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Motivation

We will have a first look at 2 to 4 integrals at two loops.

High demand for NNLO integrals and amplitudes with many 
scales. State of the art is five external particles.

A lot is known in N=4 super Yang-Mills, but QCD is much 
more complicated. Can we find similar structures?

[Cf. Simone Zoia’s talk.]
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Outline

2. Planar two-loop six-point 
integrals on the maximal cut

1. D-dimensional hexagon integral 
and one-loop function space

3. Discussion and outlook
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D-dimensional vs. 4-dimensional kinematics
At n points in D dimensions,                   kinematic variables

Independent set: 
if all momenta are taken to be incoming. However, due to Poincaré symmetry, the kinematic
dependence simplifies and an appropriate set of variables in integer dimensions D0 > 4 are
the 9 independent Mandelstam invariants

~v = {s12, s23, s34, s45, s56, s61, s123, s234, s345} (2.3)

with

sij = (pi + pj)
2, sijk = (pi + pj + pk)

2. (2.4)

We also introduce the cyclic permutation operator T that shifts the external legs by one site,

T (pi) = pi+1, i = 1, . . . , 6 (2.5)

and it acts on the variables according to

T~v = {s23, s34, s45, s56, s61, s12, s234, s345, s123}. (2.6)

For physical momentum configurations describing 2 ! 4 or 3 ! 3 scattering processes,
the Mandelstam invariants take definite signs depending on which particles are incoming and
outgoing respectively. Additionally, there are certain Gram determinant constraints that are
required to hold in all physical regions. The Gram determinants G are defined as

G(q1, ..., qn;u1, ..., un) = det(qi · uj), 1  i, j  n, (2.7)

with
G(p1, ..., pn) = G(p1, ..., pn; p1, ..., pn). (2.8)

We also introduce the notation for Gram determinants on the maximal cut of an integral with
external momenta pj ,

G?(q1, . . . , qn�1;u1, . . . , un) = G(l, q1, ..., qn�1;u1, . . . , un)|l·pj=�
P

k<j pk·pj�
1
2p

2
j
. (2.9)

Naturally, for the hexagon integral we have p2
j
= 0, whereas some masses might be non-

vanishing for the subsectors of pentagons, boxes, triangles and bubbles.
Defining further

Ḡn = (�1)n�1G(p1, ..., pn), 1  n  6 (2.10)

the Gram determinant constraints take the form [33]

Ḡ1 = 0, Ḡ2 > 0, Ḡ3 > 0, . . . , ḠD0 > 0 (2.11)

and Ḡn = 0 for all n > D0, since there are only D0 independent momenta in D0 dimensions.
However, in parameter integral representations, it is perfectly reasonable to analytically con-
tinue the Feynman integrals beyond the physical regions where these constraints are satisfied.
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For n=6, there are 9 such variables

G := det (pi ⋅ pj) = 0 , i, j ∈ {1,…5}

In four dimensions, only 8 of them are independent        
(in general               ), because of a Gram determinant 
condition:

1
2

n(n − 3)

x2
ij := (pi + pi+1 + … + pj−1)2

pi−1

pi

pj−1…

pj

…
xi

xj

3n − 10

For example solved by momentum twistor variables.
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Canonical differential equations and function space

We derive differential equations for all master 
integrals in the problem. By choosing an appropriate 
basis we find canonical differential equations: [Henn 2013]

df(v; ϵ) = ϵ ∑
i,j

Ai d log αj(v) f(v; ϵ)

Symbol ‘alphabet’ determines function space
[cf. talk by Song He]

Vector of N 
master integrals

Constant NxN 
matrices

General form of RHS for elliptic case and beyond 
subject of intense study. [see e.g. talk by Matthias Wilhelm]

[cf. talks by Guilherme Pimentel, Simone Zoia]
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State-of-the-art examples
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Figure 1: Two-loop five-point one-mass non-planar hexa-box topologies. The thick external line
with label 1 denotes the massive external leg.

and the irreducible scalar products (⇢i,f , i = 9, . . . , 11) are defined for each topology as

~⇢mzz =
�
`21, (`1 + p1)

2, (`1 + p1 + p2)
2, (`1 + p1 + p2 + p3)

