## Some exact results of $\mathcal{N}=4$ SYM and S-duality

## Congkao Wen

## Queen Mary University of London

w/ Daniele Dorigoni, Michael Green + Haitian Xie;
Shun-Qing Zhang;
2102.09537, 2102.08305, 2202.05784, 2203.01890, + to appear

Amplitudes 2022
Prague, 8-12 August 2022

## Introduction

■ $4 \mathrm{~d} \mathcal{N}=4$ supersymmetric Yang-Mills theory has many remarkable properties: hidden symmetries, geometric formulations, extremely high loop results, integrability, ... ...

- I will discuss a much older story of $\mathcal{N}=4$ SYM: the S-duality [Montonen-Olive, 77'], [Goddard-Nuyts-Olive, 77'].
- Concretely, we like to understand how correlators (or the dual string amplitudes) behave under modular transformation.
- The duality relates weak-strong coupling, and requires to compute correlators at finite coupling

$$
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g_{\mathrm{YM}}^{2}}=\tau_{1}+i \tau_{2}
$$

## Goddard-Nuyts-Olive duality

S-duality of $\mathcal{N}=4$ SYM with gauge group $G_{N}$ :

$$
T:\left(G_{N}, \tau\right) \rightarrow\left(G_{N}, \tau+1\right), \quad \hat{S}:\left(G_{N}, \tau\right) \rightarrow\left({ }^{L} G_{N},-\frac{1}{r \tau}\right)
$$

$r=$ long/short root ${ }^{2}$ of $G_{N}$, and ${ }^{L} G_{N}$ is the Langlands dual group.
■ $r=1$ for simply laced groups $S U(N), S O(2 N)$ and $r=2$ for non-simply laced groups $S O(2 N+1), U S p(2 N)$.

- the GNO duality

| $\mathfrak{g}_{N}$ | ${ }^{L_{\mathfrak{g}}}{ }_{N}$ |
| :---: | :---: |
| $\operatorname{su}(N)$ | $\operatorname{su}(N)$ |
| $\operatorname{so}(2 N)$ | $\operatorname{so}(2 N)$ |
| $u s p(2 N)$ | $\operatorname{so}(2 N+1)$ |
| $\operatorname{so}(2 N+1)$ | $u s p(2 N)$ |

only algebra is relevant for correlators of local operators

## A four-point correlator

■ We consider the correlators of superconformal primary operators of $\mathcal{N}=4$ SYM,

$$
\mathcal{O}_{2}(x, Y)=\operatorname{tr}\left(\phi_{l_{1}}(x) \phi_{l_{2}}(x)\right) Y^{I_{1}} Y^{l_{2}}
$$

where $I_{p}=1,2, \cdots, 6$ and $Y \cdot Y=0$. The correlators of $\mathcal{O}_{2}$ are well studied. [e.g. Agnese Bissi's talk]

- Two- and three-point correlators are protected.

■ Supersymmetry and superconformal symmetries imply [Eden, Petkou, Schubert, Sokatchev][Nirschl, Osborn]

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle=\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle_{\text {free }}+\mathcal{I}_{4}\left(x_{i}, Y_{i}\right) \mathcal{T}_{G_{N}}(U, V ; \tau, \bar{\tau})
$$

where $\mathcal{I}_{4}$ is fixed by the symmetries and we focus on $\mathcal{T}_{G_{N}}$. $U, V$ are cross ratios $\& \tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g_{\mathrm{YM}}^{2}}$.

## Integrated correlators in $\mathcal{N}=4$ SYM

- We are interested in $S L(2, \mathbb{Z})$ modular properties and the correlator at finite coupling $\tau$.
- In general this's very difficult (impossible!); we will consider a simpler yet highly non-trivial object: integrated correlators,

$$
\mathcal{C}_{G_{N}}(\tau, \bar{\tau})=\int d U d V M(U, V) \mathcal{T}_{G_{N}}(U, V ; \tau, \bar{\tau})
$$

With suitable choices of the measure to preserve supersymmetry, $\mathcal{C}_{G_{N}}(\tau, \bar{\tau})$ may be computed exactly.

