}+k_{j}\right)^{2} \quad k_{i}^{2}=0
$$

$$
u=\frac{s_{12}}{s_{123}} \quad v=\frac{s_{23}}{s_{123}} \quad w=\frac{s_{31}}{s_{123}}
$$

$$
u+v+w=1
$$

I = decay / Euclidean
IIa,b,c = scattering / spacelike operator
IIIa,b,c = scattering / timelike operator
$D_{3} \equiv S_{3}$ dihedral symmetry generated by:
a. cycle: $i \rightarrow i+1(\bmod 3)$, or

$$
u \rightarrow v \rightarrow w \rightarrow u
$$

b. flip: $u \leftrightarrow v$

One loop integrals/amplitudes

$$
\begin{aligned}
& g_{3}=\operatorname{Li}_{2}\left(1-\frac{s_{123}}{s_{12}}\right)+\operatorname{Li}_{2}\left(1-\frac{s_{123}}{s_{23}}\right)+\frac{1}{2} \ln ^{2}\left(\frac{s_{12}}{s_{23}}\right)+\cdots \\
& \\
& \rightarrow \text { symbol }= \\
& \operatorname{Li}_{2}\left(1-\frac{1}{u}\right)+\operatorname{Li}_{2}\left(1-\frac{1}{v}\right)+\frac{1}{2} \ln ^{2}\left(\frac{u}{v}\right)+\cdots(1-u)+v \otimes(1-v)-u \otimes v-v \otimes u
\end{aligned}
$$

A two-loop story

- Hggg computed in QCD at 2 loops

Gehrmann, Jaquier, Glover, Koukoutsakis, 1112.3554

- Stress tensor 3-point form factor \mathcal{F}_{3} in $\mathrm{N}=4 \mathrm{SYM}$ computed next (QMUL, a decade ago)
Brandhuber, Travaglini, Yang, 1201.4170
- Symbol alphabet: $\mathcal{L}=\{u, v, w, 1-u, 1-v, 1-w\}$
- Highest weight part of QCD result same as $\mathrm{N}=4$ result!!
- "Principle of maximal transcendentality"

Kotikov, Lipatov, Velizhanin, hep-ph/0301021, hep-ph/0611204

- Does it hold here beyond two loops?
- Other operators: Ahmed et al., 1905.12770; Guo et al., 2205.12969

3-gluon form factor alphabet

- Motivated by 6 gluon case, switch to equivalent alphabet
$\mathcal{L}^{\prime}=\left\{a=\frac{u}{v w}, b=\frac{v}{w u}, c=\frac{w}{u v}, d=\frac{1-u}{u}, e=\frac{1-v}{v}, f=\frac{1-w}{w}\right\}$
- Symbols of form factor $F_{3}^{(L)}$ at 1 and 2 loops: just 1 and 2 terms, plus D_{3} dihedral images(!!!):

$$
\begin{gathered}
\mathcal{S}\left[F_{3}^{(1)}\right]=(-1) b \otimes d+\text { dihedral } \\
\mathcal{S}\left[F_{3}^{(2)}\right]=4 b \otimes d \otimes d \otimes d+2 b \otimes b \otimes b \otimes d+\text { dihedral }
\end{gathered}
$$

dihedral cycle: $a \rightarrow b \rightarrow c \rightarrow a, \quad d \rightarrow e \rightarrow f \rightarrow d$ dihedral flip: $\quad a \leftrightarrow b, \quad d \leftrightarrow \mathrm{e}$

Antipodal duality

weak-weak duality
LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, 2112.06243

$$
F_{3}^{(L)}(u, v, w)=S\left(A_{6}^{(L)}(\hat{u}, \hat{v}, \hat{w})\right.
$$

Antipode map S, at symbol level, reverses order of all letters:

$$
S\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{m}\right)=(-1)^{m} x_{m} \otimes \cdots \otimes x_{2} \otimes x_{1}
$$

Kinematic map is

$$
\hat{u}=\frac{v w}{(1-v)(1-w)}, \quad \hat{v}=\frac{w u}{(1-w)(1-u)}, \quad \widehat{w}=\frac{u v}{(1-u)(1-v)}
$$

