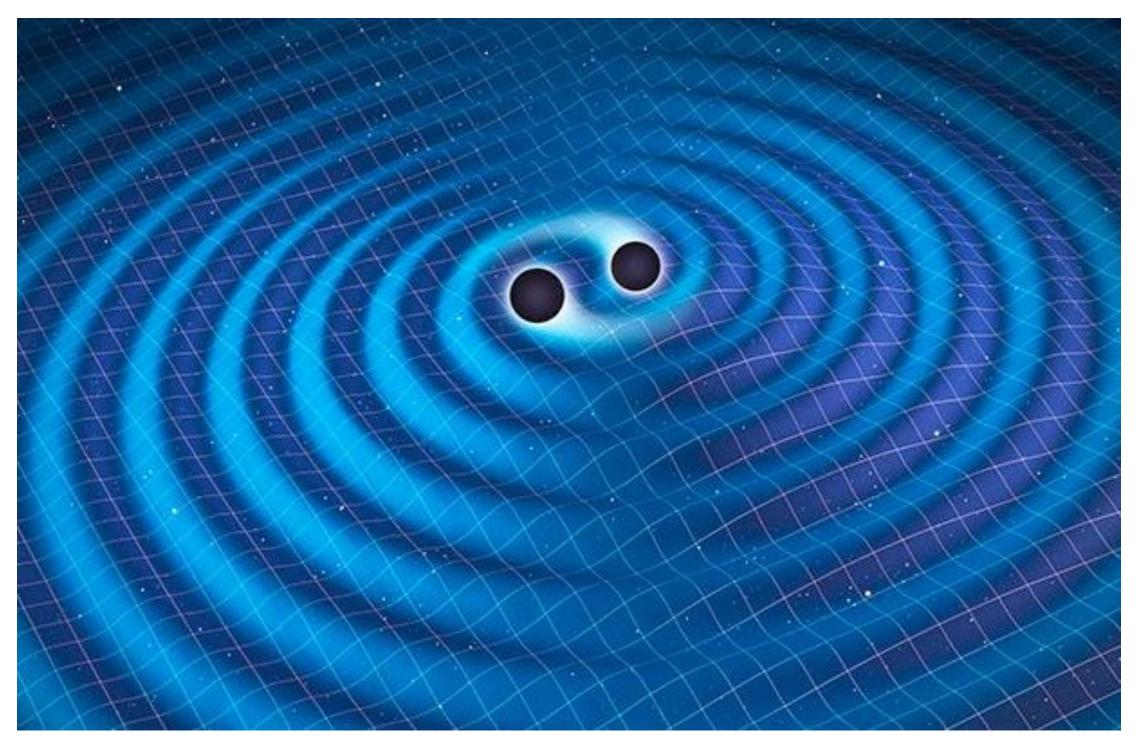
Amplitudes, Angular Momentum, and the Binary Inspiral Problem

Chia-Hsien Shen 沈家賢 (UC San Diego) 2203.04283 with Manohar and Ridgway

"Can we solve the full binary inspiral problem?"



[PC: BBC Science focus]

