Advances in Celestial Holography

MONICA PATE
HARVARD SOCIETY OF FELLOWS
NEW YORK UNIVERSITY

What is celestial holography?

What evidence supports the proposal?
What have we learned?

- Celestial Holography is the proposal:

Introduction \& Motivation

Quantum gravity in 4D asymptotically flat spacetimes

- Basic observation underlying the proposal:

Scattering amplitudes for 4D particles in highest weight reps of $\operatorname{SL}(2, \mathbb{C})$

Conformal field
theory in 2D

Correlation functions of primary operators
in a 2 D CFT

Primary Operators

- To provide intuition for particles in highest weight representations, first recall labelling of primary operators:

$$
\underbrace{\left.0_{h, \bar{h}}^{z}, \bar{z}\right)}_{\substack{\text { left \& right } \\ \text { conformal weights }}}
$$

- Under SL(2,C)

$$
z \rightarrow \frac{a z+b}{c z+d}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})
$$

Primary Operators

- Primary operators simultaneously diagonalize the pair of conformal transformations that preserve (z, \bar{z}) :

$$
\begin{aligned}
\text { Dilation about }(z, \bar{z}): \Delta & =h+\bar{h} \\
\text { Rotation about }(z, \bar{z}): s & =h-\bar{h}
\end{aligned}
$$

- Corresponds to a pair of mutually commuting Lorentz transformations.

Dilation about $(z, \bar{z}) \Leftrightarrow$ Boost towards a fixed direction Points on 2D plane are
Rotation about $(z, \bar{z}) \Leftrightarrow$ Rotation about a fixed direction $\} \Rightarrow \begin{aligned} & \text { naturally identified with } \\ & \text { spatial directions in } 4 D .\end{aligned}$
\Rightarrow Particles in highest-weight reps simultaneously diagonalize a pair of Lorentz generators.

- There exists a simple construction for massless particles.

Massless Particles

- Typically study momentum \& helicity eigenstates.
\rightarrow Diagonalize rotations about the direction of the null momentum.
- Spinor helicity variables \rightarrow useful labels for such states

$$
p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}
$$

- Transform non-trivially (but are eigenvectors of) rotations about \vec{p}

$$
\lambda \rightarrow e^{i \phi} \lambda, \quad \tilde{\lambda} \rightarrow e^{-i \phi} \tilde{\lambda}
$$

- Ratio of components is invariant \Rightarrow specifies direction of null momentum!

$$
\frac{\lambda_{1}}{\lambda_{2}} \sim \text { direction of } \vec{p}
$$

Massless Particles

- General Lorentz:

$$
\lambda \rightarrow M \lambda, \quad M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{C})
$$

\Rightarrow Ratio transforms like coordinate on 2D plane:

$$
z \equiv \frac{\lambda_{1}}{\lambda_{2}} \sim \text { direction of } \vec{p}, \quad z \rightarrow \frac{a z+b}{c z+d}
$$

> Explicit example of identification between points on 2D plane and spatial directions in $4 D$.

Massless Particles

\Rightarrow Motivates further parametrization of p by points on 2D plane:

$$
p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}^{\omega}=\binom{z}{1}\left(\begin{array}{ll}
\bar{z} & 1
\end{array}\right) \quad \begin{gathered}
\omega \text { parametrizes } \\
\text { overall scale }
\end{gathered}
$$

- Upshot: label massless particles in momentum and helicity eigenstates
- ($\mathrm{z}, \overline{\mathrm{z}}$): point on 2D plane
$|\omega, s, z, \bar{z}\rangle$
- s : eigenvalue under rotation about ($\mathrm{z}, \overline{\mathrm{z}}$)
- ω : scale of momentum (\sim energy)

凹 Only mismatch!