Maps $u+v+w=1$ to parity-preserving surface

$$
\Delta \equiv(1-\widehat{u}-\hat{v}-\widehat{w})^{2}-4 \hat{u} \widehat{v} \widehat{w}=0
$$

also corresponds to "twisted forward scattering":

$$
\hat{k}_{i+n}^{\mu}=-\widehat{k}_{i}^{\mu}, \quad i=1,2, \ldots, n \quad(n=3 \text { here })
$$

L. Dixon Antipodal Duality

6-gluon alphabet and symbol map

- $\mathcal{L}_{6}=\{\hat{u}, \hat{v}, \widehat{w}, 1-\hat{u}, 1-\hat{v}, 1-\widehat{w}, \hat{y}, \hat{y}, \hat{y} \rightarrow 1$ for $\Delta=0$
$\rightarrow \mathcal{L}_{6}^{\prime}=\left\{\hat{a}=\frac{\widehat{u}}{\hat{v} \hat{w}}, \hat{b}=\frac{\hat{v}}{\hat{w} u}, \hat{c}=\frac{\widehat{w}}{\hat{u} \hat{v}}, \hat{d}=\frac{1-\widehat{u}}{\hat{u}}, \hat{e}=\frac{1-\hat{v}}{\hat{v}}, \hat{f}=\frac{1-\widehat{w}}{\hat{w}}\right\}$
- Kinematic map on letters:

$$
\sqrt{\hat{a}}=d, \quad \hat{d}=a, \quad \text { plus cyclic relations }
$$

- Works through 7 loops!

$$
s\left[A_{6}^{(2)}\right]=\hat{b} \otimes \hat{d} \otimes \hat{d} \otimes \hat{d}+\frac{1}{2} \hat{b} \otimes \hat{b} \otimes \hat{b} \otimes \hat{d}+\operatorname{dihedral}{ }_{4}^{2}
$$

Map covers entire phase space for 3-gluon form factor

- Soft is dual to collinear; collinear is dual to soft
- White regions in (u, v) map to some of $\hat{u}, \hat{v}, \widehat{w}>1$

Many special dual points

There is an

 " f " alphabet at all these points: a way of writing multiple zeta values (MZV's) so that coaction is manifest.F. Brown, 1102.1310;
O. Schnetz,

HyperlogProcedures

	$(\hat{u}, \hat{v}, \hat{w})$	(u, v, w)	functions
∇	$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$\sqrt[6]{1}$
\square	$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	$(0,0,1)$	$\operatorname{Li}_{2}\left(\frac{1}{2}\right)+\operatorname{logs}$
\bullet	$(1,1,1)$	$\lim _{u \rightarrow \infty}(u, u, 1-2 u)$	MZVs
\circ	$(0,0,1)$	$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	MZVs $+\operatorname{logs}$
\triangle	$\left(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}\right)$	$(-1,-1,3)$	$\sqrt[6]{1}$
\boxplus	(∞, ∞, ∞)	$(1,1,-1)$	alternating sums
\otimes	$\lim _{\hat{v} \rightarrow \infty}(1, \hat{v}, \hat{v})$	$\lim _{v \rightarrow \infty}(1, v,-v)$	MZVs
-	$(1, \hat{v}, \hat{v})$	$\lim _{v \rightarrow \infty}(u, v, 1-u-v)$	HPL $\{0,1\}$
-	$\left(\hat{u}, \hat{u},(1-2 \hat{u})^{2}\right)$	$(u, u, 1-2 u)$	$\operatorname{HPL}\{-1,0,1\}$