2, (`1 + `2 � p5)
2, (`1 + `2)

2,

`22, (`2 + p4)
2, (`2 + p1)

2, (`1 + p4)
2, (`2 + p1 + p2)

2
 
,

~⇢zmz =
�
`21, (`1 + p5)

2, (`1 + p5 + p1)
2, (`1 + p5 + p1 + p2)

2, (`1 + `2 � p4)
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2,

`22, (`2 + p3)
2, (`2 + p5)

2, (`1 + p3)
2, (`2 + p5 + p1)

2
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~⇢zzz =
�
`21, (`1 + p2)

2, (`1 + p2 + p3)
2, (`1 + p2 + p3 + p4)

2, (`1 + `2 � p5)
2, (`1 + `2)

2,

`22, (`2 + p1)
2, (`2 + p2)

2, (`1 + p1)
2, (`2 + p2 + p3)

2
 
.

(3.2)

In fig. 1, where we assume that all external momenta are incoming, we include the index associated
with each propagator and the routing of the loop momenta `1 and `2.

The integrals specified in eq. (3.1) define a space of integrals Y [f ] associated with each topology.
In this paper we compute a basis of these spaces, i.e., a set of master integrals associated with each
topology. The projection of any element of this space onto the basis of master integrals can be
algorithmically constructed with integration-by-parts (IBP) identities [54–56]. The dimensions of
the bases are

dim(Y [mzz]) = 86, dim(Y [zmz]) = 86, dim(Y [zzz]) = 135. (3.3)

While it is trivial to find some basis for each of these spaces, one of the main results of this paper will
be the construction of pure bases, which have particularly nice properties. This will be discussed
in detail in the next section.

Even though the dimensions given in eq. (3.3) are rather large, there is a substantial overlap
between these different spaces, as the same master integrals can appear in different topologies.
Furthermore, some of the master integrals have been computed previously: the planar five-point
integrals were given in ref. [20], and the integrals associated with Feynman diagrams with four
external legs in refs. [57–59]. The master integrals that appear for the first time in the three non-
planar hexa-box topologies are depicted in fig. 2. Finally, we note that a full set of master integrals
for topology I [mzz]

hb [~⌫] has already been computed in ref. [24].
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Type of integrals/kinematics #MI #vars #letters

Integrals for two-loop V V’ 
production [Caola, JMH, Melnikov, 

Smirnov, 2014]
51 3 19

Three-loop non-planar four-point 
integrals [JMH, Mistlberger, Wasser, 
Smirnov, 2020; see  poster by Piotr 

Bargiela]

76 1 2

Five-point two-loop integrals 
with one off-shell leg [Abreu et al 

2021; cf. talk by Simone Zoia]
135 5 63

6



Part 1 :  D-dimensional hexagon integral 
and one-loop function space
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Hexagon integral

At D=6, this integral is known, it is a weight 
three function that has a dual conformal 
symmetry. [JMH, Drummond, Dixon 2011; Spradlin, Volovich 2011]

At D      6, it is a genuine function of 8 dimensionless 
variables. This is needed for computing higher-order terms 
in eps in conventional dimensional regularization.

≠

This is part of a beautiful dual conformal function space 
for N=4 sYM, related to the A3 cluster algebra. But this 
is another story… [See Lance Dixon’s talk.]
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System of differential equations
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Figure 1: Graphical representations of the integrals in the IBP basis.

3 One-loop integrals and function alphabet

3.1 Master integrals

Using integration-by-parts (IBP) identities [36], all of the integrals in the hexagon family
can be reduced to a basis of 33 master integrals. We use a combination of FIRE [37] and
LiteRed [38] to perform the reductions automatically. A convenient basis choice Ij is spanned
by1:

• the six cyclic permutations of the massive bubble integral

Ii = T i�1I(1, 0, 1, 0, 0, 0), i = 1, ..., 6, (3.1)

• the three cyclic permutations of the massive bubble integral

I6+i = T i�1I(1, 0, 0, 1, 0, 0), i = 1, ..., 3, (3.2)

• the two cyclic permutations of the three-mass triangle integral

I9+i = T i�1I(1, 0, 1, 0, 1, 0), i = 1, 2, (3.3)

• the six cyclic permutations of the one-mass box integral

I11+i = T i�1I(0, 0, 1, 1, 1, 1), i = 1, ..., 6, (3.4)

• the six cyclic permutations of the two-mass-hard box integral

I17+i = T i�1I(0, 1, 0, 1, 1, 1), i = 1, ..., 6, (3.5)
1We employ the permutation operator defined in (2.5).