Massless Particles

- Transformation under SL(2,C) confirms mismatch:

$$
\begin{array}{cl}
p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}=\omega\binom{z}{1}\left(\begin{array}{ll}
\bar{z} & 1
\end{array}\right) & \lambda \rightarrow M \lambda, \quad M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C}) \\
\omega \rightarrow|c z+d|^{2} \omega \quad \Rightarrow \quad \omega \neq \Delta
\end{array}
$$

- Unsurprising because Δ is eigenvalue of dilation in 2D \rightarrow boost in 4D
- Null momenta are not invariant under boosts
\Rightarrow Impossible to work with momentum eigenstates that are also in highest weight reps
\Rightarrow Need to change basis.

Massless Particles in Boost Eigenstates

$$
\begin{gathered}
\begin{array}{c}
\text { Already diagonalized } \\
\text { rotations about } \vec{p}
\end{array} \\
\begin{array}{c}
\text { Easiest to } \\
\text { diagonalize }
\end{array} \\
p_{\alpha \dot{\alpha}} \rightarrow \xi p_{\alpha \dot{\alpha}} \quad \Rightarrow \quad \omega \rightarrow \xi \omega
\end{gathered}
$$

- Diagonalized by the Mellin transform:

$$
\int_{0}^{\infty} \frac{d \omega}{\omega} \omega^{\Delta}|\omega, s, z, \bar{z}\rangle \equiv|\Delta, s, z, \bar{z}\rangle
$$

Celestial Amplitudes

- Mellin transform momentum space amplitudes (of massless particles) with respect to each ω_{i}
\Rightarrow Obtain objects that transform under Lorentz like correlation functions of primary operators in a 2D CFT

$$
\left(\prod_{i=1}^{n} \int_{0}^{\infty} \frac{d \omega_{i}}{\omega_{i}} \omega_{i}^{\Delta_{i}}\right) \mathbf{A}\left(p_{1}, \cdots, p_{n}\right) \equiv\left\langle\mathcal{O}_{h_{1}, \bar{h}_{1}}\left(z_{1}, \bar{z}_{1}\right) \cdots \mathcal{O}_{h_{n}, \bar{h}_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle
$$

Celestial Amplitudes

- Construction was not systematic
* Not the unique way to obtain highest weight reps from momentum space
* However, will be the focus for today
- Key property :

Follows from $z \equiv{ }^{\lambda_{1}} / \lambda_{2}$ labelling direction of null momentum

Outline

\checkmark What is celestial holography?

1. Review of celestial holography \& construction of celestial amplitudes

- What evidence supports the proposal?

1. Locality in 2D: OPEs \leftrightarrow Collinear limits
2. OPEs from Poincaré Symmetry

- What have we learned?

Operator Product Expansions \& Collinear Limits

- Immediate Implication:

- Standard CFT: limit is governed by the operator product expansion
\Rightarrow To interpret boost weight states as local operators, need collinear limits to admit OPE-like structure.
- Encouragingly, collinear limits of tree-level massless scattering amplitudes do appear to provide compatible structure.

Collinear Limits Review

- The behavior of tree-level amplitudes in the collinear limit is dominated by factorization:

$$
\mathbf{A}_{n}\left(p_{1}, p_{2}, \cdots\right) \rightarrow \mathcal{V}_{3} \frac{1}{\left(p_{1}+p_{2}\right)^{2}} \mathbf{A}_{n-1}\left(p_{1}+p_{2}, \cdots\right)
$$

Collinear splitting factor

Key Ingredients from Collinear Limits

1. Collinear splitting factor can supply singularities in z_{12}

$$
\frac{1}{\left(p_{1}+p_{2}\right)^{2}} \sim \frac{1}{\omega_{1} \omega_{2} z_{12} \bar{z}_{12}}
$$

2. Bulk (4D) dimension d_{V} of 3-point interaction determines overall scaling with energy

$$
\mathcal{V}_{3} \sim \omega^{d_{V}-3} \rightarrow \underbrace{\mathcal{V}_{3} \frac{1}{\left(p_{1}+p_{2}\right)^{2}}}_{\text {Collinear splitting factor }} \sim \omega^{d_{V}-5}
$$