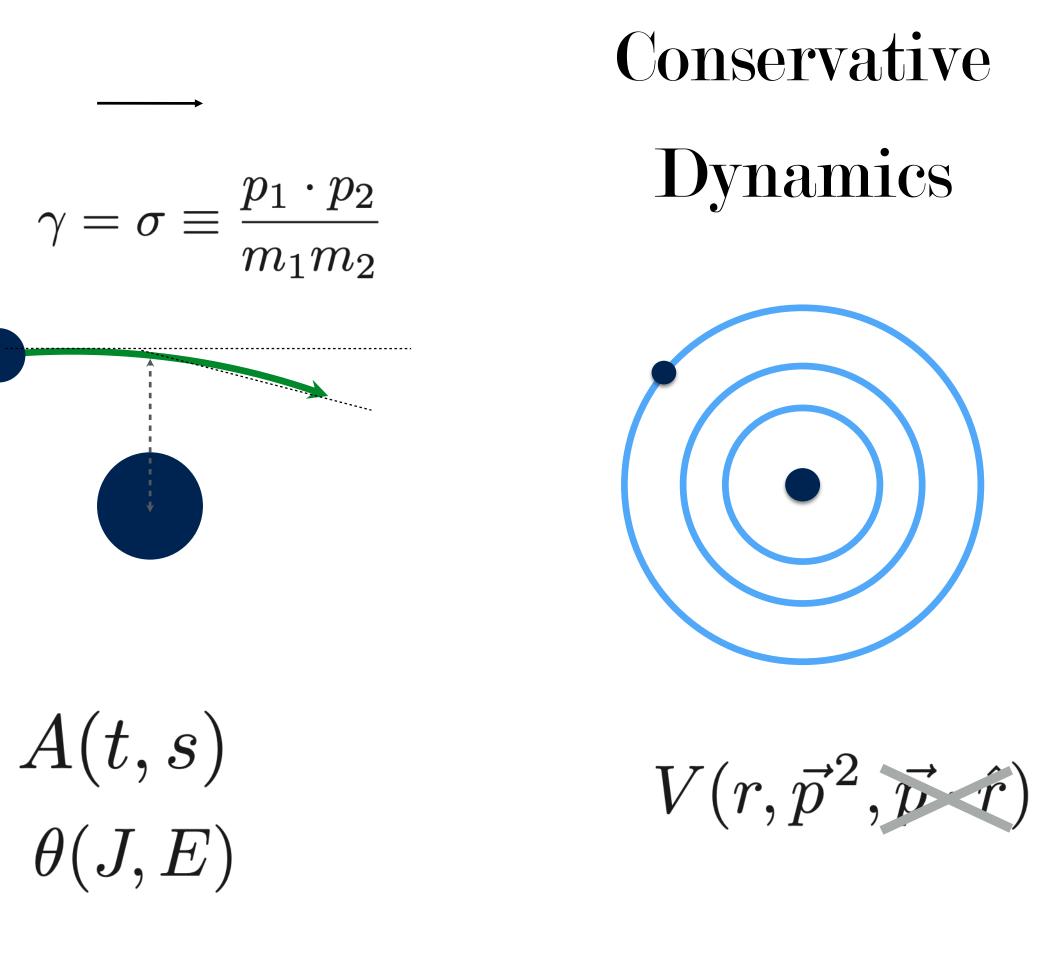
[Buonanno, Damour] [Damour] [Neill, Rothstein] [Cheung, Rothstein, Solon]... See Snowmass white paper [Buonanno, Khalil, O'Connell, Roiban, Solon, 2204.05194] and talks by Bern, Buonanno, Jones, Levi, Travaglini

Symmetry

Lorentz invariance

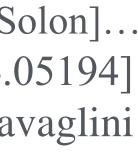
Scattering Amplitudes

Generalized unitarity [Bern, Dixon, Dunbar, Kosower]... GR=YM² [Kawai, Lewellen, Tye][Bern, Carrasco, Johansson]...



Effective Field Theory

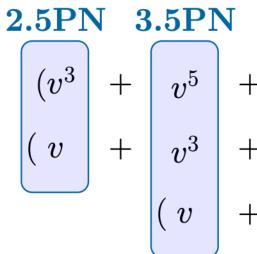
[Goldberger, Rothstein '04]



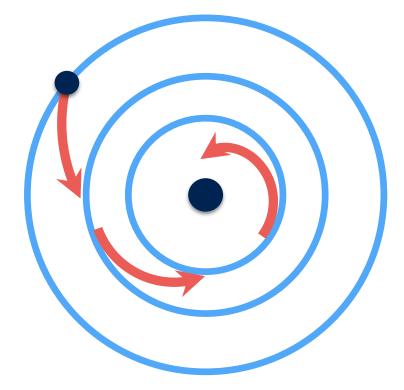
See Snowmass white paper [Buonanno, Khalil, O'Connell, Roiban, Solon, 2204.05194] and talks by Kosower, Levi, Mogull