Simplest point

- $(\hat{u}, \hat{v}, \widehat{w})=(1,1,1) \Leftrightarrow u, v \rightarrow \infty$
- At this point,

$$
\begin{array}{cl}
A_{6}^{(1)}(\cdot)=0 & F_{3}^{(1)}(\cdot)=8 \zeta_{2} \\
A_{6}^{(2)}(\cdot)=-9 \zeta_{4} & F_{3}^{(2)}(\cdot)=31 \zeta_{4} \\
A_{6}^{(3)}(\cdot)=121 \zeta_{6} & F_{3}^{(3)}(\cdot)=-145 \zeta_{6} \\
A_{6}^{(4)}(\cdot)=120 f_{3,5}-48 \zeta_{2} f_{3,3}-\frac{6381}{4} \zeta_{8} & F_{3}^{(4)}(\cdot)=120 f_{5,3}+\frac{11363}{4} \zeta_{8} \\
A_{5}^{(5)} \cdot(\cdot)=-2688 f_{3,}-1560 f_{5,5}+0\left(\pi^{2}\right) & F_{5}^{(5)} \cdot(\cdot)=-2688 f_{, 3}-1500 f_{5,5}+O\left(\pi^{2}\right) \\
A_{6}^{(6)}(\cdot)=48528 f_{3,9}+37296 f_{5,7}+21120 f_{7,5}+O\left(\pi^{2}\right) & F_{3}^{(6)}(\cdot)=48528 f_{9,3}+37296 f_{7,5}+21120 f_{5,7}+O\left(\pi^{2}\right)
\end{array}
$$

- Reversing ordering of letters in f-alphabet, blue values show that antipodal duality holds beyond symbol level, modulo $i \pi$
- modulo $i \pi$ is best we can get from antipode map

Simplest form factor line is $v \rightarrow \infty$

$\mathcal{L}^{\prime}=\left\{a=\frac{u}{v w}, \quad b=\frac{v}{w u}, \quad c=\frac{w}{u v}, d=\frac{1-u}{u}, e=\frac{1-v}{v}, f=\frac{1-w}{w}\right\}$
$\mathcal{L}^{\prime} \rightarrow\left\{\frac{1}{u}, 1-\frac{1}{u}\right\}$
\rightarrow Harmonic polylogarithms $H_{\vec{w}} \equiv H_{\vec{w}}\left(1-\frac{1}{u}\right)$

$$
\begin{aligned}
F_{3}^{(1)}(v \rightarrow \infty)= & 2 H_{0,1}+6 \zeta_{2} \\
F_{3}^{(2)}(v \rightarrow \infty)= & -8 H_{0,0,0,1}-4 H_{0,1,1,1}+12 \zeta_{2} H_{0,1}+13 \zeta_{4} \\
F_{3}^{(3)}(v \rightarrow \infty)= & 96 H_{0,0,0,0,0,1}+16 H_{0,0,0,1,0,1}+16 H_{0,0,0,1,1,1}+16 H_{0,0,1,0,0,1}+8 H_{0,0,1,0,1,1} \\
& +8 H_{0,0,1,1,0,1}+16 H_{0,1,0,0,0,1}+8 H_{0,1,0,0,1,1}+12 H_{0,1,0,1,0,1}+4 H_{0,1,0,1,1,1} \\
& +8 H_{0,1,1,0,0,1}+4 H_{0,1,1,0,1,1}+4 H_{0,1,1,1,0,1}+24 H_{0,1,1,1,1,1} \\
& -\zeta_{2}\left(32 H_{0,0,0,1}+8 H_{0,0,1,1}+4 H_{0,1,0,1}+52 H_{0,1,1,1}\right) \\
& -\zeta_{3}\left(8 H_{0,0,1}-4 H_{0,1,1}\right)-53 \zeta_{4} H_{0,1}-\frac{167}{4} \zeta_{6}+2\left(\zeta_{3}\right)^{2}
\end{aligned}
$$

8 loop result has $\sim 2^{2 \times 8-2}=16,384$ terms

6-gluon MHV amplitude simplest for $(\widehat{u}, \widehat{v}, \widehat{w})=(1, \widehat{v}, \hat{v})$

