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What is celestial holography?

What evidence supports the proposal?

What have we learned?



Introduction 
& Motivation

• Celestial Holography is the proposal:

• Basic observation underlying the proposal:

Quantum gravity in 
4D asymptotically flat 

spacetimes

Conformal field 
theory in 2D

Holographic 
dual

4D Lorentz 2D global 
conformal

SO(3,1) ≅ SL(2, ℂ)

Scattering amplitudes for 
4D particles in highest 
weight reps of SL(2, ℂ) Transform 

under Lorentz

Correlation functions 
of primary operators 

in a 2D CFT
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Primary Operators
• To provide intuition for particles in highest weight representations, first recall labelling of primary operators:

• Under SL(2,ℂ)

Oh,h̄(z, z̄)
left & right 

conformal weights
Point on 2D plane

z ! az + b

cz + d
,

✓
a b
c d

◆
2 SL(2,C)

4



Primary Operators
• Primary operators simultaneously diagonalize the pair of conformal transformations that preserve (𝑧, ̅𝑧):

Dilation about (𝑧, ̅𝑧): ∆ = ℎ + .ℎ

Rotation about (𝑧, ̅𝑧): s = ℎ − .ℎ

• Corresponds to a pair of mutually commuting Lorentz transformations. 

Dilation about 𝑧, ̅𝑧 ⇔ Boost towards a fixed direction

Rotation about 𝑧, ̅𝑧 ⇔ Rotation about a fixed direction
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⇒ Particles in highest-weight reps simultaneously diagonalize a pair of Lorentz generators. 

• There exists a simple construction for massless particles.

⇒
Points on 2D plane are 
naturally identified with 
spatial directions in 4D.



Massless Particles
• Typically study momentum & helicity eigenstates.

→ Diagonalize rotations about the direction of the null momentum.

• Spinor helicity variables → useful labels for such states

§ Transform non-trivially (but are eigenvectors of) rotations about �⃗�

§ Ratio of components is invariant ⇒ specifies direction of null momentum!
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p↵↵̇ = �↵�̃↵̇

� ! ei��, �̃ ! e�i��̃.

�1

�2
⇠ direction of ~p



Massless Particles
• General Lorentz:

⇒ Ratio transforms like coordinate on 2D plane:
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� ! M�, M =

✓
a b
c d

◆
2 SL(2,C)

z ⌘ �1

�2
⇠ direction of ~p, z ! az + b

cz + d

Explicit example of identification 
between points on 2D plane 
and spatial directions in 4D.



Massless Particles
⇒ Motivates further parametrization of 𝑝 by points on 2D plane:

• Upshot: label massless particles in momentum and helicity eigenstates
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p↵↵̇ = �↵�̃↵̇ = !

✓
z
1

◆�
z̄ 1

�
𝜔 parametrizes 

overall scale

|!, s, z, z̄i
• z, .z : point on 2D plane

• 𝑠: eigenvalue under rotation about z, .z

• 𝜔: scale of momentum (~ energy)

Only mismatch!



Massless Particles
• Transformation under SL(2,ℂ) confirms mismatch:
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� ! M�, M =

✓
a b
c d

◆
2 SL(2,C)p↵↵̇ = �↵�̃↵̇ = !

✓
z
1

◆�
z̄ 1

�

• Unsurprising because ∆ is eigenvalue of dilation in 2D → boost in 4D

• Null momenta are not invariant under boosts

⇒ Impossible to work with momentum eigenstates that are also in highest weight reps

⇒ Need to change basis.

! ! |cz + d|2! ) ! 6= �



Massless Particles in Boost Eigenstates

• Diagonalized by the Mellin transform:
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Already diagonalized 
rotations about �⃗�

Boost along �⃗�
Easiest to 

diagonalize

p↵↵̇ ! ⇠p↵↵̇ ) ! ! ⇠!

Z 1

0

d!

!
!�|!, s, z, z̄i ⌘ |�, s, z, z̄i



Celestial Amplitudes
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⇣ nY

i=1

Z 1

0

d!i

!i
!�i
i

⌘
A(p1, · · · , pn) ⌘ hOh1,h̄1

(z1, z̄1) · · · Ohn,h̄n
(zn, z̄n)i

• Mellin transform momentum space amplitudes (of massless particles) with respect to each 𝜔!