OPE from Collinear Factorization

- Collinear factorization:

$$
\mathbf{A}_{n}\left(p_{1}, p_{2}, \cdots\right) \stackrel{z_{12} \rightarrow 0}{\sim} \omega^{d_{V}-5} \frac{\bar{z}_{12}^{p}}{z_{12}} \mathbf{A}_{n-1}\left(p_{1}+p_{2}, \cdots\right)
$$

- Implies OPE limit for celestial amplitudes

$$
\left\langle\mathcal{O}_{\Delta_{1}, s_{1}}\left(z_{1}, \bar{z}_{1}\right) \mathcal{O}_{\Delta_{2}, s_{2}}\left(z_{2}, \bar{z}_{2}\right) \cdots\right\rangle \stackrel{z_{12} \rightarrow 0}{\propto} \frac{\bar{z}_{12}^{p}}{z_{12}}\langle\underbrace{\left(\mathcal{O}_{\Delta_{1}+\Delta_{2}+d_{V}-5, s}\right.}\left(z_{2}, \bar{z}_{2}\right) \cdots\rangle
$$

1. Singularity in $z_{12} \Rightarrow$ boost weight states behave like local operators in 2D.

- Δ_{1}, Δ_{2} from Mellin integrals for $\mathcal{O}_{1}, \mathcal{O}_{2}$
- $d_{V}-5$ from splitting factor

2. Energy scaling fixed by $d_{V} \Rightarrow$ fusion rule for celestial operators

OPEs from Collinear Limits

- Interpret factorization as arising from an OPE:

$$
\mathcal{O}_{\Delta_{1}, s_{1}}\left(z_{1}, \bar{z}_{1}\right) \mathcal{O}_{\Delta_{2}, s_{2}}\left(z_{2}, \bar{z}_{2}\right) \sim C_{123} \frac{\bar{z}_{12}^{p}}{z_{12}} \mathcal{O}_{\underbrace{\Delta_{1}+\Delta_{2}+d_{V}-5, s}_{\equiv \Delta_{3}, s_{3}}}\left(z_{2}, \bar{z}_{2}\right)
$$

- Deduce p by comparing transformation of each side under 2D conformal symmetry

$$
\begin{aligned}
p=d_{V}-4 & \text { (match net } \Delta \text {-weight) } \\
=s_{1}+s_{2}-s_{3}-1 & \text { (match net s-weight) } \\
& \text { MP, Raclariu, Strominger \& Yuan [1910.07424] }
\end{aligned}
$$

- Can explicitly compute OPE coefficient with more careful treatment of this argument.
- Originally done in Yang-Mills by Fan, Fotopoulos and Taylor [1903.01676]

OPE Coefficients from Symmetry

- Instead today:

Provide holographic first principled derivation of OPE coefficients from symmetry

- Previously, carried out similar type of analysis in 1901.07424 by MP, Raclariu, Strominger \& Yuan.
- Used more exotic symmetries associated to subleading soft theorems to derive OPE coefficients in EYM.
- Today, we'll use Poincaré symmetry to determine leading OPE coefficients in generic theories with massless particles.

Poincaré Constraints on OPE Coeff.

-Why is Poincaré sufficient?

- OPE involves primaries of fixed boost weight
\Rightarrow Grouping of boost weights into single 4D-particles is captured by non-trivial dependence of OPE coefficients on boost weight Δ
- Goal: Determine Δ_{i} dependence
- Logic: 4D translations relate different conformal families
\Rightarrow Thereby impose further constraints on OPE coefficients of the primaries
- Payoff: learn how how 4D particles (i.e. irreps of Poincaré) emerge from 2D CFT data

Symmetry Constraints on OPE Coefficients

Basic Logic:

Ansatz:

$$
\mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0,0)=\sum_{k} A_{12 k}(z, \bar{z}) \mathcal{O}_{k}(0,0)
$$

Symmetry implies:

$$
[\underbrace{Q, \mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0,0)}]=\sum_{k} A_{12 k}(z, \bar{z})\left[Q, \mathcal{O}_{k}(0,0)\right]
$$

$$
\left[Q, \mathcal{O}_{1}(z, \bar{z})\right] \mathcal{O}_{2}(0,0)+\mathcal{O}_{1}(z, \bar{z})\left[Q, \mathcal{O}_{2}(0,0)\right]
$$