– 6 –

The integrals with up to five propagators are known, 
but it is easiest to recompute them directly in the 
notation for six-particle scattering. 

Total of 33 master integrals.
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Basis of uniform weight integrals

One-loop (n-1)-gons and n-gons in n dimensions are 
pure uniform weight functions, when normalized by 
their leading singularities. [shown for even n in Spradlin, Volovich 2011]

We relate all these integrals to a basis in the same 
dimension, via dimensional shifts. [Tarasov; Lee]

We verify that this basis leads to canonical differential 
equations.
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One-loop hexagon alphabet

2
1

34

5
6

2
1

4

35

6 16

5 2

34

103 alphabet letters (48 even and 45 odd).

93 from one-mass pentagon kinematics (plus cyclic), 
10 new letters

3 types of square roots:

11

[in agreement with Chen, Ma, Yang, 2022]



Boundary values follow from absence of 
spurious singularities

12

⃗v = {−1, − (1 − x)2, − 1, − (1 − x)2, − 1, − (1 − x)2, − 1 + x, − 1 + x, − 1 + x}

Cartoon of the Euclidean 
region R, bounded by solid 
lines. Dotted lines represent 
vanishing alphabet letters.

Useful parametrization:

𝔸 → 𝔸line = {x,1 − x, x − ρ, x − ρ̄}, ρ =
1
2

(1 + i 3)



Numerical evaluation of hexagon integral

Values obtained from a one-fold integral representation, 
following [Caron-Huot, JMH, 2014].

Validated using AMFlow [Liu, Ma 2022] and SecDec [Borowka, Heinrich, 

Jones, Kerner, Schlenk, Zirke 2015], both on and off the Gram determinant 
constraint (for four-dimensional external states).
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Take-home message

We found the full D-dimensional one-loop hexagon 
alphabet, needed in conventional dimensional 
regularization. There are 10 new letters compared to 
the four-dimensional helicity scheme.

We focused on the weight-four term of the hexagon, 
which can contribute to finite terms at two loops. 
We found a one-fold integral representation that is 
readily evaluated in the Euclidean region.

This weight four term is expected to appear in
one-loop amplitudes [cf. talk by Alex Edison].

𝒪(ϵ2)
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Part 2 : Planar two-loop six-point integrals 
on the maximal cut
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Dimensional regularization scheme choice 
affects the number of master integrals

For D-dimensional external states (conventional 
dimensional regularization): 7 Master integrals (MI)

For four-dimensional external states (four-
dimensional helicity scheme): 5 MI

In a first step, we perform the calculation for four-
dimensional external states.

16



Genuine two-loop planar six-particle integrals

5 MI 3 MI 1 MI

1 MI1MI7 MI

We consider the maximal cut of these integral sectors.
17



Search for uniform weight master integrals
In four dimensions, integrals with constant leading 
singularities are known from [Arkani-Hamed et al, 2010]: 

They are finite, uniform weight-four integrals, and 
were computed in [Drummond, JMH, Dixon, 2011].

Issues to be solve for D-dimensional calculation:

2) How to extend the definition of the numerators 
to D dimensions, so that D-dimensional leading 
singularities are correctly normalized?

1) How to find enough basis integrals?

18

6.1 All 2-loop MHV Amplitudes

The two-loop amplitude for 4- and 5-particles is given by, respectively,

1

23

4

+ cyclic
(no repeat)

h2341ih3412ih4123i

(46)

and

1

23

4
5

+

1

2

3
4

5

+ cyclic
(no repeat)

h2345ih5123ih3412i h3451ih4513i
⇥hAB|(512)

T
(234)i

(47)

while the 6-particle amplitude is

1

23

4 65

+

6

2

1

3
4

5

+

6

1

2
3

4 5

+

6

1

2
34

5

h2345ih6123ih3412i h3456ih4563i
⇥hAB|(561)

T
(234)i

h2345ih3462i
⇥hAB|(561)

T
(123)i

h3456ih4562i
⇥hAB|(561)

T
(123)i

+

1

2
3

4

5
6

+

6

1

23

4

5

+ cyclic
(no repeat)

h3456ih6123ih4512i h6235i
⇥hAB|(234)

T
(456)i

⇥hCD|(561)
T
(123)i

(48)

To be completely explicit, we have written the numerator factors accompanying each given term
under its corresponding picture.

