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Introduction

4d N = 4 supersymmetric Yang-Mills theory has many
remarkable properties: hidden symmetries, geometric
formulations, extremely high loop results, integrability, ... ...

I will discuss a much older story of N = 4 SYM: the S-duality
[Montonen–Olive, 77’], [Goddard-Nuyts-Olive, 77’].

Concretely, we like to understand how correlators (or the dual
string amplitudes) behave under modular transformation.

The duality relates weak-strong coupling, and requires to
compute correlators at finite coupling

τ =
θ

2π
+ i

4π

g2
YM

= τ1 + iτ2 .
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Goddard-Nuyts-Olive duality

S-duality of N = 4 SYM with gauge group GN :

T : (GN , τ)→ (GN , τ + 1) , Ŝ : (GN , τ)→ (LGN ,−
1

r τ
) ,

r = long/short root2 of GN , and LGN is the Langlands dual group.

r = 1 for simply laced groups SU(N),SO(2N) and r = 2 for
non-simply laced groups SO(2N+1),USp(2N).

the GNO duality
gN

LgN
su(N) su(N)
so(2N) so(2N)
usp(2N) so(2N+1)
so(2N+1) usp(2N)

only algebra is relevant for correlators of local operators
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A four-point correlator

We consider the correlators of superconformal primary
operators of N = 4 SYM,

O2(x ,Y ) = tr(φI1(x)φI2(x))Y I1Y I2 ,

where Ip = 1, 2, · · · , 6 and Y · Y = 0. The correlators of O2

are well studied. [e.g. Agnese Bissi’s talk]

Two- and three-point correlators are protected.

Supersymmetry and superconformal symmetries imply [Eden,

Petkou, Schubert, Sokatchev][Nirschl, Osborn]

〈O2O2O2O2〉 = 〈O2O2O2O2〉free + I4(xi ,Yi ) TGN (U,V ; τ, τ̄) ,

where I4 is fixed by the symmetries and we focus on TGN
.

U,V are cross ratios & τ = θ
2π + i 4π

g2
YM

.
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Integrated correlators in N = 4 SYM

We are interested in SL(2,Z) modular properties and the
correlator at finite coupling τ .

In general this’s very difficult (impossible!); we will consider a
simpler yet highly non-trivial object: integrated correlators,

CGN
(τ, τ̄) =

∫
dUdVM(U,V ) TGN

(U,V ; τ, τ̄) .

With suitable choices of the measure to preserve
supersymmetry, CGN

(τ, τ̄) may be computed exactly.

One can reconstruct the un-integrated correlator at finite
coupling, at least for first few orders in large-N expansion.
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Integrated correlators in N = 4 SYM

Two integrated correlators have been studied.

Integrated correlator one: [Binder, Chester, Pufu, Wang] [Chester, Pufu]

CGN ,1(τ, τ̄) = − 8

π

∫ ∞
0

dr

∫ π

0

dθ
r sin2(θ)

U
TGN (U,V ; τ, τ̄) ,

with U = 1 + r2 − 2r cos(θ),V = r2.

Integrated correlator two: [Chester, Pufu]

CGN ,2(τ, τ̄) = −32

π

∫ ∞
0

dr

∫ π

0

dθ
r sin2(θ)

U
(1+U+V )D̄1111(U,V )TGN (U,V ; τ, τ̄) ,

where D̄1111(U,V ) is the 4d 1-loop box integral.
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Integrated correlators and periods of Feynman integrals

Perturbation theory in the expansion of aGN
= λGN

/(4π2)
[Eden, Heslop, Korchemsky, Sokatchev][Bourjaily, Heslop, Tran] ... [Shun-Qing Zhang’s Gong show & poster]

TGN
(U,V ) = 2cGN

U

V

∞∑
`=1

a`GN
x2

13x
2
24

∫
d4x5 . . . d

4x`+4 f
(`)(xi ) ,

where f (`) can be represented by permutation symmetric graphs
with `+ 4 vertices with weight-4:
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Integrated correlators and periods of Feynman integrals

The first integrated correlator is given by periods of f (`)(xi )

P(1)

f (`) =

∫
d4xi

vol (conf)
f (`)(xi ) .

Examples: [Broadhurst][Brown][Panzer][Schnetz][...]

P(1)

f (1) = 6ζ(3) , P(1)

f (2) = 300ζ(5) , P(1)

f (3) = 17640ζ(7) , . . .

The second integrated correlator is the periods of f (`)(xi )
attached with a 1-loop box integral

P(2)

f (`) =

∫
d4xi

vol (conf)
f (`)(xi )box(x1, x2, x3, x4) ,

P(2)

f (1) = 60ζ(5) , P(2)

f (2) = −3

2

(
36ζ(3)2 + 175ζ(7)

)
, . . .
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Integrated correlators from localization

Beyond perturbation:

Integrated correlators are determined by 4 derivatives of
N = 2∗ SYM partition function on S4, ZGN

(m, τ, τ̄), via [Binder,

Chester, Pufu, Wang] [Chester, Pufu]

CGN ,1(τ, τ̄) = τ 2
2 ∂τ∂τ̄∂

2
m logZGN (m, τ, τ̄)

∣∣
m=0

,

CGN ,2(τ, τ̄) = ∂4
m logZGN (m, τ, τ̄)

∣∣
m=0

,

where ZGN
(m, τ, τ̄) is computed using supersymmetric

localisation [Nekorasov][Pestun]...