Poincaré for Celestial Amplitudes

- Reference: Stieberger \& Taylor [1812.01080]
- Lorentz Transformations = standard global conformal transformations

$$
\begin{gathered}
{\left[\bar{L}_{m}, \mathcal{O}_{h, \bar{h}}(z, \bar{z})\right]=\bar{z}^{m}\left((m+1) \bar{h}+\bar{z} \partial_{\bar{z}}\right) \mathcal{O}_{h, \bar{h}}(z, \bar{z})} \\
m=-1,0,1 \\
{\left[\bar{L}_{m}, \bar{L}_{n}\right]=(m-n) \bar{L}_{m+n}}
\end{gathered}
$$

Poincaré for Celestial Amplitudes

- Reference: Stieberger \& Taylor [1812.01080]; Donnay, Puhm, Strominger [1810.05219]
- Translations:

$$
\begin{array}{r}
p_{\alpha \dot{\alpha}} \sim \omega\binom{z}{1}\left(\begin{array}{ll}
\bar{z} & 1
\end{array}\right) \\
\\
\\
\text { Shifts } \Delta \rightarrow \Delta+1
\end{array}
$$

$$
|\Delta\rangle \sim \int_{0}^{\infty} \frac{d \omega}{\omega} \omega^{\Delta}|\omega\rangle
$$

(Otherwise multiples by z, \bar{z})

$$
\left[P_{m, n}, \mathcal{O}_{h, \bar{h}}(z, \bar{z})\right]=\frac{1}{2} z^{m+\frac{1}{2}} \bar{z}^{n+\frac{1}{2}} \mathcal{O}_{h+\frac{1}{2}, \bar{h}+\frac{1}{2}}(z, \bar{z})
$$

$m, n= \pm \frac{1}{2}$ and label mode number under global conformal transformations (analogue of subscript on \bar{L}_{n} 's)

Ansatz

From collinear limits:

$$
\mathcal{O}_{h_{1}, \bar{h}_{1}}(z, \bar{z}) \mathcal{O}_{h_{2}, \bar{h}_{2}}(0,0) \sim C_{123} \frac{\bar{z}^{p}}{z} \mathcal{O}_{\underbrace{h_{1}+h_{2}-1, \bar{h}_{1}+\bar{h}_{2}+p}_{\equiv h_{3}, \bar{h}_{3}}}(0,0) \quad p=d_{V}-4
$$

Translations mix primaries \& descendants
\Rightarrow Need to include these too
$\mathcal{O}_{h_{1}, \bar{h}_{1}}(z, \bar{z}) \mathcal{O}_{h_{2}, \bar{h}_{2}}(0,0) \sim \frac{\bar{z}^{p}}{z} \sum_{m=0}^{\infty} C_{123}^{(m)} \bar{z}^{m} \bar{\partial}^{m} \mathcal{O}_{h_{1}+h_{2}-1, \bar{h}_{1}+\bar{h}_{2}+p}(0,0)$
(R-moving is sufficient)

Summary of Poincaré Constraints

- \bar{L}_{1} :

$$
\left.\left(2 \bar{h}_{1}+p+m\right) C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right)=(m+1)\left(2 \bar{h}_{1}+2 \bar{h}_{2}+2 p+m\right) C_{p}^{(m+1)}\left(\bar{h}_{1}, \bar{h}_{2}\right) \quad \text { (recursion in } m\right)
$$

- $P_{-\frac{1}{2},-\frac{1}{2}}$.

$$
\begin{equation*}
C_{p}^{(m)}\left(\bar{h}_{1}+\frac{1}{2}, \bar{h}_{2}\right)+C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}+\frac{1}{2}\right)=C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right) \tag{h}
\end{equation*}
$$

- $P_{-\frac{1}{2},+\frac{1}{2}}$.

$$
C_{p}^{(m)}\left(\bar{h}_{1}+\frac{1}{2}, \bar{h}_{2}\right)=(m+1) C_{p}^{(m+1)}\left(\bar{h}_{1}, \bar{h}_{2}\right)
$$