- One can reconstruct the un-integrated correlator at finite coupling, at least for first few orders in large- $N$ expansion.


## Integrated correlators in $\mathcal{N}=4$ SYM

Two integrated correlators have been studied.
■ Integrated correlator one: [Binder, Chester, Pufu, Wang] [Chester, Pufu]

$$
\mathcal{C}_{G_{N}, 1}(\tau, \bar{\tau})=-\frac{8}{\pi} \int_{0}^{\infty} d r \int_{0}^{\pi} d \theta \frac{r \sin ^{2}(\theta)}{U} \mathcal{T}_{G_{N}}(U, V ; \tau, \bar{\tau}),
$$

with $U=1+r^{2}-2 r \cos (\theta), V=r^{2}$.

- Integrated correlator two: [Chester, Pufu]

$$
\mathcal{C}_{G_{N}, 2}(\tau, \bar{\tau})=-\frac{32}{\pi} \int_{0}^{\infty} d r \int_{0}^{\pi} d \theta \frac{r \sin ^{2}(\theta)}{U}(1+U+V) \bar{D}_{1111}(U, V) \mathcal{T}_{G_{N}}(U, V ; \tau, \bar{\tau}),
$$

where $\bar{D}_{1111}(U, V)$ is the $4 d$ 1-loop box integral.

## Integrated correlators and periods of Feynman integrals

Perturbation theory in the expansion of $a_{G_{N}}=\lambda_{G_{N}} /\left(4 \pi^{2}\right)$
[Eden, Heslop, Korchemsky, Sokatchev][Bourjaily, Heslop, Tran] ... [Shun-Qing Zhang's Gong show \& poster]

$$
\mathcal{T}_{G_{N}}(U, V)=2 c_{G_{N}} \frac{U}{V} \sum_{\ell=1}^{\infty} a_{G_{N}}^{\ell} x_{13}^{2} x_{24}^{2} \int d^{4} x_{5} \ldots d^{4} x_{\ell+4} f^{(\ell)}\left(x_{i}\right)
$$

where $f^{(\ell)}$ can be represented by permutation symmetric graphs with $\ell+4$ vertices with weight-4:

$f^{(1)}$

$f^{(2)}$

$f^{(3)}$

## Integrated correlators and periods of Feynman integrals

- The first integrated correlator is given by periods of $f^{(\ell)}\left(x_{i}\right)$

$$
\mathcal{P}_{f(\ell)}^{(1)}=\int \frac{d^{4} x_{i}}{\operatorname{vol}(\operatorname{conf})} f^{(\ell)}\left(x_{i}\right)
$$

Examples: [Broadhurst][Brown][Panzer|[Schnetz][...]

$$
\mathcal{P}_{f^{(1)}}^{(1)}=6 \zeta(3), \quad \mathcal{P}_{f^{(2)}}^{(1)}=300 \zeta(5), \quad \mathcal{P}_{f^{(3)}}^{(1)}=17640 \zeta(7), \ldots
$$

- The second integrated correlator is the periods of $f^{(\ell)}\left(x_{i}\right)$ attached with a 1-loop box integral

$$
\begin{gathered}
\mathcal{P}_{f^{(\ell)}}^{(2)}=\int \frac{d^{4} x_{i}}{\operatorname{vol}(\text { conf })} f^{(\ell)}\left(x_{i}\right) \operatorname{box}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \\
\mathcal{P}_{f^{(1)}}^{(2)}=60 \zeta(5), \quad \mathcal{P}_{f^{(2)}}^{(2)}=-\frac{3}{2}\left(36 \zeta(3)^{2}+175 \zeta(7)\right), \ldots
\end{gathered}
$$