ZSU(N)(m, τ, τ̄) =

∫
dNa δ(

∑
i

ai )
∏
i<j

(ai−aj)2 e
− 8π2

g2
YM

∑
i a

2
i
Z1−loop |Zinst|2 ,

where Z1−loop and Zinst give perturbative and instanton
contributions, respectively.
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Integrated correlators from localization

Four derivatives bring down four integrated operators, which
lead to integrated four-point functions.

Localisation reduces path integral to N-dimensional integral!
But it’s not an easy integral and many properties (e.g.
SL(2,Z)) are not manifest.

Furthermore, Zinst is an infinite sum of instantons; the
k-instanton contribution is a k-dim contour integral.

We want to do better than the localisation formula.
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Exact results of an integrated correlator

By carefully analysing the localisation formula, we proposed
an exact expression for the first integrated correlator,
CSU(N),1(τ, τ̄), for arbitrary N and τ :

CSU(N)(τ, τ̄) =
∑

(p,q)∈Z2

∫ ∞
0

exp
(
− tπ

|p + qτ |2

τ2

)
BSU(N)(t) dt ,

where BSU(N)(t) =
tQSU(N)(t)

(t+1)2N+1 & QSU(N)(t) is a degree-(2N−2)

palindromic polynomial in terms of Jacobi polynomials. e.g.

QSU(2)(t) = 9t2 − 30t + 9 ,

QSU(3)(t) = 18t4 − 99t3 + 126t2 − 99t + 18 .

The expression is manifestly SL(2,Z) invariant, and all the
information is contained in BSU(N)(t).
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Exact results of an integrated correlator

Expressed as an infinite sum of non-holomorphic Eisenstein series,

CSU(N)(τ, τ̄) = −bSU(N)(0) +
∞∑
s=2

bSU(N)(s)E(s; τ, τ̄) ,

with known rational coefficients bSU(N)(s), and

E(s; τ, τ̄) =
∑

(p,q) 6=(0,0)

∫ ∞
0

dt exp
(
− tπ

|p + qτ |2

τ2

)
ts

=
2ζ(2s)

πs
τ s2 +

2ζ(2s−1)Γ(s− 1
2
)

πs− 1
2 Γ(s)

τ 1−s
2 +

∑
k 6=0

Fk(s; τ2)e2πkτ1 .

This leads to SL(2,Z) spectral representation [Collier, Perlmutter]:

CSU(N)(τ, τ̄) = −2bSU(N)(0) +
1

2i

∫ 1
2

+i∞

1
2
−i∞

ds
(−1)s

sinπs
bSU(N)(s)E(s; τ, τ̄) + (((((cusp forms .
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A proof of the formula

CSU(2)(τ, τ̄) is confirmed by an explicit computation.

We prove the perturbative part of the integrated correlator
obeys a Laplace-difference equation, which can be uniquely
promoted to a SL(2,Z) invariant equation

4τ 2
2 ∂τ∂τ̄CSU(N)(τ, τ̄)− (N2−1)

[
CSU(N+1)(τ, τ̄)− 2CSU(N)(τ, τ̄) + CSU(N−1)(τ, τ̄)

]
− (N + 1)CSU(N−1)(τ, τ̄) + (N − 1)CSU(N+1)(τ, τ̄) = 0 .

The Laplace-difference equation (with b.d. conditions from
perturbation) determines CSU(N)(τ, τ̄) in terms of CSU(2)(τ, τ̄).
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Generating function for the integrated correlator

We can even obtain the generating function by summing over N

GSU(τ, τ̄ ; z) =
∞∑
N=2

CSU(N)(τ, τ̄) zN

=
∑

(p,q)∈Z2

∫ ∞
0

exp
(
− tπ

|p + qτ |2

τ2

)
FSU(t, z) dt ,

FSU(t, z) =
∞∑
N=2

BSU(N)(t)zN

=
3tz2

[
(t − 3)(t + 1)2(3t − 1)− (t − 1)2(t + 3)(3t + 1)z

]
(1− z)3/2 [(t + 1)2 − (t − 1)2z]7/2

.

FSU(t, z) is closely related to the so-called (generalised)
Harer-Zagier formula in the matrix-model literature.
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The integrated correlator in various
regions: small-gYM, large-N , ... ...
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Weak-coupling perturbative expansion

Weak-coupling perturbative expansion (loops), using a = λ/(4π2):

CSU(N)(τ2) = (N2−1)

[
3 ζ(3)a

2
− 75 ζ(5)a2

8
+

735 ζ(7)a3

16
−

6615 ζ(9)
(
1 + 2

7
N−2

)
a4

32

+
114345 ζ(11)

(
1 + N−2

)
a5

128
−

3864861 ζ(13)
(
1 + 25

11
N−2 + 4

11
N−4

)
a6

1024
+ · · ·

]
.