What about higher-points? The parity-even part of the integrand has been computed in [54],
though the expressions are lengthy and do not expose a discernable pattern. However, looking

26

Let’s give an example of an interesting two-loop integrand using our notation:

h1345ih5613ihAB46ihCD|(234)
T
(612)i

hCD61ihCD12ihCD23ihCD34ihABCDihAB34ihAB45ihAB56ihAB61i
(44)

which we draw as
1

2

34

5

6

At two-loops, there are generally 4 solutions to cutting any eight propagators, and so this integral
has 9 ⇥ 4 = 36 di↵erent (non-composite) leading singularities. However, the integral is maximally
chiral: putting any choice of eight propagators on shell will have only one solution with a non-
vanishing residue. Moreover, the non-vanishing residues are equal up to a sign. This non-trivial
fact can be understood as following from the global residue theorem applied to the integral. All the
tensor integrals we write in this paper are chiral in this sense, and the overall normalization of each
has been chosen so that all its non-vanishing leading singularities are equal to ±1.

These chiral momentum-twistor integrals have another remarkable feature: they are less IR-
divergent than generic loop integrals; indeed, many of them are completely IR-finite. Infrared
divergences arise when the loop momenta become collinear with the external momenta pj . In the
dual co-ordinate space, this happens when a loop-integration variable x lies on the line connecting
xj and xj+1. In momentum-twistor space, this corresponds to configurations where the associated
line (AB) passes through the point Zj while lying in the plane (j 1 j j+1). An integral is IR-finite
if the numerator factors have a zero in the dangerous configurations. There are an infinite class
of IR-finite integrals at any loop order; for instance, it is easy to see that the two-loop example
above is IR-finite. Further discussion of these objects and their role in determining IR-finite parts
of amplitudes like the remainder [19] and ratio [76] functions will be carried out in [63]. Of course
we expect that IR finite quantities, such as the ratio function, are manifestly finite already at the
level of the integrand.

It is interesting that the naively “hardest” multi-loop integrands can be reduced to finite integrals
plus simpler integrals. Consider for instance a general double pentagon integrand for six particles,
of the form

hABY1ihCDY2i

hCD61ihCD12ihCD23ihCD34ihABCDihAB34ihAB45ihAB56ihAB61i
. (45)

We can expand Y1 in terms of the 6 bitwistors (Z3Z4), (Z4Z5), (Z5Z6), (Z6Z1) as well as the
bitwistors corresponding to (46) and its parity conjugate (46). Similarly we can expand Y2 in
terms of (Z1Z2), (Z2Z3), (Z3Z4), (Z6Z1) as well as (31) and (31). Doing this reduces the integral to
finite double-pentagon integrals, plus simpler pentagon-box and double-box integrals.

Finally, let us describe the general algorithm which we used to find local forms of the loop
integrands. The first step is to construct an algebraic basis of dual conformal-invariant integrals,
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Uniform weight integrals from Baikov analysis

2) We use Baikov analysis to include information beyond 
four dimensions about the leading singularities

Our strategy is as follows:

In this way, we find a sufficient number of MI for our basis.

1) We include.             -dimensional integrands into basis,     
as well as evanescent numerator terms (Gram determinants)

[Abreu, Dixon, Herrmann, Page, Zeng ’18; 
Chicherin, Gehrmann, JMH, Wasser, Zhang, Zoia ’18]

(6 − 2ϵ)
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<latexit sha1_base64="V6y8vMNjjvmWKE1BafKlJUrxmOc="></latexit>

NDP-a
1 = (w2 + v2)

2s13s46(l1 � w1)
2(l2 � v1)

2

NDP-a
2 = (w2 + v1)
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NDP-a
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NDP-a
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<latexit sha1_base64="t0NiwJl3LhQhQ+CugeYYw/sxY/w="></latexit>

w1 = p1 +
[23]

[13]
�2�̃1, w2 = w⇤

1 ,

v1 = p6 +
[54]

[64]
�5�̃6, v2 = v⇤1 .