Symmetry

State of the art: (partial) 4.5PN



Dissipative Dynamics



4.5PN
+
$$v^7$$
 + v^9 + ...) G^2
+ v^5 + v^7 + ...) G^3
+ v^3 + v^5 + ...) G^4

$$F_{\rm RR}(r,\vec{p}^2,\vec{p}\cdot\hat{r})$$

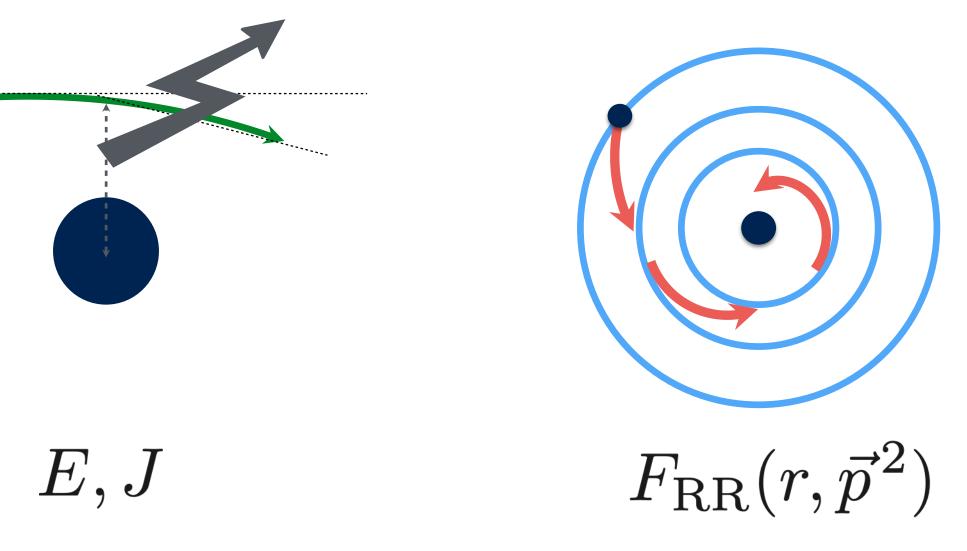
[Burke, Throne '69]

Symmetry

Poincare invariance

Pioneering idea: [Iyer, Will] similar idea in B2B [Cho, Kalin, Porto]

Dissipative Dynamics



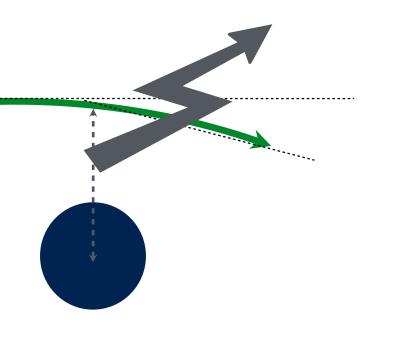
[Manohar, Ridgway, CHS, 2203.04283]

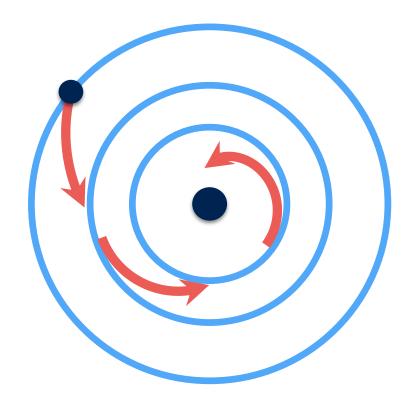
Symmetry

Poincare invariance

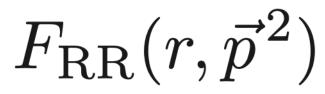
[Herrmann, Parra-Martinez, Ruf, Zeng] [This talk]

Dissipative Dynamics

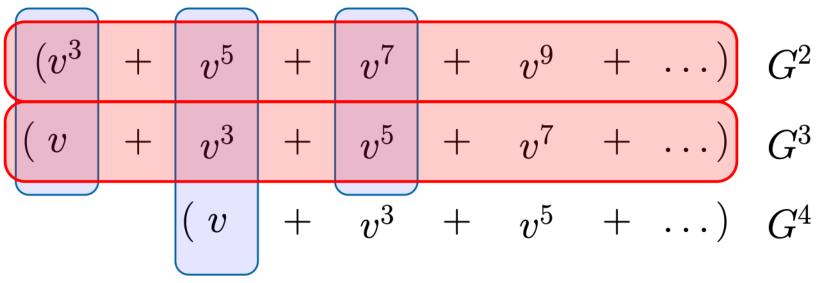




E, J



2.5PN 3.5PN 4.5PN



*We do not intend to resolve the BMS subtlety here

• Textbook formula for angular momentum

$$J^{i} = \frac{c^{2}}{32\pi G} \int d^{3}x \left[-\epsilon^{ikl} \dot{h}_{ab}^{\mathrm{TT}} x \right]$$

Why not covariant?

How to see gauge invariance?