- Let $H_{\bar{w}} \equiv H_{\bar{w}}\left(1-\frac{1}{\hat{v}}\right)$

$$
\begin{aligned}
A_{6}^{(1)}(1, \hat{v}, \hat{v})= & 2 H_{0,1} \\
A_{6}^{(2)}(1, \hat{v}, \hat{v})= & -8 H_{0,1,1,1}-4 H_{0,0,0,1}-4 \zeta_{2} H_{0,1}-9 \zeta_{4} \\
A_{6}^{(3)}(1, \hat{v}, \hat{v})= & 96 H_{0,1,1,1,1,1}+16 H_{0,1,0,1,1,1}+16 H_{0,0,0,1,1,1}+16 H_{0,1,1,0,1,1}+8 H_{0,0,1,0,1,1} \\
& +8 H_{0,1,0,0,1,1}+16 H_{0,1,1,1,0,1}+8 H_{0,0,1,1,0,1}+12 H_{0,1,0,1,0,1}+4 H_{0,0,0,1,0,1} \\
& +8 H_{0,1,1,0,0,1}+4 H_{0,0,1,0,0,1}+4 H_{0,1,0,0,0,1}+24 H_{0,0,0,0,0,1} \\
& +\zeta_{2}\left(8 H_{0,0,0,1}+8 H_{0,1,0,1}+48 H_{0,1,1,1}\right) \\
& +42 \zeta_{4} H_{0,1}+121 \zeta_{6}
\end{aligned}
$$

Exact map at symbol level, with $\frac{1}{\hat{v}}=1-\frac{1}{u}, 0 \leftrightarrow 1$, if you also reverse order of symbol entries / HPL indices!!! Works to 7 loops, where $\sim 2^{2 \times 7-2}=4,096$ terms agree

Antipodal duality "explains" adjacency relations for form factor

- Extended Steinmann relations for 6 gluon amplitude follow from causality (overlapping branch cuts \rightarrow no double disc.):
- ... ब̂̀ $\hat{b} \ldots$ + dihedral [ES, imposed]
- ... $\otimes \hat{a} \otimes \hat{d}$... + dihedral [follow from ES + first entry]
- The kinematic map on letters:

$$
\sqrt{\hat{a}}=d, \quad \hat{d}=a, \quad \text { plus dihedral images }
$$

Takes the above conditions to the form factor restrictions:

+ dihedral
+ dihedral
- We observed these conditions empirically, but had no causality-based argument, prior to antipodal duality

Map in OPE parametrization

- Amplitude:
$(\widehat{F}=1$ for $\Delta=0)$

$$
\hat{u}=\frac{1}{1+(\hat{T}+\hat{S} \hat{F})(\hat{T}+\hat{S} / \hat{F})},
$$

$$
\hat{v}=\hat{u} \hat{w} \hat{S}^{2} / \hat{T}^{2}, \quad \hat{w}=\frac{\hat{T}^{2}}{1+\hat{T}^{2}}
$$

- Form factor:

$$
\begin{aligned}
u & =\frac{1}{1+S^{2}+T^{2}}, \quad v=\frac{T^{2}}{1+T^{2}} \\
w & =\frac{1}{\left(1+T^{2}\right)\left(1+S^{-2}\left(1+T^{2}\right)\right)}
\end{aligned}
$$

- Apply kinematic map
single flux tube excitations for the amplitude (T^{1}) and double (or bound state) excitations for the form factor (T^{2})
L. Dixon

Antipodal Duality
Amplitudes 2022-2022/08/10

Exploit/test antipodal duality at 8 loops

LD, Y.-T. Liu, to appear

- Given form factor, antipodal duality determines symbol of MHV 6 gluon amplitude at 8 loops on $\Delta=0$ surface.
- Lift symbol into bulk. Only 3 free parameters!
- 2 killed at origin, $(\hat{u}, \hat{v}, \widehat{w}) \rightarrow(0,0,0)$
- last killed in process of lifting to full function level
- Need one OPE data point to kill one beyond-symbol ambiguity $\propto \zeta_{8}$