⇒ Obtain objects that transform under Lorentz like correlation functions of primary operators in a 2D CFT

[Kapec, Mitra, Raclariu & Strominger, 1609.00282
Cheung, de la Fuente & Sundrum, 1609.00732;

Pasterski & Shao, 1705.01027;
Pasterski, Shao & Strominger, 1706.03917]



Celestial Amplitudes
• Construction was not systematic

✶ Not the unique way to obtain highest weight reps from momentum space

✶ However, will be the focus for today

• Key property :
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Points on the 
2D plane

Points on spatial cross 
sections of null infinityActually 

correspond to

Follows from 𝑧 ≡ 9"! "" labelling direction of null momentum



Outline
ü What is celestial holography?

1. Review of celestial holography & construction of celestial amplitudes

• What evidence supports the proposal?

1. Locality in 2D: OPEs ↔ Collinear limits

2. OPEs from Poincaré Symmetry

• What have we learned?
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Operator Product Expansions & 
Collinear Limits
• Immediate Implication:
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lim
z1!z2

O1(z1)O2(z2)  !
dual to

p1||p2

p1 · p2 ⇠ [12]h12i ⇠ !1!2z12z̄12

• Standard CFT: limit is governed by the operator product expansion

⇒ To interpret boost weight states as local operators, need collinear limits to admit OPE-like structure.

• Encouragingly, collinear limits of tree-level massless scattering amplitudes do appear to provide compatible structure.



Collinear Limits Review
• The behavior of tree-level amplitudes in the collinear limit is dominated by factorization:
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An(p1, p2, · · · ) ! V3
1

(p1 + p2)2
An�1(p1 + p2, · · · )

Collinear splitting factor

Written to elucidate origin 
of factorization in Feynman 

diagrams 



Key Ingredients from Collinear Limits
1. Collinear splitting factor can supply singularities in 𝑧#$

2. Bulk (4D) dimension 𝑑% of 3-point interaction determines overall scaling with energy
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1

(p1 + p2)2
⇠ 1

!1!2z12z̄12

V3 ⇠ !dV �3 ! V3
1

(p1 + p2)2
⇠ !dV �5

Collinear splitting factor



OPE from Collinear Factorization
• Collinear factorization:
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An(p1, p2, · · · )
z12!0⇠ !dV �5 z̄

p
12

z12
An�1(p1 + p2, · · · )

• Implies OPE limit for celestial amplitudes

hO�1,s1(z1, z̄1)O�2,s2(z2, z̄2) · · · i
z12!0
/

z̄p12
z12

hO�1+�2+dV �5,s(z2, z̄2) · · · i

MP, Raclariu, Strominger & Yuan [1901.07424]

1. Singularity in 𝑧!" ⇒ boost weight states behave like local operators in 2D.

2. Energy scaling fixed by 𝑑# ⇒ fusion rule for celestial operators

Determined by 𝜔-scaling:

• ∆!, ∆" from Mellin integrals for 𝒪! , 𝒪"
• 𝑑# − 5 from splitting factor

Treat 𝑧 & ̅𝑧 as 
independent



OPEs from Collinear Limits
• Interpret factorization as arising from an OPE:
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O�1,s1(z1, z̄1)O�2,s2(z2, z̄2) ⇠ C123
z̄p12
z12

O�1+�2+dV �5,s| {z }
⌘�3,s3

(z2, z̄2)

p = dV � 4

= s1 + s2 � s3 � 1

(match net ∆-weight)

(match net 𝑠-weight)

MP, Raclariu, Strominger & Yuan [1910.07424]

• Can explicitly compute OPE coefficient with more careful treatment of this argument.

• Deduce 𝑝 by comparing transformation of each side under 2D conformal symmetry

§ Originally done in Yang-Mills by Fan, Fotopoulos and Taylor [1903.01676]



OPE Coefficients from Symmetry
• Instead today:

Provide holographic first principled derivation of 

OPE coefficients from symmetry

• Previously, carried out similar type of analysis in 1901.07424 by MP, Raclariu, Strominger & Yuan.
§ Used more exotic symmetries associated to subleading soft theorems to derive OPE coefficients in EYM.

• Today, we’ll use Poincaré symmetry to determine leading OPE coefficients in generic theories with 
massless particles. 
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Himwich, MP & Singh [2108.07763]



Poincaré Constraints on OPE Coeff.
• Why is Poincaré sufficient?