[Peters]

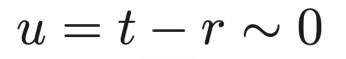
 $x^k \partial^l h_{ab}^{\mathrm{TT}} + 2\epsilon^{ikl} h_{ak}^{\mathrm{TT}} \dot{h}_{al}^{\mathrm{TT}} \Big] \; .$

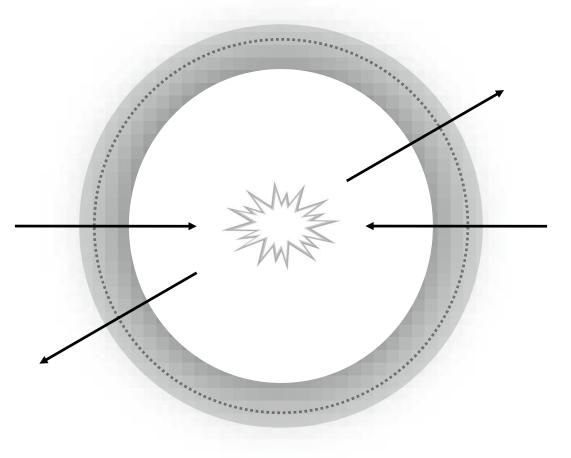
(2.51)

• Consider the final state of scattering. The radiated linear and angular momentum are

$$P^{\mu} = \int \mathrm{d}^{3}x \, T^{\mu 0}$$
$$J^{\mu \nu} = \int \mathrm{d}^{3}x \, \underline{x}^{[\mu} T^{\nu]0}$$

Sources — Fields —





• Need to include the $1/r^2$ of the field for angular momentum

$$\rightarrow T^{\mu\nu} \longrightarrow \begin{array}{c} \text{linear/angular} \\ \text{momentum} \end{array}$$

Sources

- EM: currents \mathcal{J}^{μ}
 - 3 degrees of freedom under conservation $k_{\nu} \mathcal{J}^{\nu}(k) = 0$ $\partial_{\mu} \mathcal{J}^{\mu}(x) = 0$
 - "on-shell" part can be projected to transverse mode $\mathcal{J}^\nu(k)\to \mathcal{J}^\nu(k)+\alpha k^\nu$
- Gravity: stress-energy pseudo
 - **6 degrees** of freedom under conservation $k_{\mu} \mathcal{T}^{\mu\nu}(k) = 0$ $\partial_{\mu} \mathcal{T}^{\mu\nu}(x) = 0$
 - "on-shell" part can be projected to traceless and transverse mode $\mathcal{T}^{\mu\nu}(k) \to \mathcal{T}^{\mu\nu}(k) + k^{\mu}\epsilon^{\nu}(k) + k^{\nu}\epsilon^{\mu}(k)$

otensor
$$\mathcal{T}^{\mu\nu}$$

Fields

- $\Box A_{\mu} = 4\pi J_{\mu}$ • Solved by fixing a gauge, e.g., under Lorentz gauge
- No ambiguity after gauge fixing, even for static sources
- Position space:

$$A^{\mu}(x) = \int d\omega e^{-i\omega u} \left(\frac{1}{r}\mathcal{J}^{\mu}(k=\omega(1,\hat{r})) + \frac{1}{r^2}\mathcal{O}(\partial_k J)\right)$$

Needed for angular momentum

residual gauge redundancy \rightarrow 2 degrees of freedom \rightarrow amplitudes!

No gauge redundancy $\rightarrow \geq 2$ degrees of freedom

$$\vec{E} = \frac{Q\hat{r}}{r^2}$$

Fields

- Solved by fixing a gauge, e.g., under Lorentz gauge $\Box A_{\mu} = 4\pi J_{\mu}$
- No ambiguity after gauge fixing, even for static sources
- Momentum space: $k^2 = 0$

$$A_{\mu}(x) = \int \underbrace{\widetilde{dk}} \left(\mathcal{J}_{\mu}(k) e^{-ik \cdot x} + \text{c.c.} \right)$$

Lorentz-invariant phase space sources (current or stress-energy pseudotensor)

Stress-energy Tensor

• EM: gauge-invariant

 $T^{\mu\nu} = -F^{\mu}_{\rho}I$

• Gravity: *not* gauge invariant

$$T_{\mu\nu} = -\frac{1}{8\pi}$$

• But global charges are gauge invariant

$$F^{\nu\rho} + \eta^{\mu\nu} \frac{1}{4} F^{\rho\sigma} F_{\rho\sigma}$$

 $\frac{1}{\tau G} \left(R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right)$