## Integrated correlators from localization

## Beyond perturbation:

- Integrated correlators are determined by 4 derivatives of $\mathcal{N}=2^{*}$ SYM partition function on $S^{4}, Z_{G_{N}}(m, \tau, \bar{\tau})$, via [Binder, Chester, Pufu, Wang] [Chester, Pufu]

$$
\begin{aligned}
& \mathcal{C}_{G_{N}, 1}(\tau, \bar{\tau})=\left.\tau_{2}^{2} \partial_{\tau} \partial_{\bar{\tau}} \partial_{m}^{2} \log Z_{G_{N}}(m, \tau, \bar{\tau})\right|_{m=0}, \\
& \mathcal{C}_{G_{N}, 2}(\tau, \bar{\tau})=\left.\partial_{m}^{4} \log Z_{G_{N}}(m, \tau, \bar{\tau})\right|_{m=0},
\end{aligned}
$$

where $Z_{G_{N}}(m, \tau, \bar{\tau})$ is computed using supersymmetric localisation [Nekorasov[Pestun]...
$Z_{S U(N)}(m, \tau, \bar{\tau})=\int d^{N} a \delta\left(\sum_{i} a_{i}\right) \prod_{i<j}\left(a_{i}-a_{j}\right)^{2} e^{-\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}} \sum_{i} \partial_{i}^{2}} Z_{1-\text { loop }}\left|Z_{\text {inst }}\right|^{2}$,
where $Z_{1 \text {-loop }}$ and $Z_{\text {inst }}$ give perturbative and instanton contributions, respectively.

## Integrated correlators from localization

■ Four derivatives bring down four integrated operators, which lead to integrated four-point functions.

■ Localisation reduces path integral to $N$-dimensional integral! But it's not an easy integral and many properties (e.g. $S L(2, \mathbb{Z})$ ) are not manifest.

- Furthermore, $Z_{\text {inst }}$ is an infinite sum of instantons; the $k$-instanton contribution is a $k$-dim contour integral.

We want to do better than the localisation formula.

## Exact results of an integrated correlator

- By carefully analysing the localisation formula, we proposed an exact expression for the first integrated correlator, $\mathcal{C}_{S U(N), 1}(\tau, \bar{\tau})$, for arbitrary $N$ and $\tau$ :

$$
\mathcal{C}_{S U(N)}(\tau, \bar{\tau})=\sum_{(p, q) \in \mathbb{Z}^{2}} \int_{0}^{\infty} \exp \left(-t \pi \frac{|p+q \tau|^{2}}{\tau_{2}}\right) B_{S U(N)}(t) d t,
$$

where $B_{S U(N)}(t)=\frac{t \mathcal{Q}_{S U(N)}(t)}{(t+1)^{N+1}}$ \& $\mathcal{Q}_{S U(N)}(t)$ is a degree- $(2 N-2)$ palindromic polynomial in terms of Jacobi polynomials. e.g.

$$
\begin{aligned}
& \mathcal{Q}_{S U(2)}(t)=9 t^{2}-30 t+9, \\
& \mathcal{Q}_{S U(3)}(t)=18 t^{4}-99 t^{3}+126 t^{2}-99 t+18 .
\end{aligned}
$$

- The expression is manifestly $S L(2, \mathbb{Z})$ invariant, and all the information is contained in $B_{S U(N)}(t)$.


## Exact results of an integrated correlator

Expressed as an infinite sum of non-holomorphic Eisenstein series,

$$
\mathcal{C}_{S U(N)}(\tau, \bar{\tau})=-b_{S U(N)}(0)+\sum_{s=2}^{\infty} b_{S U(N)}(s) E(s ; \tau, \bar{\tau})
$$

with known rational coefficients $b_{S U(N)}(s)$, and

$$
\begin{aligned}
E(s ; \tau, \bar{\tau}) & =\sum_{(p, q) \neq(0,0)} \int_{0}^{\infty} d t \exp \left(-t \pi \frac{|p+q \tau|^{2}}{\tau_{2}}\right) t^{s} \\
& =\frac{2 \zeta(2 s)}{\pi^{s}} \tau_{2}^{s}+\frac{2 \zeta(2 s-1) \Gamma\left(s-\frac{1}{2}\right)}{\pi^{s-\frac{1}{2}} \Gamma(s)} \tau_{2}^{1-s}+\sum_{k \neq 0} \mathcal{F}_{k}\left(s ; \tau_{2}\right) e^{2 \pi k \tau_{1}}
\end{aligned}
$$