• OPE involves primaries of fixed boost weight

⇒ Grouping of boost weights into single 4D-particles is captured by non-trivial dependence of OPE coefficients on 
boost weight ∆

• Goal: Determine ∆' dependence

• Logic: 4D translations relate different conformal families 
⇒Thereby impose further constraints on OPE coefficients of the primaries

• Payoff: learn how how 4D particles (i.e. irreps of Poincaré) emerge from 2D CFT data
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Massless 
particle

Family of operators of cxed 
spin 𝑠 & varying boost 

weight ∆
=

Irrep of 4D 
Poincaré



Symmetry Constraints on OPE 
Coefficients
Basic Logic:
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O1(z, z̄)O2(0, 0) =
X

k

A12k(z, z̄)Ok(0, 0)

[Q,O1(z, z̄)O2(0, 0)] =
X

k

A12k(z, z̄) [Q,Ok(0, 0)]

Ansatz:

Symmetry implies:

[Q,O1(z, z̄)]O2(0, 0) +O1(z, z̄) [Q,O2(0, 0)]



Poincaré for Celestial Amplitudes
• Reference: Stieberger & Taylor [1812.01080]

• Lorentz Transformations = standard global conformal transformations 
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⇥
L̄m,Oh,h̄(z, z̄)

⇤
= z̄m

�
(m+ 1)h̄+ z̄@z̄

�
Oh,h̄(z, z̄)

m = �1, 0, 1

⇥
L̄m, L̄n

⇤
= (m� n)L̄m+n



Poincaré for Celestial Amplitudes
• Reference: Stieberger & Taylor [1812.01080]; Donnay, Puhm, Strominger [1810.05219]

• Translations:
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p↵↵̇ ⇠ !

✓
z
1

◆�
z̄ 1

�

Shifts ∆→ ∆ + 1

(Otherwise multiples by 𝑧, ̅𝑧)

|�i ⇠
Z 1

0

d!

!
!�|!i

⇥
Pm,n,Oh,h̄(z, z̄)

⇤
=

1

2
zm+ 1

2 z̄n+
1
2Oh+ 1

2 ,h̄+
1
2
(z, z̄)

𝑚, 𝑛 = ± #
$

and label mode number under global conformal transformations (analogue of subscript on .𝐿&’s)



Ansatz
From collinear limits:
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Oh1,h̄1
(z, z̄)Oh2,h̄2

(0, 0) ⇠ C123
z̄p

z
O h1+h2�1,h̄1+h̄2+p| {z }

⌘h3,h̄3

(0, 0)

Translations mix primaries & descendants 

⇒ Need to include these too

p = dV � 4

(R-moving is sufficient)

Oh1,h̄1
(z, z̄)Oh2,h̄2

(0, 0) ⇠
z̄p

z

1X

m=0

C(m)
123 z̄

m@̄m
Oh1+h2�1,h̄1+h̄2+p(0, 0)



Summary of Poincaré Constraints
• .𝐿#:

• 𝑃'!",'
!
"
:

• 𝑃'!",)
!
"
:
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(2h̄1 + p+m)C(m)
p (h̄1, h̄2) = (m+ 1)(2h̄1 + 2h̄2 + 2p+m)C(m+1)

p (h̄1, h̄2)

C(m)
p (h̄1 +

1
2 , h̄2) + C(m)

p (h̄1, h̄2 +
1
2 ) = C(m)

p (h̄1, h̄2)

C(m)
p (h̄1 +

1
2 , h̄2) = (m+ 1)C(m+1)

p (h̄1, h̄2)

(2h̄1 + p+m)C(m)
p (h̄1, h̄2) = (2h̄1 + 2h̄2 + 2p+m)C(m)

p (h̄1 +
1
2 , h̄2)

(recursion in 𝑚)

(recursion in .ℎ#)

(recursion in .ℎ# and 𝑚)

(recursion in .ℎ# from combining .𝐿# and  𝑃'!",)
!
"
)



Summary of Poincaré Constraints
• .𝐿#:

• 𝑃'!",'
!
"
:

• 𝑃'!",)
!
"
:
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(2h̄1 + p+m)C(m)
p (h̄1, h̄2) = (m+ 1)(2h̄1 + 2h̄2 + 2p+m)C(m+1)

p (h̄1, h̄2)