(recursion in \bar{h}_{1} and m)

$$
\left(2 \bar{h}_{1}+p+m\right) C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right)=\left(2 \bar{h}_{1}+2 \bar{h}_{2}+2 p+m\right) C_{p}^{(m)}\left(\bar{h}_{1}+\frac{1}{2}, \bar{h}_{2}\right)
$$

Summary of Poincaré Constraints

${ }^{-} \bar{L}_{1}$:

$$
\left(2 \bar{h}_{1}+p+m\right) C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right)=(m+1)\left(2 \bar{h}_{1}+2 \bar{h}_{2}+2 p+m\right) C_{p}^{(m+1)}\left(\bar{h}_{1}, \bar{h}_{2}\right)
$$

- $P_{-\frac{1}{2},-\frac{1}{2}}$.

$$
C_{p}^{(m)}\left(\bar{h}_{1}+\frac{1}{2}, \bar{h}_{2}\right)+C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}+\frac{1}{2}\right)=C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right)
$$

Two fixed m constraints are recursion relations for the Euler beta function

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

$$
\left(2 \bar{h}_{1}+p+m\right) C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right)=\left(2 \bar{h}_{1}+2 \bar{h}_{2}+2 p+m\right) C_{p}^{(m)}\left(\bar{h}_{1}+\frac{1}{2}, \bar{h}_{2}\right)
$$

OPE Coefficients from Poincaré

- Solution to fixed m constraints:

$$
C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right) \propto B\left(2 \bar{h}_{1}+p+m, 2 \bar{h}_{2}+p\right)
$$

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

- \bar{L}_{1} constraint further fixes relative coefficient between different m :

$$
C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right)=\gamma_{p}^{s_{1}, s_{2}} \frac{1}{m!} B\left(2 \bar{h}_{1}+p+m, 2 \bar{h}_{2}+p\right)
$$

- $\gamma_{p}^{s_{1}, s_{2}}$ is undetermined spin-dependent coefficient.
- Can verify formula by Mellin-transforming collinear splitting factor.
$\rightarrow \gamma_{p}^{s_{1}, s_{2}}$ is just the coupling constant for the 3-point interaction between 4D particles of spin s_{1}, s_{2}, and $p+1-s_{1}-s_{2}$.

Outline

\checkmark What is celestial holography?
\checkmark What evidence supports the proposal?

1. Locality in 2D: OPEs \leftrightarrow Collinear limits
2. OPEs from Poincaré Symmetry

- What have we learned?

1. Conformally Soft Gravitons \& $\mathrm{w}_{1+\infty}$
2. $w_{1+\infty}$ for Hard Massless Particles

Outline

\checkmark What is celestial holography?
\} 2 D hologram of 4D scattering from Lorentz symmetry
\checkmark What evidence supports the proposal?

1. Locality in 2D: OPEs \leftrightarrow Collinear limits
2. OPEs from Poincaré Symmetry

Interactions (OPE coefficients) from Poincaré symmetry

New symmetries from interactions (OPE coefficients)
2. $w_{1+\infty}$ for Hard Massless Particles

- What have we learned?

1. Conformally Soft Gravitons \& $\mathrm{w}_{1+\infty}$

Poles in the OPE coefficients

- Notice that the OPE coefficients have poles in \bar{h}_{i}

$$
C_{p}^{(m)}\left(\bar{h}_{1}, \bar{h}_{2}\right)=\frac{\gamma_{p}^{s_{1}, s_{2}}}{m!} B\left(2 \bar{h}_{1}+p+m, 2 \bar{h}_{2}+p\right) \quad B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

Poles @ $2 \bar{h}_{1}+p+m=\Delta_{1}-s_{1}+p+m \in \mathbb{Z}_{\leq 0}$

Physical Significance of Poles

- To determine physical significance, consider Mellin transform of function with a Laurent expansion about $\omega=0$:

$$
\widetilde{f}(\Delta)=\int_{0}^{\infty} \frac{d \omega}{\omega} \omega^{\Delta} f(\omega) \subset \int_{0} \frac{d \omega}{\omega} \omega^{\Delta} \sum_{n} \omega^{n} f_{n} \sim \sum_{n} \frac{f_{n}}{\Delta+n}
$$

\Rightarrow Powers of ω turn into simple poles in Δ at integer values.