8 loop MHV 6-gluon amplitude at $(\hat{u}, \widehat{v}, \widehat{w})=(1,1,1)$

LD, Y.-T. Liu, to appear

$$
\begin{aligned}
A_{6}^{(8)}(1,1,1)= & 9122624 f_{9,7}+11543472 f_{7,9}+5153280 f_{11,5}+19603536 f_{5,11}+23915376 f_{3,13} \\
& +371520 f_{5,3,3,5}+400320 f_{3,3,5,5}+400320 f_{3,5,3,5}+825216 f_{3,3,3,7} \\
& -\zeta_{2}\left(701856 f_{7,7}+1303232 f_{9,5}+430656 f_{5,9}+2061312 f_{11,3}-309696 f_{3,11}\right. \\
& \left.+160128 f_{3,5,3,3}+160128 f_{3,3,5,3}+117888 f_{3,3,3,5}+148608 f_{5,3,3,3}\right) \\
& -\zeta_{4}\left(3243888 f_{5,7}+3475296 f_{7,5}+3909696 f_{9,3}+3215472 f_{3,9}+353664 f_{3,3,3,3}\right) \\
& -\zeta_{6}\left(3612804 f_{5,5}+3791520 f_{7,3}+3409152 f_{3,7}\right)-\zeta_{8}\left(3720664 f_{5,3}+3456614 f_{3,5}\right) \\
& -\frac{19560489}{5} \zeta_{10} f_{3,3}-\frac{512193667550809}{7639104} \zeta_{16}
\end{aligned}
$$

- Blue values successfully predicted by antipodal duality
- Result consistent with coaction principle at weight 16.

Antipodal "symmetry" Y.-T. Liu, 2207.11815

- There's a letter map for n-gluon MHV amplitudes, at least for $n=6,7,8$, on their parity preserving surfaces, which maps the symbol into its own antipode:

$$
\mathcal{S}\left(R_{n, e}^{(2)}\right)=\frac{1}{4} S\left(\left.\mathcal{S}\left(R_{n, e}^{(2)}\right)\right|_{\ln \phi_{i} \mapsto A_{n}^{i j} \ln \phi_{j}}\right)
$$

- Not a map of the underlying variables.
- Doesn't currently work past 2 loops.
- But it's the first evidence for some kind of antipodal action beyond one loop and $n=6$

Summary \& Open Questions

- Form factors as well as scattering amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$ can now be bootstrapped to high loop order
- Comparing the 6-gluon amplitude to the 3-gluon form factor, a strange new antipodal duality emerges, swapping the role of branch cuts and derivatives
- What is the question to which antipodal duality is the answer?
- Relation to flux tube representation?
- (How) does it hold at strong coupling??
- Does it hold at $8 \mathrm{~g}-4 \mathrm{gFF}$ level???
- Meaning of antipodal symmetry?
- How much more can we exploit to learn more about both amplitudes and form factors?

Not the first antipodal duality?

Center for Research on Economic and Social Theory
 Research Seminar in Quantitative Economics Discussion Paper

GORMAN AND MUSGRAVE ARE
DUAL - AN ANTIPODAL THEOREM
T. Bergstrom and R. Cornes

$$
\text { June } 1981
$$

DEPARTMENT OF ECONOMICS
University of Michigan
Ann Arbor, Michigan 48109

Extra Slides

BDS \& BDS-like normalization for \mathcal{F}_{3}

$$
\frac{\mathcal{F}_{3}}{\mathcal{F}_{3}^{\mathrm{MHV}, \text { tree }}}=\exp \left\{\sum_{L=1}^{\infty} g^{2 L}\left[\left(\frac{\Gamma_{\text {cusp }}^{(L)}}{4}+\mathcal{O}(\epsilon)\right) M^{1-\text { loop }}(L \epsilon)+C^{(L)}+R^{(L)}(u, v, w)\right]\right\}
$$

BDS ansatz

split 1-loop amplitude judiciously:
$\frac{\mathcal{F}_{3}^{1-\text { loop }}}{\mathcal{F}_{3}^{\text {MHV, tree }}} \equiv M^{1-\text { loop }}(\epsilon)=M(\epsilon)+\mathcal{E}^{(1)}(u, v, w)$
remainder function only a function of u, v, w;
vanishes in all collinear limits, but no adiarn ", y constraints
$M(\epsilon)=-\frac{1}{\epsilon^{2}} \sum_{i=1}^{3}\left(\frac{\mu^{2}}{-s_{i, i+1}}\right)^{\epsilon}-\frac{7}{2} \zeta_{2}+\nu^{3}$ constraints'
$\mathcal{E}^{(1)}\left(u, v{ }^{2}\right.$ obeys "adjacency ${ }^{\left.\left.1-\frac{\bar{v}}{v}\right)+\operatorname{Li}_{2}\left(1-\frac{1}{w}\right)\right] \quad \mathcal{E}^{(1), u}+\mathcal{E}^{(1), 1-u}=0}$ Now dil ${ }^{-1}$.
$\frac{\mathcal{F}_{3}^{\mathrm{BDS}-\text { like }}}{\mathcal{F}_{3}^{\mathrm{NHV}, \text { tree }}}=\exp \left\{\sum_{L=1}^{\infty} g^{2 L}\left[\left(\frac{\Gamma_{\text {cusp }}}{4}+\mathcal{O}(\epsilon)\right) M(L \epsilon)+C^{(L)}\right]\right\} \Rightarrow \mathcal{E}=\exp \left[\frac{\Gamma_{\text {cusp }}}{4} \mathcal{E}^{(1)}+R\right]$

