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Motivation

In recent years, a number of surprising empirical properties have been observed in the
analytic structure of Feynman integrals

◦ The locations of branch cuts in large classes of Feynman integrals exhibit intriguing
connections to cluster algebras and related algebraic structures
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka (2012)] [Golden, Goncharov, Spradlin, Vergu, Volovich (2013)] · · ·

◦ Moreover, the sequential discontinuities of many Feynman integrals obey generalized versions
of the Steinmann relations

(also observed in the nonplanar sector!)

[Drummond, Foster, Gürdoğan (2017)] [Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou (2018)]
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[Abreu, Ita, Page, Tschernow (2021)]
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Constraints from Landau Analysis

Can we derive these types of properties of
Feynman integrals directly from Landau analysis?

We also bring to this analysis detailed knowledge of the types of iterated integrals that are
known to appear in Feynman integrals

◦ The first class of iterated integrals that naturally arise are multiple polylogarithms
(see also talks by Dixon, He, Henn, Schwartz, Wilhelm, Zoia)
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Multiple Polylogarithms

◦ Multiple polylogarithms are functions F that have the property that

dF =
∑
i

F sid log si

where the si are algebraic functions, and each F si is also a multiple polylogarithm

◦ It is useful to define the symbol of a multiple polylogarithm by upgrading this total
differential to a tensor product [Goncharov, Spradlin, Vergu, Volovich (2010)]

S(F ) =
∑
i

S(F si)⊗ si

Examples of such functions include log(z) and Lim(z):

Li1(z) = − log(1− z), Lim(z) =

∫ z

0

Lim−1(t)

t
dt

S
(
Lim(z)

)
= −(1− z)⊗ z ⊗ · · · ⊗ z
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Multiple Polylogarithms

◦ The symbol map can thus be used to transparently expose the analytic structure of
polylogarithmic Feynman integrals I(p):

first discontinuity second discontinuity

S
(
I(p)

)
=
∑︷ ︸︸ ︷∣∣∣a1(p)⊗︷ ︸︸ ︷∣∣∣a2(p)⊗

· · ·︷ ︸︸ ︷∣∣∣a3(p)⊗ · · · ⊗ ∣∣∣aw−2(p)︸ ︷︷ ︸
· · ·

⊗
∣∣∣aw−1(p)︸ ︷︷ ︸⊗

∣∣∣aw(p)︸ ︷︷ ︸
second derivative first derivative



Constraints from Landau Analysis

Two broad strategies for constraining the symbol of Feynman integrals:

◦ From the front — restrict what sequences of discontinuities are allowed in
Feynman integrals by studying where singularities can appear in these integrals
[Hannesdottir, AJM, Schwartz, Vergu (forthcoming)]

Hannesdottir’s talk

◦ From the back — restrict the derivatives of Feynman integrals by studying their
behavior when expanded near branch points [Hannesdottir, AJM, Schwartz, Vergu (2021) and (forthcoming)]

this talk
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Landau Analysis

◦ The locations where Feynman integrals can become singular and develop branch cuts are
described by solutions to the Landau Equations [Landau (1959)]

αe(q
2
e −m2

e) = 0
∑
e∈loop

αeq
µ
e = 0

◦ Near a branch points that is approached as some kinematic variable ϕ→ 0, the leading
non-analytic behavior of a Feynman integral is expected to take the form

I(p, ϕ→ 0) ∼ C(p)ϕγ logν ϕ + . . .