* Residues give Laurent expansion coefficients.
\Rightarrow Infinite tower of poles in OPE coefficients captures a series expansion in energy.
\Rightarrow For scattering amplitudes, series admits universal behavior, characterized by soft theorems.
* Soft particles behave like currents generating ∞-dimensional symmetries whose Ward identities are soft theorems.

Soft Graviton Symmetries from Graviton OPE

- Consider OPE capturing the minimal coupling of a positive-helicity graviton to matter:

$$
\begin{aligned}
& G_{\Delta_{1}}^{+}(z, \bar{z}) \mathcal{O}_{h_{2}, \bar{h}_{2}}(0,0) \sim-\frac{\kappa}{2} \frac{\bar{z}}{z} \sum_{m=0}^{\infty} \frac{1}{m!} B\left(\Delta_{1}-1+m, 2 \bar{h}_{2}+1\right) \bar{z}^{m} \bar{\partial}^{m} \mathcal{O}_{h_{2}+\frac{\Delta_{1}}{2}, \bar{h}_{2}+\frac{\Delta_{1}}{2}}(0,0) \\
& \text { L }_{\left(\Delta=\Delta_{1}, s=2\right)}
\end{aligned}
$$

- Leading pole @ $\Delta_{1}=1$:

- Poles @ $\Delta_{1}=0,-1,-2, \ldots$:
$\Rightarrow \quad \begin{gathered}\text { Suggests that a universal symmetry action associated to } \\ \text { subleading soft theorems persists to all orders! }\end{gathered}$ subleading soft theorems persists to all orders!

Holographic Symmetry Algebra

- What is the algebra generated by these soft graviton symmetry actions?
$>$ Determine from current-current OPE.
$>$ Currents are "conformally soft gravitons".

$$
H^{k}(z, \bar{z}) \equiv \lim _{\varepsilon \rightarrow 0} \varepsilon G_{k+\varepsilon}^{+}(z, \bar{z}), \quad k=2,1,0, \cdots
$$

Gravitons in highest weight states, normalized to extract residue of pole in Δ

Holographic Symmetry Algebra

- Use $G_{\Delta_{1}}^{+} G_{\Delta_{2}}^{+} \sim G_{\Delta_{1}+\Delta_{2}}^{+}$OPE to determine OPE for conformally soft gravitons

$$
H^{k}(z, \bar{z}) H^{\ell}(0,0) \sim-\frac{\kappa}{2} \frac{\bar{z}}{z} \sum_{m=0}^{1-k} \frac{1}{m!}\binom{2-k-\ell-m}{1-\ell} \bar{z}^{m} \bar{\partial}^{m} H^{k+\ell}(0,0)
$$

- Mode expand, compute commutator \& relabel

$$
\begin{gathered}
H^{k}(z, \bar{z})=\sum_{n=\frac{k-2}{2}}^{-\frac{k-2}{2}} \frac{H_{n}^{k}(z)}{\bar{z}^{n+\bar{h}}}, \quad[A, B](z) \equiv \oint_{z} \frac{d w}{2 \pi i} A(w) B(z), \quad w_{n}^{p}=\frac{1}{\kappa}(p-n-1)!(p+n-1)!H_{n}^{4-2 p} \\
{\left[w_{m}^{p}, w_{n}^{q}\right]=(m(q-1)-n(p-1)) w_{m+n}^{p+q-2}}
\end{gathered}
$$

$\mathrm{w}_{1+\infty}$ Symmetry Algebra

$$
\left[w_{m}^{p}, w_{n}^{q}\right]=(m(q-1)-n(p-1)) w_{m+n}^{p+q-2}
$$

- Here $p=1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$ \& $1-p \leq m \leq p-1$ ("wedge subalgebra")
- w_{m}^{2} generates a $\operatorname{SL}(2, \mathbb{R})$ action under which w_{n}^{q} transforms as nth mode of primary of weight q
- $w_{m}^{p \leq 2}$ form closed subalgebra
- $w_{m}^{5 / 2}$ generates infinite tower (corresponds to subsubleading soft graviton).

