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Theorists’ Goals

• Enhance detection and analysis of signals from current 
and especially future gravitational-wave observatories

• Compute waveforms for gravitational waves from binary 
inspirals (black holes, neutron stars, white dwarves)

Bound states

Not today

• Waveforms in unbound scattering
– Also possibly of observational interest at the next generation of 

observatories

– Black-hole clusters

– Scattering events suck energy out of binary systems & accelerate 
decay

Today



Why Quantum Scattering Amplitudes?

• Everyone loves amplitudes

• At least, everyone here

• Allows us to focus on gauge-invariant quantities

• Exploit the double copy

• Allows us to focus on computing just physical observables
– Just at infinity

– No need to compute in the interior



A Flourishing of  New Ideas…
…that I lack time to discuss
• EFT Matching  Bern’s talk

Cheung, Rothstein, Solon; Bern, Kosmopoulos, Luna, Roiban, Teng; 
Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng

• Eikonal Phase
Amati, Ciafaloni, Veneziano; Di Vecchia, Heissenberg, Russo, Veneziano

• Amplitude analysis
Bjerrum-Bohr, Damgaard, Plante, Vanhove

• Heavy mass field theory  Travaglini’s talk

Brandhuber, Chen, Travaglini, Wen; Damgaard, Haddad, Helset

• World line formalisms
Goldberger, Rothstein;  Levi, Steinhoff; Dlapa, Kälin, Liu, Porto; 

Jakobson, Mogull, Plefka, Steinhoff; Shen; Edison, Levi

• Spin Exponentiation
Arkani-Hamed, Huang, O’Connell; Guevara, Ochirov, Vines; Chen, Huang, Kim, Lee; 

Bautista, Guevara, Kavanagh

• EFT post-Newtonian
Foffa, Mastrolia, Sturani, Sturm; Blümlein, Maier, Marquard, Schäfer



Observables-Based Formalism
DAK, Maybee, O’Connell; 

Herrmann, Parra-Martinez, Ruf, Zeng; 

Manohar, Ridgway, Shen   Shen’s talk
de la Cruz, Luna, Scheopner

• Pick well-defined observables in the quantum theory

that are also relevant classically

• Express them in terms of scattering amplitudes in the 
quantum theory
– Amplitudes are our friends

– But they are not directly observable

• Understand how to take the classical limit efficiently



Set-up

• Scatter two ‘things’

• For massive featureless point particles, start with 
massive scalars



Observables

• Change in momentum (‘impulse’) ⟨Δ𝑝⟩ of a scattered 
particle

• Radiated momentum ⟨𝐾⟩

• Waveform

• Plain perturbative expansion, just in 𝐺: relativistic

• Conservative & ‘dissipative’ (radiation-reaction)
– Potentials focus on the first

– Can do both together



Wave Packets

• Point particles: localized positions and momenta

• Wavefunction 𝜙 𝑝

• Initial state: integral over on-shell phase space

𝜓 in = ∫ መ𝑑4𝑝1 መ𝑑
4𝑝2 መ𝛿(+) 𝑝1

2 −𝑚1
2 መ𝛿(+) 𝑝2

2 −𝑚2
2 𝜙 𝑝1 𝜙 𝑝2

× 𝑒𝑖𝑏⋅𝑝1/ℏ 𝑝1𝑝2 in

= ∫ 𝑑Φ 𝑝1 𝑑Φ 𝑝2 𝜙 𝑝1 𝜙 𝑝2 𝑒𝑖𝑏⋅𝑝1/ℏ 𝑝1𝑝2 in

Notation tidies up 2𝜋s

Simple example: 𝜙 𝑝 = exp(𝑝 ⋅
𝑢

𝑚𝜉
)



Impulse

• All-orders master formula

Δ𝑝1
𝜇

= 𝑖 𝜓 ℙ1
𝜇
, 𝑇 𝜓 + 𝜓 𝑇† ℙ1

𝜇
, 𝑇 𝜓

= 𝐼(1)
𝜇

+ 𝐼(2)
𝜇

=      ‘virtual’        +               ‘cut’