All-Mass Example

Consider the class of Feynman integrals with generic masses in D dimensions

◦ Near a branch point that corresponds to an `-loop Landau diagrams with E internal
propagators, these integrals are expected to behave as [Landau (1959)]

I(p, ϕ→ 0) ∼

{
C(p)ϕγ logϕ if γ ∈ Z, γ ≥ 0

C(p)ϕγ otherwise
γ =

`D − E − 1

2

For example, two-particle thresholds and pseudothresholds
are associated with the bubble Landau diagram

p p

q21 = m2
1

q22 = m2
2

α1q
µ
1 + α2q

µ
2 = 0

⇒ p2 = (m1 ±m2)
2

γ = (D − 3)/2
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All-Mass Example

◦ The branch cuts that develop near the two-particle thresholds of all-mass Feynman
integrals in different dimensions thus behave as

D = 3 ∼ logϕ D = 4 ∼ ϕ
1
2

D = 5 ∼ ϕ logϕ D = 6 ∼ ϕ
3
2

...
...

If we can predict the leading-order behavior of Feynman integrals near a given
branch point, what constraints does this put on the symbol of this integral?
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General Strategy

Study the order at which non-analytic
behavior appears when polylogarithms

are expanded around the branch
points in their symbol

Approximate the value of Feynman
integrals near their branch points

Compare these expansions
to put new constraints on

the positions of branch
points in the symbols of

Feynman integrals

lim
ϕ→0

(a1 ⊗ · · · ⊗ ϕ⊗ · · · ⊗ an) ∼ ϕp logq ϕ

I(ϕ→ 0) ∼ ϕγ logν ϕ



Logarithmic Singularities of Symbols

◦ We first study symbol terms in which a single letter becomes singular as ϕ→ 0:

a1(p)⊗ · · · ⊗ am−1(p)⊗ ϕ⊗ am+1(p)⊗ · · · ⊗ an(p)

⇓∫
0≤t1≤···≤tn≤1

σ∗
(
d log a1(p)

)
(t1) · · ·σ∗

(
d logϕ

)
(tm) · · ·σ∗

(
d log an(p)

)
(tn)

where σi(t) pramaterizes the integration contour in the space of external kinematics

◦ We can take this integration contour to be

σi(t) = (1− t)p•i + tpi

where p•i is an arbitrary integration base point

p

σ(0)

σ(1)
t
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Logarithmic Singularities of Symbols

◦ By changing the order we do the integrations, this iterated integral can be written as∫ 1

0

U(t)σ∗(d logϕ)(t)V (t)

where

U(t) =

∫ t

0

σ∗(d log a1)(t1) · · ·
∫ t

tm−2

σ∗(d log am−1)(tm−1)

t→1−−−→ U(1)

V (t) =

∫ 1

t

σ∗(d log am+1)(tm+1) · · ·
∫ 1

tn−1

σ∗(d log an)(tn)

t→1−−−→ 0

◦ If we choose the integration base point ϕ• = 1, we have σ(t) = (1− t) + tϕ and thus

σ∗(d logϕ)(t) =
ϕ− 1

(1− t) + tϕ
dt
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Logarithmic Singularities of Symbols

◦ To find the leading non-analytic behavior of this integral, we expand U(t) and V (t)
around t→ 1:∫ 1

0

U(t)σ∗(d logϕ)(t)V (t) ∼ U(1)

∫ 1

0

dt
ϕ− 1

(1− t) + tϕ

leading-order contribution to V (t→1)︷ ︸︸ ︷
(t− 1)n−m

(n−m)!

(
dn−mV

dtn−m
(1)

)
+ . . .

◦ Evaluating this integral and dropping all rational terms, we find

U(1)

(n−m)!

(
dn−mV

dtn−m
(1)

)
ϕn−m logϕ + . . .

Non-analytic contributions are power-suppressed by the number of letters after ϕ:

a1 ⊗ · · · ⊗ am−1 ⊗ ϕ⊗ am+1 ⊗ · · · ⊗ an︸ ︷︷ ︸
n−m



Logarithmic Singularities of Symbols

◦ To find the leading non-analytic behavior of this integral, we expand U(t) and V (t)
around t→ 1:∫ 1

0

U(t)σ∗(d logϕ)(t)V (t) ∼ U(1)

∫ 1

0

dt
ϕ− 1

(1− t) + tϕ

leading-order contribution to V (t→1)︷ ︸︸ ︷
(t− 1)n−m

(n−m)!