Example of uniform weight construction (1)

Original numerators in spinor helicity language:

5 Master integrals

l1l2



21

Example of uniform weight construction (2)

Evanescent numerator 
(5 × 5 Gram determinant):

5 Master integrals

<latexit sha1_base64="VQ/kxSBFZX57eMfHb/0Tny6apu0="></latexit>

µ12 =

G

✓
l1 p1 p2 p3 p6
l2 p1 p2 p3 p6

◆

G(1, 2, 3, 6)
.
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Z
d4�2✏l1
i⇡2�✏

d4�2✏l2
i⇡2�✏

NDP-a
1 +NDP-a

4 + F5µ12

D1 . . . D9

Six-dimensional 
scalar integral

 additional term needed 
in D dimensions

Parity odd combinations



Differential equation blocks in canonical form

0

0 0

0 0 0

Genuine six-particle 
blocks

Five-particle 
integrals with one 
off-shell leg

Off-diagonal blocks 
(to be computed)

We used FIRE6 and FiniteFlow to perform the IBP reduction

Kinematics parametrised using four-dimensional momentum 
twistor variables.
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Alphabet letters from diagonal blocks we calculated
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F4 � (rational factor)

F4 + (rational factor)
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Part 3 : Discussion and outlook
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Discussion

Progress on six-particle function space in QCD

• One-loop hexagon integral in D dimensions; can be 
used for calculations in conventional dimensional 
regularisation

• Uniform weight basis on maximal cuts of planar two-
loop six particle integrals (assuming D=4 helicity 
formalism); identified new alphabet letters

•Full six-particle two-loop computation underway

25



Open questions / next steps

 What is the full six-particle alphabet, once the off-
diagonal matrix elements are known? 

What ‘hexagon functions’ appear in actual amplitudes, 
taking into account analyticity, symmetry, and interplay 
with leading singularities? Which ideas from N=4 sYM 
carry over to QCD?

In scattering amplitudes, the functions appear together 
with algebraic coefficients, which are related to leading 
singularities. Can we predict what coefficients can 
appear?

26



Extra slides
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Relation to dual conformal hexagon alphabet
The dual conformal 9-variable (A3 cluster algebra) 
letters from N=4 sYM can be written as:

<latexit sha1_base64="pZW8cIvsTYbctQAJkqf71DfPiFU="></latexit>

u1 =
W1W4

W46W48
, u2 =

W2W5

W46W47
, u3 =

W3W6

W47W48

1� u1 = � W81

W46W48
, 1� u2 = � W79

W46W47
, 1� u3 = � W80

W47W48
,

y1 = W146W153, y2 =
1

W147W154
, y3 =

1

W151W152
.

They are contained in our letters:

<latexit sha1_base64="uEL3+A7fO8AAilpcA/tbFnjYgHE=">AAACI3icbZDLSsNAFIYnXmu9RV26GSyCCy1JW1RcFd24rGAv0IYwmU7aoZMLcxFC6Lu48VXcuFCKGxe+i5M0C209MHN+vnMOM+f3YkaFtKwvY2V1bX1js7RV3t7Z3ds3Dw47IlIckzaOWMR7HhKE0ZC0JZWM9GJOUOAx0vUmd1m9+0S4oFH4KJOYOAEahdSnGEmNXPNGufb5ACq3lt91fdsXc5blWpEznuQ0yVni1suuWbGqVh5wWdiFqIAiWq45GwwjrAISSsyQEH3biqWTIi4pZmRaHihBYoQnaET6WoYoIMJJ8x2n8FSTIfQjrk8oYU5/T6QoECIJPN0ZIDkWi7UM/lfrK+lfOykNYyVJiOcP+YpBGcHMMDiknGDJEi0Q5lT/FeIx4ghLbWtmgr248rLo1Kr2ZbXx0Kg0bws7SuAYnIAzYIMr0AT3oAXaAINn8ArewYfxYrwZM+Nz3rpiFDNH4E8Y3z9x7Z6e</latexit>