This leads to $S L(2, \mathbb{Z})$ spectral representation [Collier, Perlmutter]:
$\mathcal{C}_{S U(N)}(\tau, \bar{\tau})=-2 b_{S U(N)}(0)+\frac{1}{2 i} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} d s \frac{(-1)^{s}}{\sin \pi s} b_{S U(N)}(s) E(s ; \tau, \bar{\tau})+$ cusp forms.

## A proof of the formula

- $\mathcal{C}_{S U(2)}(\tau, \bar{\tau})$ is confirmed by an explicit computation.
- We prove the perturbative part of the integrated correlator obeys a Laplace-difference equation, which can be uniquely promoted to a $S L(2, \mathbb{Z})$ invariant equation

$$
\begin{aligned}
4 \tau_{2}^{2} \partial_{\tau} \partial_{\bar{\tau}} \mathcal{C}_{S U(N)}(\tau, \bar{\tau}) & -\left(N^{2}-1\right)\left[\mathcal{C}_{S U(N+1)}(\tau, \bar{\tau})-2 \mathcal{C}_{S U(N)}(\tau, \bar{\tau})+\mathcal{C}_{S U(N-1)}(\tau, \bar{\tau})\right] \\
& -(N+1) \mathcal{C}_{S U(N-1)}(\tau, \bar{\tau})+(N-1) \mathcal{C}_{S U(N+1)}(\tau, \bar{\tau})=0
\end{aligned}
$$

- The Laplace-difference equation (with b.d. conditions from perturbation) determines $\mathcal{C}_{S U(N)}(\tau, \bar{\tau})$ in terms of $\mathcal{C}_{S U(2)}(\tau, \bar{\tau})$.


## Generating function for the integrated correlator

We can even obtain the generating function by summing over $N$

$$
\begin{gathered}
G_{S U}(\tau, \bar{\tau} ; z)=\sum_{N=2}^{\infty} \mathcal{C}_{S U(N)}(\tau, \bar{\tau}) z^{N} \\
=\sum_{(p, q) \in \mathbb{Z}^{2}} \int_{0}^{\infty} \exp \left(-t \pi \frac{|p+q \tau|^{2}}{\tau_{2}}\right) F_{S U}(t, z) d t \\
\begin{aligned}
F_{S U}(t, z) & =\sum_{N=2}^{\infty} B_{S U(N)}(t) z^{N} \\
= & \frac{3 t z^{2}\left[(t-3)(t+1)^{2}(3 t-1)-(t-1)^{2}(t+3)(3 t+1) z\right]}{(1-z)^{3 / 2}\left[(t+1)^{2}-(t-1)^{2} z\right]^{7 / 2}}
\end{aligned}
\end{gathered}
$$

$F_{S U}(t, z)$ is closely related to the so-called (generalised) Harer-Zagier formula in the matrix-model literature.

# The integrated correlator in various regions: small- $g_{\mathrm{YM}}$, large- $N, \ldots$... 

## Weak-coupling perturbative expansion

Weak-coupling perturbative expansion (loops), using $a=\lambda /\left(4 \pi^{2}\right)$ :

$$
\begin{aligned}
& \mathcal{C}_{S U(N)}\left(\tau_{2}\right)=\left(N^{2}-1\right)\left[\frac{3 \zeta(3) a}{2}-\frac{75 \zeta(5) a^{2}}{8}+\frac{735 \zeta(7) a^{3}}{16}-\frac{6615 \zeta(9)\left(1+\frac{2}{7} N^{-2}\right) a^{4}}{32}\right. \\
& \left.+\frac{114345 \zeta(11)\left(1+N^{-2}\right) a^{5}}{128}-\frac{3864861 \zeta(13)\left(1+\frac{25}{11} N^{-2}+\frac{4}{11} N^{-4}\right) a^{6}}{1024}+\cdots\right] .
\end{aligned}
$$

- Non-planar contributions start to enter at 4 loops - in agreement with known results.
- It gives an all-loop prediction for any $N$.