L. Dixon
Antipodal Duality

Finite radius of convergence

- Planar $\mathrm{N}=4 \mathrm{SYM}$ has no renormalons $(\beta(g)=0)$ and no instantons ($\left.e^{-1 / g_{\mathrm{YM}}^{2}}=e^{-N_{c} / \lambda}\right)$
- Perturbative expansion can have finite radius of convergence, unlike QCD, QED, whose perturbative series are asymptotic.
- For cusp anomalous dimension, using coupling

$$
g^{2} \equiv \frac{N_{c} g_{\mathrm{YM}}^{2}}{16 \pi^{2}}=\frac{\lambda}{16 \pi^{2}}, \quad \text { radius is } \frac{1}{16}
$$

Beisert, Eden, Staudacher (BES), 0610251

- Ratio of successive loop orders $\frac{\Gamma_{\text {cusp }}^{(L)}}{\Gamma_{\text {cusp }}^{(\text {L-1) }}} \rightarrow-16$
- Find same radius of convergence in high-loop-order behavior of amplitudes and form factors, in most kinematic regions.

Euclidean Region form factor numerics

L. Dixon Antipodal Duality

Bootstrap boundary data: Flux tubes at finite coupling

 Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788;Basso, Sever, Vieira, 1303.1396, 1306.2058, 1402.3307, 1407.1736, 1508.03045 BSV+Caetano+Cordova, 1412.1132, 1508.02987

- Tile n-gon with pentagon transitions.
- Quantum integrability \rightarrow compute pentagons exactly in 't Hooft coupling
- 4d S-matrix as expansion (OPE) in number of flux-tube excitations = expansion around near collinear limit

A New Form Factor OPE

- Form factors are Wilson loops in a periodic space, due to injection of operator momentum
Alday, Maldacena, 0710.1060; Maldacena, Zhiboedov, 1009.1139; Brandhuber, Spence, Travaglini, Yang, 1011.1899
- Besides pentagon transitions \mathcal{P}, this program needs an additional ingredient, the form factor transition \mathcal{F} Sever, Tumanov, Wilhelm, 2009.11297, 2105.13367, 2112.10569

OPE representation

- 6-gluon amplitude:

$$
\mathcal{W}_{\text {hex }}=\sum_{\mathbf{a}} \int_{\mathrm{a}} d \mathbf{u} P_{\mathbf{a}}(0 \mid \mathbf{u}) P_{\mathbf{a}}(\overline{\mathbf{u}} \mid 0) e^{-E(\mathbf{u}) \tau+i p(\mathbf{u}) \sigma+i m \phi}
$$

$T=e^{-\tau}, S=e^{\text {a }}, F=e^{i \phi} . \quad v=\frac{T^{2}}{1+T^{2}} \rightarrow 0$, weak-coupling, $E=k+\mathcal{O}\left(g^{2}\right) \rightarrow$ expansion in T^{k}

- 3-gluon form factor: $\psi=$ helicity 0 pairs of states

$$
\mathcal{W}_{3}=\sum_{\psi} e^{-E_{\psi} \tau+i p_{\psi} \sigma} \mathcal{P}(0 \mid \psi) \mathcal{F}(\psi)
$$

weak-coupling \rightarrow expansion in $T^{2 k} \quad$ (no azimuthal angle ϕ)