Non-planar contributions start to enter at 4 loops – in
agreement with known results.

It gives an all-loop prediction for any N.

Using results of periods, first four loops are shown to agree
with Feynman diagram computations; predict relations and
results for unknown higher-loop Feynman integrals.
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Large N : small-λ expansion

Large-N expansion: CSU(N)(τ, τ̄) ∼
∑∞

g=0 N
2−2g C(g)(λ).

Small-λ expansion

C(0)(λ) =
∞∑
n=1

4(−1)n+1ζ(2n + 1)Γ
(
n + 3

2

)2

π2n+1Γ(n)Γ(n + 3)
λn ,

C(1)(λ) =
∞∑
n=1

(−1)n(n−5)(2n+1)ζ(2n+1)Γ
(
n− 1

2

)
Γ
(
n+ 3

2

)
24π2n+1Γ(n)2

λn ,

...

They are all convergent with a finite radius |λ| < π2, which
has been seen in N = 4 SYM, such as cusp anomalous
dimension [Basso, Korchemsky, Kotanski], amplitudes [Basso, Dixon, Papathanasiou].
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Large N : large-λ expansion

Large-λ expansion:

C(0)(λ) ∼ 1

4
+
∞∑
n=1

Γ
(
n − 3

2

)
Γ
(
n + 3

2

)
Γ(2n + 1)ζ(2n + 1)

22n−2π Γ(n)2 λn+1/2
,

...

They are all asymptotic & not Borel summable, require
non-perturbative completions (resurgence)

∆C(0)(λ) ∼ i
[
8Li0(e−2

√
λ) +

18Li1(e−2
√
λ)

λ1/2
+

117Li2(e−2
√
λ)

4λ
+ · · ·

]
.

One also finds another type of exponential term e−8Nπ/
√
λ

(see also [Hatsuda,Okuyama, 2208.01891]), essentially due to SL(2,Z).
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Large N : finite YM coupling τ

SL(2,Z) at Large N: large-N expansion with finite YM coupling τ
(“very strong coupling limit”):

CSU(N)(τ, τ̄) ∼ N2

4
− 3N

1
2

24
E( 3

2
; τ, τ̄) +

45

28N
1
2

E( 5
2
; τ, τ̄)

+
3

N
3
2

[1575

215
E( 7

2
; τ, τ̄)− 13

213
E( 3

2
; τ, τ̄)

]
+

225

N
5
2

[441

218
E( 9

2
; τ, τ̄)− 5

216
E( 5

2
; τ, τ̄)

]
+

63

N
7
2

[3898125

227
E( 11

2
; τ, τ̄)− 44625

225
E( 7

2
; τ, τ̄) +

73

222
E( 3

2
; τ, τ̄)

]
+ · · ·

+ O(
∑

(p,q) 6=(0,0)

exp

(
−4
√
Nπ
|p + qτ |√

τ2

)
) .

Recall E (s; τ, τ̄) is the non-holomorphic Eisenstein series;

q = 0 gives e−2
√
λ and p = 0 gives e−8Nπ/

√
λ.
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Integrated correlators & Goddard-Nuyts-Olive duality

The integrated correlator with a general classical gauge group GN .

For the simply laced groups GN = SU(N), SO(2N).

T : τ → τ + 1; S : τ → −1/τ

The correlator is SL(2,Z) invariant

CGN
(τ, τ̄) =

∑
(p,q)∈Z2

∫ ∞
0
dt e

−tπ |p+qτ |2
τ2 BGN

(t) .

As for CSU(N)(τ, τ̄).
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Integrated correlators & Goddard-Nuyts-Olive duality

For the non-simply laced GN = USp(2N), SO(2N+1): only
invariant under congruence subgroup Γ0(2) ⊂ SL(2,Z): T , ŜT Ŝ .

T : τ → τ + 1; Ŝ : τ → −1/(2τ) .

GNO duality implies

Ŝ : CSO(2N+1)(τ, τ̄) ↔ CUSp(2N)(τ, τ̄) .

Our ansatz:

CGN
(τ, τ̄) =

∑
(p,q)∈Z2

∫ ∞
0
dt

[
B1
GN

(t)e
−tπ |p+qτ |2

τ2 + B2
GN

(t)e
−tπ |p+2qτ |2

2τ2

]

B1
USp(2N)(t) = B2

SO(2N+1)(t) , B2
USp(2N)(t) = B1

SO(2N+1)(t) .

Checked for all perturbative terms & some instanton sectors.
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Summary and outlook

The integrated correlators can be computed exactly; tools for
studying N = 4 SYM: S-duality, resurgence, connections with
periods, matching type IIB string amplitudes, exact data for
bootstrap ... ...

Second integrated correlator (∂4
m logZ

∣∣
m=0

) at finite N?

Applications to more general correlators? higher weights,
higher points

Integrated correlators are equivalent to integrated string
amplitudes in AdS. Integrated flat-space amplitudes?

Thank you!
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