u1, u2, u3, 1� u1, 1� u2, 1� u3, y1, y2, y3

<latexit sha1_base64="6zt0qhrbyLKWEUoU+yf6q8/jREE="></latexit>

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s456

, u3 =
s34s16
s345s156

,

<latexit sha1_base64="jC7AWP8UI8S1O3J7mDnoQ+1vaIU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpi5YkLepGKOrCZQX7gDaGyXTSDp08mJkIJfQP3Pgrblwo4tatO//GSZuFth44cDjnXmbucSNGhTSMby23tLyyupZfL2xsbm3v6Lt7LRHGHJMmDlnIOy4ShNGANCWVjHQiTpDvMtJ2R1dp3n4gXNAwuJPjiNg+GgTUoxhJZTn6ce+aMIkuSmY5dlJaitWTe6tcg8pQtBSrjl40KsYUcFGYmSiCDA1H/+r1Qxz7JJCYISG6phFJO0FcUszIpNCLBYkQHqEB6SoZIJ8IO5neM4FHyulDL+SKgYRT9/dGgnwhxr6rJn0kh2I+S83/sm4svXM7oUEUSxLg2UNezKAMYVoO7FNOsGRjJRDmVP0V4iHiCEtVYUGVYM6fvChaVsU8rdRua8X6ZVZHHhyAQ1ACJjgDdXADGqAJMHgEz+AVvGlP2ov2rn3MRnNatrMP/kD7/AGJuJkx</latexit>

� = (1� u1 � u2 � u3)
2 � 4u1u2u3

<latexit sha1_base64="kdTOal7nwe0PNlymOFzSn2CNN2I=">AAACGnicbVDLSgMxFM34rPU16tJNsAiCWGZqUTdCURcuK9gHdMqQSTNtaOZhckeow3yHG3/FjQtF3Ikb/8b0sdDWAwcO59xLco8XC67Asr6NufmFxaXl3Ep+dW19Y9Pc2q6rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvh3njnknFo/AWBjFrB6Qbcp9TAtpyTRs/uKkTB9m540tC0yP7MHGHLGke68BRdxJS54oJIFmWljLXLFhFawQ8K+yJKKAJqq756XQimgQsBCqIUi3biqGdEgmcCpblnUSxmNA+6bKWliEJmGqno9MyvK+dDvYjqRkCHrm/N1ISKDUIPD0ZEOip6Wxo/pe1EvDP2ikP4wRYSMcP+YnAEOFhT7jDJaMgBloQKrn+K6Y9oisC3WZel2BPnzwr6qWifVIs35QLlYtJHTm0i/bQAbLRKaqga1RFNUTRI3pGr+jNeDJejHfjYzw6Z0x2dtAfGF8/pz+grQ==</latexit>

z± =
�1 + u1 + u2 + u3 ±

p
�

2

<latexit sha1_base64="S00/dGyW/76k8ZWRxsxWQMoNiZY=">AAACBHicbZDLSsNAFIZPvNZ6i7rsJlgEQVoSKepGKLpxWcFeoA1hMp20QyeTMDMRYujCja/ixoUibn0Id76N0zYLbf1h4OM/53Dm/H7MqFS2/W0sLa+srq0XNoqbW9s7u+befktGicCkiSMWiY6PJGGUk6aiipFOLAgKfUba/uh6Um/fEyFpxO9UGhM3RANOA4qR0pZnllKPXvYCgXCWeLTy4J2Mc6iMPbNsV+2prEVwcihDroZnfvX6EU5CwhVmSMquY8fKzZBQFDMyLvYSSWKER2hAuho5Col0s+kRY+tIO30riIR+XFlT9/dEhkIp09DXnSFSQzlfm5j/1bqJCi7cjPI4UYTj2aIgYZaKrEkiVp8KghVLNSAsqP6rhYdIJ6J0bkUdgjN/8iK0TqvOWbV2WyvXr/I4ClCCQzgGB86hDjfQgCZgeIRneIU348l4Md6Nj1nrkpHPHMAfGZ8/heuYBg==</latexit>

yi =
ui � z+
ui � z�
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