(
dn−mV

dtn−m
(1)

)
+ . . .

◦ Evaluating this integral and dropping all rational terms, we find

U(1)

(n−m)!

(
dn−mV

dtn−m
(1)

)
ϕn−m logϕ + . . .

Non-analytic contributions are power-suppressed by the number of letters after ϕ:

a1 ⊗ · · · ⊗ am−1 ⊗ ϕ⊗ am+1 ⊗ · · · ⊗ an︸ ︷︷ ︸
n−m



Logarithmic Singularities of Symbols

◦ To find the leading non-analytic behavior of this integral, we expand U(t) and V (t)
around t→ 1:∫ 1

0

U(t)σ∗(d logϕ)(t)V (t) ∼ U(1)

∫ 1

0

dt
ϕ− 1

(1− t) + tϕ

leading-order contribution to V (t→1)︷ ︸︸ ︷
(t− 1)n−m

(n−m)!

(
dn−mV

dtn−m
(1)

)
+ . . .

◦ Evaluating this integral and dropping all rational terms, we find

U(1)

(n−m)!

(
dn−mV

dtn−m
(1)

)
ϕn−m logϕ + . . .

Non-analytic contributions are power-suppressed by the number of letters after ϕ:

a1 ⊗ · · · ⊗ am−1 ⊗ ϕ⊗ am+1 ⊗ · · · ⊗ an︸ ︷︷ ︸
n−m



New Constraints on Symbol Letters

We conclude that any polylogarithmic integral with leading behavior

I(p, ϕ→ 0) ∼ ϕγ logϕ

(i) cannot involve symbol letters that vanish as ϕ→ 0 in the last γ entries:

S
(
I(p, ϕ)

)
=
∑

a1 ⊗ · · · ⊗ an−γ ⊗ an−γ+1 ⊗ · · · ⊗ an︸ ︷︷ ︸
no logarithmic branch

points at ϕ = 0

(ii) must have at least one term in which a logarithmic branch point at ϕ = 0 appears in the
n− γ entry (and nowhere else):

S
(
I(p, ϕ)

)
= a1 ⊗ · · · ⊗ an−γ−1 ⊗ ϕ⊗ an−γ+1 ⊗ · · · ⊗ an + . . .

[Hannesdottir, AJM, Schwartz, Vergu (2021)]



All-Mass Example

We recall that the logarithmic branch cuts in odd-dimensional all-mass Feynman integrals

were suppressed by ϕ
D−3
2 near two-particle thresholds:

D = 3 ∼ logϕ

⇒ ϕ appears in last entry
of the symbol

D = 5 ∼ ϕ logϕ

⇒ ϕ appears in second-to-last
entry of the symbol

...

...

◦ The one-loop n-gon symbols in n dimensions are known at one loop for all n
[Schläfli (1860)] [Aomoto (1977)] [Davydychev, Delbourgo (1998)]

◦ We can thus check that our analysis correctly predicts the position of all logarithmic
branch points that appear in these one-loop symbols
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Algebraic Singularities of Symbols

We also saw that all-mass integrals can develop algebraic branch points near
two-particle thresholds; can we also constrain these algebraic branch points?

A similar analysis allows us to bound where algebraic branch points at
√
ϕ can appear

a1(p)⊗ · · · ⊗ am−1(p)⊗
(
b(p) +

√
ϕ

b(p)−√ϕ

)
⊗ am+1(p)⊗ · · · ⊗ an(p)

◦ In this case, the total differential of the singular letter is given by

d log

(
b(p) +

√
ϕ

b(p)−√ϕ

)
=

b(p)

b(p)2 − ϕ
dϕ
√
ϕ
−

2
√
ϕ

b(p)2 − ϕ
db(p)

