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Motivation

Consider scattering amplitudes in a curved background
(asymp. flat), an exact, non-perturbative solution
e.g.,

• non-trivial gauge field configuration (Fµν 6= 0)

• curved space-time (Rµνρσ 6= 0)

Many reasons to be interested in this:

• Playground where pert./non-pert. effects meet

• Myriad physical applications: lasers, heavy ions, grav.
waves, black holes,...

• Proving ground for robustness of any amplitudes method
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The bad news

‘Textbook’ approach: background field formalism

• Background field Feynman rules a nightmare

• Functional degrees of freedom in the background

• No momentum conservation, tree-amplitudes not rational
functions

• No Huygens’ principle ⇒ tails [Friedlander, Harte,

TA-Casali-Mason-Nekovar]

• Memory effect [Christodoulou, Bieri-Garfinkle-Yau,...]

Tree-level frontier with textbook approach: 4-points
(strong-field QED, plane wave background)
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Seems like a hopeless task...

...but:

1 we have many non-textbook approaches (the whole point
of this conference!)

2 even low-mult./loops in curved backgrounds encode lots
of information
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Non-textbook approaches

Not well-studied for curved backgrounds

• Many amplitudes methods break (momentum space
unitarity,...)

But others don’t (spinor helicity, ambi/twistor theory) or
might not (double copy, worldsheet-based unitarity)

Smoking gun: all-multiplicity gluon/graviton scattering in
self-dual gauge fields/space-times [TA-Mason-Sharma]
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Today

Explore what 2-point amplitudes in curved backgrounds can
teach us about scattering in a flat background

1 Covariant approach to relativistic eikonal regime →
interesting new formulae

2 Use this to answer questions like: ‘What is the massless
limit of Kerr?’



Eikonal exponentiation
Small-angle scattering can be remarkably simple:
• 2→ 2 scattering with s � −t
• Dominant ladder diagrams re-sum to give eikonal

amplitude

Meik ∼
∫

d2x⊥ e−i q⊥·x
⊥
(
eiχ1(x⊥) − 1

)
∼ A4(q) eiϕ

where q⊥ is (small) exchanged momentum, eikonal phase
χ1 is inv. Fourier transform of tree-level exchange A4



Properties

When eikonal exponentiation holds...

• χ1 ∼ sJ−1 ⇒ highest spin exchange dominates [’t Hooft]

• Manifest classicality: Meik ∼ A4(q) eiϕ and Meik ∼ ~−1

• ϕ carries info about classical bound states [’t Hooft, Damour,...]

• integrals can often be evaluated; e.g., gravitational
scattering of mass m scalars [’t Hooft, Kabat-Ortiz]

iMeik(q) =
2π

µ2

√
s(s − 4m2)

Γ(1− iα(s))

Γ(iα(s))

(
4µ2

q2
⊥

)1−iα(s)

α(s) := G
(s − 2m2)2 − 2m4√

s(s − 4m2)



But...
Tricky to determine when eikonal exp. actually holds

Need to establish that ladders dominate to all orders

Counterexample → φ3 scalar theory [Tiktopoulos-Treiman, Eichten-Jackiw]

Requires ladders form geometric series
?−→ grav. scattering of

massive spinning particles

s → ∞

s = 0

[Guevara-Ochirov-Vines, Arkani-Hamed-Huang-O’Connell, Haddad, Chiodaroli-Johansson,...]
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Odd to need so much info (infinite no. of diagrams, non-trivial
resummation) to get simple results...

Is there a better way?



Basic idea

At small momentum transfer, each particle looks like a fixed,
classical object to the other

2→ 2 eikonal scattering ↔ 1→ 1 scattering in a curved
background sourced by the other particle

• Old idea: grav./electromag. scattering of massless scalars
[’t Hooft, Jackiw-Kabat-Ortiz]

• Other ways to understand classicality of eikonal [Cristofoli-et

al., TA-Gonzo-Kol,...]
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Precise proposal

Consider 2→ 2 gravitational scattering with s � −t
incoming momenta pµ,Pµ, outgoing momenta p′µ,P

′
µ

If eikonal exponentiation holds, then

1 Let particle Pµ be stationary source for Einstein equations

2 Compute 1→ 1 scattering amplitude M2 of particle pµ in
this space-time (at large impact parameter, linear in G )

3 Eikonal amplitude given by:

M2 =
δ̂(p′0 − p0)

4M
Meik



Need to clarify what we mean by 1→ 1 scattering amplitude
in curved space-time...

...does not exist generically!
[Hawking, Gibbons, Woodhouse, Candelas,...]