■ Using results of periods, first four loops are shown to agree with Feynman diagram computations; predict relations and results for unknown higher-loop Feynman integrals.

## Large $N$ : small- $\lambda$ expansion

Large- $N$ expansion: $\mathcal{C}_{S U(N)}(\tau, \bar{\tau}) \sim \sum_{g=0}^{\infty} N^{2-2 g} \mathcal{C}^{(g)}(\lambda)$.

- Small- $\lambda$ expansion

$$
\begin{aligned}
& \mathcal{C}^{(0)}(\lambda)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1} \zeta(2 n+1) \Gamma\left(n+\frac{3}{2}\right)^{2}}{\pi^{2 n+1} \Gamma(n) \Gamma(n+3)} \lambda^{n}, \\
& \mathcal{C}^{(1)}(\lambda)=\sum_{n=1}^{\infty} \frac{(-1)^{n}(n-5)(2 n+1) \zeta(2 n+1) \Gamma\left(n-\frac{1}{2}\right) \Gamma\left(n+\frac{3}{2}\right)}{24 \pi^{2 n+1} \Gamma(n)^{2}} \lambda^{n},
\end{aligned}
$$

- They are all convergent with a finite radius $|\lambda|<\pi^{2}$, which has been seen in $\mathcal{N}=4$ SYM, such as cusp anomalous dimension [Basso, Korchemsky, Kotanski], amplitudes [Basso, Dixon, Papathanasiou].


## Large $N$ : large- $\lambda$ expansion

- Large- $\lambda$ expansion:

$$
\mathcal{C}^{(0)}(\lambda) \sim \frac{1}{4}+\sum_{n=1}^{\infty} \frac{\Gamma\left(n-\frac{3}{2}\right) \Gamma\left(n+\frac{3}{2}\right) \Gamma(2 n+1) \zeta(2 n+1)}{2^{2 n-2} \pi \Gamma(n)^{2} \lambda^{n+1 / 2}}
$$

■ They are all asymptotic \& not Borel summable, require non-perturbative completions (resurgence)

$$
\Delta \mathcal{C}^{(0)}(\lambda) \sim i\left[8 \operatorname{Li}_{0}\left(e^{-2 \sqrt{\lambda}}\right)+\frac{18 \operatorname{Li}_{1}\left(e^{-2 \sqrt{\lambda}}\right)}{\lambda^{1 / 2}}+\frac{117 \mathrm{Li}_{2}\left(e^{-2 \sqrt{\lambda}}\right)}{4 \lambda}+\cdots\right] .
$$

- One also finds another type of exponential term $e^{-8 N \pi / \sqrt{\lambda}}$ (see also [Hatsuda,0kuyama, 2208.01891]), essentially due to $S L(2, \mathbb{Z})$.


## Large $N$ : finite YM coupling $\tau$

$S L(2, \mathbb{Z})$ at Large $N$ : large- $N$ expansion with finite YM coupling $\tau$ ("very strong coupling limit"):