$\mathrm{w}_{1+\infty}$ Action on Massless Particles

- (How) does $w_{1+\infty}$ act on generic massless particles (i.e. not just soft gravitons)?
- Determine from current-matter OPE
- Use minimal coupling OPE $\left(G^{+} \mathcal{O} \sim \mathcal{O}\right)$ to determine:

$$
H^{k}(z, \bar{z}) \mathcal{O}_{h, \bar{h}}(0,0) \sim \frac{1}{z} \sum_{m=0}^{1-k} \lim _{\varepsilon \rightarrow 0} \varepsilon B(k+\varepsilon-1+m, 2 \bar{h}+1) \bar{z}^{m} \bar{\partial}^{m} \mathcal{O}_{h+\frac{k}{2}, \bar{h}+\frac{k}{2}}(0,0)
$$

- Mode expand, compute commutator \& relabel (or equivalently perform light transform)

$$
\left[\widehat{\mathrm{w}}_{n}^{q}, \mathcal{O}_{h, \bar{h}}(z, \bar{z})\right]=\frac{1}{2} \sum_{\ell=0}^{2 q-3}\binom{q+n-1}{\ell} \frac{(2 q-2-\ell) \Gamma(2 \bar{h}+1)}{\Gamma(2 \bar{h}+1-\ell)} \bar{z}^{q+n-1} \partial_{\bar{z}}^{2 q-3-\ell} \mathcal{O}_{h+2-q, \bar{h}+2-q}(z, \bar{z})
$$

$\mathrm{w}_{1+\infty}$ Action on Massless Particles

- Can show

$$
\left[\widehat{\mathrm{w}}_{m}^{p},\left[\widehat{\mathrm{w}}_{n}^{q}, \mathcal{O}_{h, \bar{h}}(z, \bar{z})\right]\right]-\left[\widehat{\mathrm{w}}_{n}^{q},\left[\widehat{\mathrm{w}}_{m}^{p}, \mathcal{O}_{h, \bar{h}}(z, \bar{z})\right]\right]=\left[\left[\widehat{\mathrm{w}}_{m}^{p}, \widehat{\mathrm{w}}_{n}^{q}\right], \mathcal{O}_{h, \bar{h}}(z, \bar{z})\right]
$$

where

$$
\left[\widehat{\mathrm{w}}_{m}^{p}, \widehat{\mathrm{w}}_{n}^{q}\right]=(m(q-1)-n(p-1)) \widehat{\mathrm{w}}_{m+n}^{p+q-2}
$$

\Rightarrow Massless particles transform in (non-trivial) representations of $\mathrm{w}_{1+\infty}$

Summary

\checkmark What is celestial holography?

$$
\text { Symmetry: } \mathrm{SO}(3,1) \cong \mathrm{SL}(2, \mathbb{C}) \quad \Rightarrow \quad \begin{gathered}
\text { Quantum gravity in 4D asymptotically flat } \\
\text { spacetimes is holographically dual to a 2D CFT }
\end{gathered}
$$

\checkmark What evidence supports this approach?

- Massless particles in highest weight states behave like local operators, admitting operator product expansions.

$$
\text { Poincaré Symmetry } \quad \Rightarrow \quad \text { Fixes leading OPE coefficients }
$$

\checkmark What have we learned?

> Leading OPE coefficients (in graviton OPE) $\quad \Rightarrow \quad \begin{gathered}\text { Algebra of soft symmetries } \\ \text { organizes into } w_{1+\infty}\end{gathered}$
$\mathrm{w}_{1+\infty}$ symmetry $\quad \Rightarrow \quad$ Additional constraints on OPE?

Thank you!