C(m)
p (h̄1 +

1
2 , h̄2) + C(m)

p (h̄1, h̄2 +
1
2 ) = C(m)

p (h̄1, h̄2)

C(m)
p (h̄1 +

1
2 , h̄2) = (m+ 1)C(m+1)

p (h̄1, h̄2)

(2h̄1 + p+m)C(m)
p (h̄1, h̄2) = (2h̄1 + 2h̄2 + 2p+m)C(m)

p (h̄1 +
1
2 , h̄2)

Two cxed 𝑚 constraints are 
recursion relations for the 

Euler beta function

B(x, y) =
�(x)�(y)

�(x+ y)



OPE Coefficients from Poincaré
• Solution to fixed 𝑚 constraints:

• .𝐿# constraint further fixes relative coefficient between different 𝑚:
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C(m)
p (h̄1, h̄2) / B(2h̄1 + p+m, 2h̄2 + p) B(x, y) =

�(x)�(y)

�(x+ y)

C(m)
p (h̄1, h̄2) = �s1,s2

p
1

m!
B(2h̄1 + p+m, 2h̄2 + p)

- 𝛾$
%! ,%" is undetermined spin-dependent coefficient.

- Can verify formula by Mellin-transforming collinear splitting factor.

→ 𝛾$
%! ,%" is just the coupling constant for the 3-point interaction between 4D particles of spin 𝑠!, 𝑠", and 𝑝 + 1 − 𝑠! − 𝑠".

Himwich, MP & Singh [2108.07763]



Outline
ü What is celestial holography?

ü What evidence supports the proposal?

1. Locality in 2D: OPEs ↔ Collinear limits

2. OPEs from Poincaré Symmetry

• What have we learned?

1. Conformally Soft Gravitons & w#)*
2. w#)* for Hard Massless Particles
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Outline
ü What is celestial holography?

ü What evidence supports the proposal?

1. Locality in 2D: OPEs ↔ Collinear limits

2. OPEs from Poincaré Symmetry

• What have we learned?

1. Conformally Soft Gravitons & w#)*
2. w#)* for Hard Massless Particles
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2D hologram of 4D scattering from Lorentz symmetry

Interactions (OPE coefficients) from Poincaré symmetry

New symmetries from interactions (OPE coefficients)



Poles in the OPE coefficients
• Notice that the OPE coefccients have poles in .ℎ!
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C(m)
p (h̄1, h̄2) =

�s1,s2
p

m!
B(2h̄1 + p+m, 2h̄2 + p)

Poles @ 2h̄1 + p+m = �1 � s1 + p+m 2 Z0

B(x, y) =
�(x)�(y)

�(x+ y)



Physical Significance of Poles
• To determine physical significance, consider Mellin transform of function with a Laurent expansion about 𝜔 = 0:

⇒ Powers of 𝜔 turn into simple poles in ∆ at integer values.

✶ Residues give Laurent expansion coefficients.

⇒ Infinite tower of poles in OPE coefficients captures a series expansion in energy.
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ef(�) =

Z 1

0

d!

!
!�f(!) ⇢

Z

0

d!

!
!�

X

n

!nfn ⇠
X

n

fn
�+ n

⇒ For scattering amplitudes, series admits universal behavior, characterized by soft theorems.
✶ Soft particles behave like currents generating ∞-dimensional symmetries whose Ward identities are soft theorems.



Soft Graviton Symmetries from 
Graviton OPE
• Consider OPE capturing the minimal coupling of a positive-helicity graviton to matter:

• Leading pole @ ∆#= 1:

• Poles @ ∆#= 0,−1,−2,…:
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G+
�1

(z, z̄)Oh2,h̄2
(0, 0) ⇠ �



2

z̄

z

1X

m=0

1

m!
B(�1 � 1 +m, 2h̄2 + 1)z̄m@̄m

Oh2+
�1
2 ,h̄2+

�1
2
(0, 0)

Residue @ 
∆#= 1 ⇔ Coefficient 

of ⁄# +

Content of the 
leading soft graviton 

theorem

Suggests that a universal symmetry action associated to 
subleading soft theorems persists to all orders!⇒

(∆= ∆!, 𝑠 = 2)



Holographic Symmetry Algebra
• What is the algebra generated by these soft graviton symmetry actions?