$$
\begin{aligned}
& \mathcal{C}_{S U(N)}(\tau, \bar{\tau}) \sim \frac{N^{2}}{4}-\frac{3 N^{\frac{1}{2}}}{2^{4}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)+\frac{45}{2^{8} N^{\frac{1}{2}}} E\left(\frac{5}{2} ; \tau, \bar{\tau}\right) \\
& +\frac{3}{N^{\frac{3}{2}}}\left[\frac{1575}{2^{15}} E\left(\frac{7}{2} ; \tau, \bar{\tau}\right)-\frac{13}{2^{13}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)\right]+\frac{225}{N^{\frac{5}{2}}}\left[\frac{441}{2^{18}} E\left(\frac{9}{2} ; \tau, \bar{\tau}\right)-\frac{5}{2^{16}} E\left(\frac{5}{2} ; \tau, \bar{\tau}\right)\right] \\
& +\frac{63}{N^{\frac{7}{2}}}\left[\frac{3898125}{2^{27}} E\left(\frac{11}{2} ; \tau, \bar{\tau}\right)-\frac{44625}{2^{25}} E\left(\frac{7}{2} ; \tau, \bar{\tau}\right)+\frac{73}{2^{22}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)\right]+\cdots \\
& +O\left(\sum_{(p, q) \neq(0,0)} \exp \left(-4 \sqrt{N \pi} \frac{|p+q \tau|}{\sqrt{\tau_{2}}}\right)\right) .
\end{aligned}
$$

Recall $E(s ; \tau, \bar{\tau})$ is the non-holomorphic Eisenstein series; $q=0$ gives $e^{-2 \sqrt{\lambda}}$ and $p=0$ gives $e^{-8 N \pi / \sqrt{\lambda}}$.

## Integrated correlators \& Goddard-Nuyts-Olive duality

The integrated correlator with a general classical gauge group $G_{N}$.

- For the simply laced groups $G_{N}=S U(N), S O(2 N)$.

$$
T: \tau \rightarrow \tau+1 ; \quad S: \tau \rightarrow-1 / \tau
$$

The correlator is $S L(2, \mathbb{Z})$ invariant

$$
\mathcal{C}_{G_{N}}(\tau, \bar{\tau})=\sum_{(p, q) \in \mathbb{Z}^{2}} \int_{0}^{\infty} d t e^{-t \pi \frac{|p+q \tau|^{2}}{\tau_{2}}} B_{G_{N}}(t)
$$

As for $\mathcal{C}_{S U(N)}(\tau, \bar{\tau})$.

## Integrated correlators \& Goddard-Nuyts-Olive duality

For the non-simply laced $G_{N}=U S p(2 N), S O(2 N+1)$ : only invariant under congruence subgroup $\Gamma_{0}(2) \subset S L(2, \mathbb{Z})$ : $T, \hat{S} T \hat{S}$.

$$
T: \tau \rightarrow \tau+1 ; \quad \hat{S}: \tau \rightarrow-1 /(2 \tau)
$$

GNO duality implies

$$
\hat{S}: \quad \mathcal{C}_{S O(2 N+1)}(\tau, \bar{\tau}) \leftrightarrow \mathcal{C}_{U S p(2 N)}(\tau, \bar{\tau})
$$

Our ansatz:

$$
\begin{gathered}
\mathcal{C}_{G_{N}}(\tau, \bar{\tau})=\sum_{(p, q) \in \mathbb{Z}^{2}} \int_{0}^{\infty} d t\left[B_{G_{N}}^{1}(t) e^{-t \pi \frac{|p+q \tau|^{2}}{\tau_{2}}}+B_{G_{N}}^{2}(t) e^{-t \pi \frac{|p+2 q|^{2}}{2 \tau_{2}}}\right] \\
B_{U S p(2 N)}^{1}(t)=B_{S O(2 N+1)}^{2}(t), \quad B_{U S p(2 N)}^{2}(t)=B_{S O(2 N+1)}^{1}(t)
\end{gathered}
$$

Checked for all perturbative terms \& some instanton sectors.

## Summary and outlook

The integrated correlators can be computed exactly; tools for studying $\mathcal{N}=4$ SYM: S-duality, resurgence, connections with periods, matching type IIB string amplitudes, exact data for bootstrap ... ...

- Second integrated correlator $\left(\left.\partial_{m}^{4} \log Z\right|_{m=0}\right)$ at finite $N$ ?
- Applications to more general correlators? higher weights, higher points

■ Integrated correlators are equivalent to integrated string amplitudes in AdS. Integrated flat-space amplitudes?

## Thank you!