ϕ→0−−−→ dt

b(p)
√
ϕ

◦ Expanding U(t) and V (t) around t→ 1 and using σ(t) = (1− t) + tϕ, one finds∫ 1

0

dtU(t)
1

b(p)
√
(1− t) + tϕ

V (t) ∼ ϕm−n+
1
2
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New Constraints on Symbol Letters

Similar to before, we conclude that any polylogarithmic integral with leading behavior

I(p, ϕ→ 0) ∼ ϕγ , γ ∈ Z+ 1
2

(i) cannot involve symbol letters that depend on
√
ϕ in the last γ − 1

2 entries:

S
(
I(p, ϕ)

)
=
∑

a1 ⊗ · · · ⊗ an−γ+ 1
2
⊗ an−γ+ 3

2
⊗ · · · ⊗ an︸ ︷︷ ︸

no algebraic branch
points at ϕ = 0

(ii) must have at least one term in which
√
ϕ appears in the n− γ + 1

2 entry:

S
(
I(p, ϕ)

)
= a1 ⊗ · · · ⊗ an−γ− 1

2
⊗
(
b+
√
ϕ

b−√ϕ

)
⊗ an−γ+ 3

2
⊗ · · · ⊗ an + . . .

◦ These predictions are exactly borne out in the one-loop n-gons
[Hannesdottir, AJM, Schwartz, Vergu (forthcoming)]



Singularities of Symbols

More generally, we can analyze symbol terms in which logarithmic or algebraic branch points
at ϕ→ 0 occur in repeated letters:

a1 ⊗ a2 ⊗ · · · ⊗ am ⊗ · · · ⊗ an−1 ⊗ an

Location of Branch Points Leading Non-Analytic Behavior

am = ϕ ∼ ϕn−m logϕ

am−r+1 = · · · = am = ϕ ∼ ϕn−m logr ϕ

am =
a+
√
ϕ

a−√ϕ ∼ ϕn−m+ 1
2

am−r+1 = · · · = am =
a+
√
ϕ

a−√ϕ ∼ ϕn−m+ 1
2

◦ This provides a dictionary between the leading behavior of Feynman integrals near their
branch points and where these branch points can appear in the symbol



Beyond All-Mass Integrals

While the behavior of multiple polylogarithms near branch points is under good control,
predicting the leading behavior of general Feynman integrals near branch points can be subtle

Two general strategies that can be pursued in more general examples:

◦ Expand around kinematic branch points in dimensional regularization, keeping
dependence on ε exact [Polkinghorne, Screaton (1960)]

◦ Perhaps the tropical analysis recently used to understand the leading behavior of UV/IR
divergences can be extended to kinematic singularities [Arkani-Hamed, Hillman, Mizera (2022)]

(see also Mizera’s talk)

Note, however, that the results already presented go beyond all-mass integrals, and constrain
any Feynman integral that can be contracted into an all-mass Landau diagram
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Conclusions and Future Directions

In this talk, we presented a new method for deriving constraints on where logarithmic and
algebraic branch points can appear in the symbols of polylogarithmic Feynman integrals

Future directions:

◦ Develop general methods for estimating the leading non-analytic behavior of Feynman
integrals near their branch points

◦ Generalize the analysis of singularities in the symbol to elliptic polylogarithms

◦ Combine these new constraints with constraints on the sequential discontinuities of
Feynman integrals to bootstrap Feynman integrals directly

Thanks!
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All-Mass Example

As a corollary to our new bounds, we can also put an upper bound on the transcendental
weight of all-mass Feynman integrals:

◦ The number of letters that can appear after a given logarithmic branch point is γ

◦ For fixed D and `, we can maximize γ by making E as small as possible while still
requiring γ ∈ Z and that E > 0

γ =
`D − E − 1

2
≤
⌊
`D

2

⌋
− 1

◦ It follows that the number of symbol letters that can appear in each term is bounded
from above by

⌊
`D
2

⌋
This matches the expected maximum transcendental weight