= 𝒪 𝑔2 + 𝒪 𝑔4



Classical Physics
• Classical limit requires ℏ → 0: restore ℏ via dimensional 

analysis (keep everything relativistic, 𝑐 = 1)

𝑀 ≠ 𝐿 −1

[|𝑝⟩] = [𝑀]−1

[Ampln]= 𝑀 4−𝑛

• Two sources of ℏ

– Couplings: 𝑒 → 𝑒/ ℏ; 𝜅 → 𝜅/ ℏ

– Messenger wavenumbers: ഥ𝒑 = 𝒑/ℏ



Evaluation

• Take observable

• Substitute initial wavefunction

• Make ℏ explicit

• Evaluate T matrix elements in terms of on-shell amplitudes

• Turn the crank
– Laurent-expand in ℏ where needed

– In physical observables, singular terms in ℏ will cancel

– Wavefunctions will collapse, 𝑝 → 𝑚 𝑢

– Integrate over phase space



Classical Limit, part 2

• Three scales
– ℓ𝑐: Compton wavelength

– ℓ𝑤: wavefunction spread

– 𝑏: impact parameter

• Particles localized: ℓ𝑐 ≪ ℓ𝑤
• Well-separated wave packets: ℓ𝑤 ≪ 𝑏

More careful analysis confirms this ‘Goldilocks’ condition
ℓ𝑐 ≪ ℓ𝑤 ≪ 𝑏

𝑏



Massless Scatterers

• What about massless particles, like photons or gravitons?

• Compton wavelength is infinite: can’t localize them

• But plane waves are still not appropriate

• Solution is to use coherent states



Coherent States

• Introduce the coherent-state operator

Creates a state of indefinite messenger number |𝛼𝜂⟩

• Eigenstate of creation operator
Waveshape



Connection to Classical Field
• Look at the electromagnetic field operator

• Compute its expectation in the state |𝛼+⟩

• So long as we set ത𝛼 ത𝑘 = ℏ3/2𝛼(𝑘)

• Corresponds to scattering classical wave

Fourier coefficients



Occupation Number

• Number of photons

• Large as required when ℏ → 0 so long as ത𝛼 is not 
parametrically small

• Waveshape ത𝛼(ത𝑘) chosen to give form of classical wave



Light Deflection

• Initial state for massive–massless scattering (point particle–
classical wave)

• Compute impulse

• At lowest order, need just the first term



Evaluation

• Matrix elements of coherent states are not of definite 
order in perturbation theory

• Would ordinarily introduce complete sets of states of 
definite particle number on each side of 𝑇

• Sum is complicated because we need to sum over 
disconnected pieces for most messengers

• Instead introduce representation (Weinberg) of 𝑇 matrix 
in terms of creation and annihilation operators



Evaluation

• Required matrix element is then

• Gravitational scattering of photon off neutral massive scalar

• Within classical regime, choose geometric optics with 
collimated beam

• Reproduce well-known value

𝜃 =
4 𝐺𝑁𝑚

|𝒃|



Point-Like Observables

• Local radiation observable

• Waveform is leading large-distance behavior

Scattering region

Radiation propagates 
in ෝ𝒏 direction



Waveforms

• Measure electromagnetic field in massive–massive scattering

• Rewrite it in terms of the incoming state

• Fits into our general form with current

• In spinorial form, as a Newman–Penrose scalar



Example: LO EM Waveform

• Rewrite 𝑆 matrix

• At LO, only the first term contributes

• The matrix element is a five-point amplitude



EM Waveform

• We find the same radiation kernel as in the total radiated 
momentum

• The usual classical limit + long-distance expansion gives

• Or directly for the spectral Newman–Penrose scalar



• Building blocks are Bessel functions in frequency,

• Yield waveforms Newman–Penrose scalars



Summary

• Observables-based formalism for computing classical 
physics via scattering amplitudes
– Observables valid in both quantum and classical theories

– Simple limit

– ℏs from dimensional analysis

– Momenta for massive particles, wavenumbers for massless

• Classical waves correspond to coherent states of 
massless particles

• Waveform for radiation is the five-point amplitude
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