8-4 Kinematic Map in OPE Parametrization

- 8-point amplitude has D_{8} dihedral symmetry; change it to D_{4} of the form factor by requiring

$$
\hat{T}_{3}=\hat{T}_{1}, \quad \hat{S}_{3}=\hat{S}_{1}, \quad \hat{F}_{3}=\hat{F}_{1}
$$

- To get $\mathcal{S}\left[R_{8}^{(2)}\right]$ to have only 8 final entries, we also fix $\hat{F}_{1}=\hat{F}_{2}=1$.
- The kinematic map becomes

$$
\begin{aligned}
& \hat{T}_{1}=\frac{T}{S}, \hat{S}_{1}=\frac{1}{T S}, \\
& \hat{T}_{2}=\frac{T_{2}}{S_{2}}, \hat{S}_{2}=\frac{1}{T_{2} S_{2}} \quad \text { and requires } F_{2}=i
\end{aligned}
$$

8-gluon Amp $\leftarrow \rightarrow$ 4-gluon FF

LD, Ö. Gürdoğan, Y.-T. Liu, A. McLeod, M. Wilhelm, in progress

- We have a candidate kinematic map for a 4-dimensional surface (4-gluon FF is 5 d).
- $\mathcal{S}\left[R_{8}^{(2)}\right]$ is known S. Caron-Huot, 1105.5606
- The kinematic+antipodal maps take it to a symbol with 40 letters, the first 8 of which are "right": $u_{i}=\frac{s_{i, i+1}}{s_{1234}}, \quad v_{i}=\frac{s_{i, i+1, i+2}}{s_{1234}}$
- However, the candidate 2-loop 4-gluon form factor doesn't match the FFOPE (???)

Values of HPLs $\{0,1\}$ at $u=1$

- Classical polylogs evaluate to Riemann zeta values

$$
\begin{aligned}
& \mathrm{Li}_{n}(u)=\int_{0}^{u} \frac{d t}{t} \mathrm{Li}_{n-1}(t)=\sum_{k=1}^{\infty} \frac{u^{k}}{k^{n}} \\
& \mathrm{Li}_{n}(1)=\sum_{k=1}^{\infty} \frac{1}{k^{n}}=\zeta(n) \equiv \zeta_{n}
\end{aligned}
$$

- HPL's evaluate to nested sums called multiple zeta values (MZVs):

$$
\zeta_{n_{1}, n_{2}, \ldots, n_{m}}=\sum_{k_{1}>k_{2}>\cdots>k_{m}>0}^{\infty} \frac{1}{k_{1}^{n_{1}} k_{2}^{n_{2}} \cdots k_{m}^{n_{m}}}
$$

Weight $n=n_{1}+n_{1}+\ldots+n_{m}$

- MZV's obey many identities, e.g. stuffle

$$
\zeta_{n_{1}} \zeta_{n_{2}}=\zeta_{n_{1}, n_{2}}+\zeta_{n_{2}, n_{1}}+\zeta_{n_{1}+n_{2}}
$$

- All reducible to Riemann zeta values until weight 8. Irreducible MZVs: $\zeta_{5,3}, \zeta_{7,3}, \zeta_{5,3,3}, \zeta_{9,3}, \zeta_{6,4,1,1}, \ldots$

Many "empirical" adjacency constraints

$$
F^{d, e}=F^{e, d}=F^{e, f}=F^{f, e}=F^{f, d}=F^{d, f}=0
$$

Hold for 2 loop QCD amplitudes too, planar and nonplanar! LD, Mcleod, Wilhelm, 2012.12286

$$
F^{a, d}=F^{d, a}=F^{b, e}=F^{e, b}=F^{c, f}=F^{f, c}=0
$$

Number of (symbol-level) linearly independent $\{n, 1, \ldots, 1\}$ coproducts ($2 L-n$ derivatives)

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$L=1$	1	3	1														
$L=2$	1	3	6	3	1												
$L=3$	1	3	9	12	6	3	1										
$L=4$	1	3	9	21	24	12	6	3	1								
$L=5$	1	3	9	21	46	45	24	12	6	3	1						
$L=6$	1	3	9	21	48	99	85	45	24	12	6	3	1				
$L=7$	1	3	9	21	48	108	236	155	85	45	24	12	6	3	1		
$L=8$	1	3	9	21	48	108	242	466	279	155	85	45	24	12	6	3	1