Ø Determine from current-current OPE.

Ø Currents are “conformally soft gravitons”.
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H
k(z, z̄) ⌘ lim

"!0
"G

+
k+"(z, z̄), k = 2, 1, 0, · · ·

Gravitons in highest weight states, 
normalized to extract residue of pole in ∆



Holographic Symmetry Algebra
• Use 𝐺∆!

) 𝐺∆"
) ~𝐺∆!)∆"

) OPE to determine OPE for conformally soft gravitons

• Mode expand, compute commutator & relabel

34

H
k(z, z̄)H`(0, 0) ⇠ �

2

z̄

z

1�kX

m=0

1

m!

✓
2� k � `�m

1� `

◆
z̄
m
@̄
m
H

k+`(0, 0)

H
k(z, z̄) =

� k�2
2X

n= k�2
2

H
k
n(z)

z̄n+h̄
, w

p
n =

1


(p� n� 1)!(p+ n� 1)!H4�2p

n ,[A,B] (z) ⌘
I

z

dw

2⇡i
A(w)B(z),

[wp
m, wq

n] = (m(q � 1)� n(p� 1))wp+q�2
m+n

w#)* symmetry algebra Guevara, Himwich, MP & Strominger [2103.03961]
Strominger [2105.14346]



w!"# Symmetry Algebra

• Here 𝑝 = 1, -
$
, 2, .

$
, … & 1 − 𝑝 ≤ 𝑚 ≤ 𝑝 − 1 (“wedge subalgebra”)

• 𝑤/$ generates a SL(2, ℝ) action under which 𝒘𝒏
𝒒 transforms as 𝒏th mode of primary of weight 𝒒

• 𝑤/
23$ form closed subalgebra

• 𝑤/
./$ generates infinite tower (corresponds to subsubleading soft graviton).
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[wp
m, wq

n] = (m(q � 1)� n(p� 1))wp+q�2
m+n

Guevara, Himwich, MP & Strominger [2103.03961]
Strominger [2105.14346]



w!"# Action on Massless Particles
• (How) does w#)* act on generic massless particles (i.e. not just soft gravitons)?

• Determine from current-matter OPE

• Use minimal coupling OPE (𝐺$𝒪~𝒪) to determine:

• Mode expand, compute commutator & relabel (or equivalently perform light transform)
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H
k(z, z̄)Oh,h̄(0, 0) ⇠

1

z

1�kX

m=0

lim
"!0

"B(k + "� 1 +m, 2h̄+ 1) z̄m@̄
m
Oh+ k

2 ,h̄+
k
2
(0, 0)

⇥
bwq
n,Oh,h̄(z, z̄)

⇤
=

1

2

2q�3X

`=0

✓
q + n� 1

`

◆
(2q � 2� `)�(2h̄+ 1)

�(2h̄+ 1� `)
z̄q+n�1@2q�3�`

z̄ Oh+2�q,h̄+2�q(z, z̄)

Himwich, MP & Singh [2108.07763]; Jiang [2108.08799]



w!"# Action on Massless Particles
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⇥
bwp
m,

⇥
bwq
n,Oh,h̄(z, z̄)

⇤⇤
�

⇥
bwq
n,
⇥
bwp
m,Oh,h̄(z, z̄)

⇤⇤
=

⇥
[bwp

m, bwq
n] ,Oh,h̄(z, z̄)

⇤

[bwp
m, bwq

n] = (m(q � 1)� n(p� 1)) bwp+q�2
m+n

⇒ Massless particles transform in (non-trivial) representations of w#)*

• Can show

where

Himwich, MP & Singh [2108.07763]



Summary
ü What is celestial holography?

ü What evidence supports this approach?

• Massless particles in highest weight states behave like local operators, admitting operator product expansions.

ü What have we learned?
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Symmetry: SO(3,1) ≅ SL(2, ℂ) ⇒ Quantum gravity in 4D asymptotically flat 
spacetimes is holographically dual to a 2D CFT

Poincaré Symmetry ⇒ Fixes leading OPE coefccients

Leading OPE coefccients 
(in graviton OPE) ⇒ Algebra of soft symmetries

organizes into w#)*

w#)* symmetry ⇒ Additional constraints on OPE?
* Leading coefficients are 

consistent with, but not further 
constrained by w!'(



Thank you!
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