Scattering in curved space-time

2-point amplitudes = quadratic action evaluated on-shell →
boundary term

M2 =

∫
∂X

d3y
√
|h| φ̄in n

µ∇µ φout

• curved space-time (X , g)

• boundary ∂X w/ coords y i , induced metric h, normal
vector nµ

• φin incoming free field (Minkowski space)

• φout outgoing field in curved space-time



Two cases to consider:

1 X admits S-matrix ⇒ evaluate M2 on all boundaries
(finite + infinite)

2 X does not admit S-matrix ⇒ evaluate M2 only on
linearised ‘large-distance’ boundaries (spatial or null
infinity)

Ex: Schwarzschild black hole, event horizon has particle
creation ⇒ no S-matrix

I+

i0

I−

r
=
2G
M

r = 0
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Stationary backgrounds

Consider any large-distance, weakly curved stationary
space-time ⇒ linearised metric

ds2 = ηµνdx
µ dxν + hµν(x) dxµ dxν

Wave equation becomes(
2 +

m2

~2

)
φ = hµν ∂µ∂νφ



Strategy

1 Make WKB ansatz for wave in z-direction

φWKB = eiχ(x)/~ , χ(x) =
∞∑
n=0

χn(x) , χn(x) ∼ G n

subject to χ0 = −p · x , χ1(x⊥, z = −∞) = 0

2 Solve for χ1(x⊥, z) in small angle approx.

3 Plug into M2 at r →∞ boundary, find:

M2 = − i pz δ̂(p′0 − p0)

~2

∫
d2x⊥e

−iq̄⊥·x⊥
(
eiχ1(x⊥)/~ − 1

)
for χ1(x⊥) := χ1(x⊥, z →∞)



Upshot

1→ 1 scattering on any stationary space-time structurally
equivalent to eikonal amplitude:

M2 =
δ̂(p′0 − p0)

4M
Meik

for M ADM mass of background, Pµ = M uµ momentum of
background source

Conjecture: If space-time has a source w/ ‘particle-like’
interpretation, this is a true equivalence.
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Evidence

Passes the easy tests:

• Easy to show background diffeo invariance

• Shockwave background ↔ massless scalar scattering
(established long ago [’t Hooft] )

• Schwarzschild background ↔ massive scalar scattering

• Also detects cases that fail: scattering in pure φ3 theory –
φ ∼ 1

r
not a solution with correct source



Scattering with spin

Scattering of mass m scalar with mass M infinite spin particle

Unclear how/if eikonal exponentiation occurs here
(cf., emergence from classical limit [Cristofoli-et al.] )

Our prescription ⇒ 1→ 1 scattering of mass m scalar in Kerr
of mass M

Use harmonic coords, linear in G but all orders in spin [Vines]



Eikonal with spin

Gives exponentiation of GOV amplitude [Guevara-Ochirov-Vines,

Chung-Huang-Kim-Lee, Arkani-Hamed-Huang-O’Connell]

Eikonal phase χ1 = −2~
∑
±

α±(s) log(µ |x⊥ ∓ a⊥|)

with α±(s) :=
G mM (1± v)2 γ(v)

2~ v

Eikonal amplitude surprisingly complicated:

factorized/KLT-like form involving products of confluent
hypergeometric and Gamma functions
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Upshot

The scattering on Kerr framework:

• suggests eikonal exponentiation holds with infinite spin
multipole moments

• provides new, explicit expression for Meik

• surprising that amplitude has KLT-like structure (cf.,
[Verlinde-Verlinde] )

• poles pick up complex part → instabilities in classical
bound states? (cf., [Baumann-Chia-Stout-ter Haar] )
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Surprising application

What is the massless (ultraboosted) limit of the Kerr metric?

(sometimes called an impulsive ‘gyraton’ metric)

Lack of clarity in literature, many contradictory claims

[Ferrari-Pendenza, Balasin-Nachbagauer, Griffiths-Podolsky, Barrabes-Hogan,

Frolov-Israel-Zelnikov,...]



More precisely...

Is there an interesting (i.e., with spin effects) massless limit of
Kerr in the class

ds2 = ds2
M + G δ(x−) f (x⊥) (dx−)2?

Spoiler alert: No.
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Our prescription immediately implies

f (x⊥) = −χ1(x⊥)

p+

This gives a two way street:

1 Pick a metric, read off a 4-point amplitude from eikonal
phase, see if it makes sense

2 Pick a 4-point amplitude, compute associated eikonal
phase, look at associated metric



Results

Ultraboosting Kerr metric directly:

• along direction of spin → spin effects vanish

• perp. to spin → diffeo. equiv. to (non-spinning)
shockwave

B captures (naive) massless limit of GOV

Ferrari-Pendenza gyraton:

• incorrect stress tensor (null dust)
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Most interesting case is Balasin-Nachbagauer gyraton

obtained by ultraboosting source of Kerr [Israel]

f (x⊥) = 8 log(µ r)

− 4 Θ(a − r)

[
2 log

(
r

a +
√
a2 − r 2

)
+

√
a2 − r 2

a

]

At large impact parameter b � a ∼ RS , no spin effects

but generically, incredibly simple 4-point amplitude

A4(q) = G 2 s2

q2
⊥

(
sin(a · q)

a · q
+ cos(a · q)

)
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Lots to think about!

• Proof for this prescription

• Other backgrounds/eikonal amplitudes, beyond leading
eikonal

• Exploring structure of Kerr/spinning eikonal: physics of
poles, KLT-like structure...

• Extracting physical observables → all-order in G results
[TA-Cristofoli-Ilderton]

• Higher-multiplicity → (part of) eikonal + emission
[Lodone-Rychkov, Gruzinov-Veneziano, Ciafaloni-Colferai-Coradeschi-Veneziano, Di

Vecchia-Heissenberg-Russo-Veneziano, TA-Ilderton-MacLeod,...]

• Applications to celestial holography [de Gioia-Raclariu,

Gonzo-McLoughlin-Puhm]