- Properly normalized L loop $\mathrm{N}=4$ form factors $\varepsilon^{(L)}$ belong to a small space \mathcal{C}, dimension saturates on left
- $\varepsilon^{(L)}$ also obeys multiple-final-entry relations, saturation on right
L. Dixon Antipodal Duality

Number of remaining parameters in form-factor ansatz after imposing constraints

L	2	3	4	5	6	7	8
symbols in \mathcal{C}	48	249	1290	6654	34219	$? ? ? ?$	$? ? ? ?$
dihedral symmetry	11	51	247	1219	$? ? ? ?$	$? ? ? ?$	$? ? ? ?$
$(L-1)$ final entries	5	9	20	44	86	191	191
$L^{\text {th }}$ discontinuity	2	5	17	38	75	171	164
collinear limit	0	1	2	8	19	70	6
OPE $T^{2} \ln ^{L-1} T$	0	0	0	4	12	56	0
OPE $T^{2} \ln ^{L-2} T$	0	0	0	0	0	36	0
OPE $T^{2} \ln ^{L-3} T$	0	0	0	0	0	0	0
OPE $T^{2} \ln ^{L-4} T$	0	0	0	0	0	0	0
OPE $T^{2} \ln ^{L-5} T$	0	0	0	0	0	0	0

Numerical implications of antipodal duality?

Origin at weak coupling

- Remarkably, MHV remainder R_{6} and closely-related quantity $\ln \varepsilon$ are quadratic in logarithms through 7 loops CDDvHMP, 1903.10890

$$
\ln \mathcal{E}\left(u_{i}\right) \approx-\frac{\Gamma_{\mathrm{oct}}}{24} \ln ^{2}\left(u_{1} u_{2} u_{3}\right)-\frac{\Gamma_{\mathrm{hex}}}{24} \sum_{i=1}^{3} \ln ^{2} \frac{u_{i}}{u_{i+1}}+C_{0}
$$

	$L=1$	$L=2$	$L=3$	$L=4$	$L=5$
$\Gamma_{\text {oct }}$	4	$-16 \zeta_{2}$	$256 \zeta_{4}$	$-3264 \zeta_{6}$	$\frac{126976}{3} \zeta_{8}$
$\Gamma_{\text {cusp }}$	4	$-8 \zeta_{2}$	$88 \zeta_{4}$	$-876 \zeta_{6}-32 \zeta_{3}^{2}$	$\frac{28384}{3} \zeta_{8}+128 \zeta_{2} \zeta_{3}^{2}+640 \zeta_{3} \zeta_{5}$
$\Gamma_{\text {hex }}$	4	$-4 \zeta_{2}$	$34 \zeta_{4}$	$-\frac{603}{2} \zeta_{6}-24 \zeta_{3}^{2}$	$\frac{18287}{6} \zeta_{8}+48 \zeta_{2} \zeta_{3}^{2}+480 \zeta_{3} \zeta_{5}$
C_{0}	$-3 \zeta_{2}$	$\frac{77}{4} \zeta_{4}$	$-\frac{4433}{24} \zeta_{6}+2 \zeta_{3}^{2}$	$\frac{67645}{32} \zeta_{8}+6 \zeta_{2} \zeta_{3}^{2}-40 \zeta_{3} \zeta_{5}$	$-\frac{4184281}{160} \zeta_{10}-65 \zeta_{4} \zeta_{3}^{2}-120 \zeta_{2} \zeta_{3} \zeta_{5}+228 \zeta_{5}^{2}+420 \zeta_{3} \zeta_{7}$

- Coefficients involve same BES kernel as for cusp, but "tilted" by angle α,

$$
\Gamma_{\text {cusp }}=\Gamma_{\alpha=\pi / 4} \quad \Gamma_{\text {oct }}=\Gamma_{\alpha=0} \quad \Gamma_{\text {hex }}=\Gamma_{\alpha=\pi / 3}
$$

B. Basso, LD, G. Papathanasiou, 2001.05460