Radiated Poincare Charges

- Radiated linear and angular momentum are $P^{\mu} = \int \mathrm{d}^3 x \, T^{\mu 0}$ $J^{\mu\nu} = \int \mathrm{d}^3 x \, x^{[\mu} T^{\nu]0}$
- instead of amplitudes

Sources \longrightarrow Fields $\longrightarrow T^{\mu\nu}$

• Need to include the $1/r^2$ of the field, so we use sources

linear/angular momentum

Radiated Linear Momentum

• Linear momentum:

same as cross section weighted by momentum

• EM:
$$P^{\mu} = \int \widetilde{dk} k^{\mu} (-\mathcal{J})$$

Phase space integral momentum

• GR:
$$P^{\mu} = 8\pi G \int \widetilde{\mathrm{d}k} \, k^{\mu} \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} \right)$$

- Covariance and gauge invariance are obvious
- Directly related to on-shell amplitudes via KMOC

 $\mathcal{J}^{*\rho}(k)\mathcal{J}_{\rho}(k))$

cross section

$$P^{\mu} = 8\pi G \int \widetilde{dk} \, k^{\mu} \, \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} \right), \quad \mathcal{L}^{\mu\nu} = ik^{\mu} \frac{\partial}{\partial k_{\nu}} - ik^{\nu} \frac{\partial}{\partial k_{\mu}}$$
$$J^{\mu\nu} = 8\pi G \int \widetilde{dk} \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} + 2i \, \mathcal{T}^{*\rho[\mu}(k) \mathcal{T}^{\nu]}_{\rho}(k) \right)$$

$$P^{\mu} = 8\pi G \int \widetilde{dk} \, k^{\mu} \, \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} \right), \quad \mathcal{L}^{\mu\nu} = ik^{\mu} \frac{\partial}{\partial k_{\nu}} - ik^{\nu} \frac{\partial}{\partial k_{\mu}}$$
$$J^{\mu\nu} = 8\pi G \int \widetilde{dk} \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} + 2i \, \mathcal{T}^{*\rho[\mu}(k) \mathcal{T}^{\nu]}_{\rho}(k) \right)$$

• New covariant formula in GR for angular momentum

[Manohar, Ridgway, CHS]

$$P^{\mu} = 8\pi G \int \widetilde{dk} \, k^{\mu} \, \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} \right), \quad \mathcal{L}^{\mu\nu} = ik^{\mu} \frac{\partial}{\partial k_{\nu}} - ik^{\nu} \frac{\partial}{\partial k_{\mu}}$$
$$J^{\mu\nu} = 8\pi G \int \widetilde{dk} \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} + 2i \, \mathcal{T}^{*\rho[\mu}(k) \mathcal{T}^{\nu]}_{\rho}(k) \right)$$

$$P^{\mu} = 8\pi G \int \widetilde{dk} \, k^{\mu} \, \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} \right), \quad \mathcal{L}^{\mu\nu} = ik^{\mu} \frac{\partial}{\partial k_{\nu}} - ik^{\nu} \frac{\partial}{\partial k_{\mu}}$$
$$J^{\mu\nu} = 8\pi G \int \widetilde{dk} \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} + 2i \, \mathcal{T}^{*\rho[\mu}(k) \mathcal{T}^{\nu]}_{\rho}(k) \right)$$

• Poincare algebra:

$$x^{\mu} \rightarrow x^{\mu} + a^{\mu}$$

 $\mathcal{T}^{\mu\nu}(k) \rightarrow \mathcal{T}^{\mu\nu}(k) e^{ik \cdot a}$

ullet

• Gauge invariance:

• No physical separation b/w "orbital" and "spin" parts

[Manohar, Ridgway, CHS]

$$\rightarrow P^{\mu} \rightarrow P^{\mu}$$
$$J^{\mu\nu} \rightarrow J^{\mu\nu} + a^{[\mu} P^{\nu]}$$

 $\mathcal{T}^{\mu\nu}(k) \to \mathcal{T}^{\mu\nu}(k) + k^{\mu}\epsilon^{\nu}(k) + k^{\nu}\epsilon^{\mu}(k)$

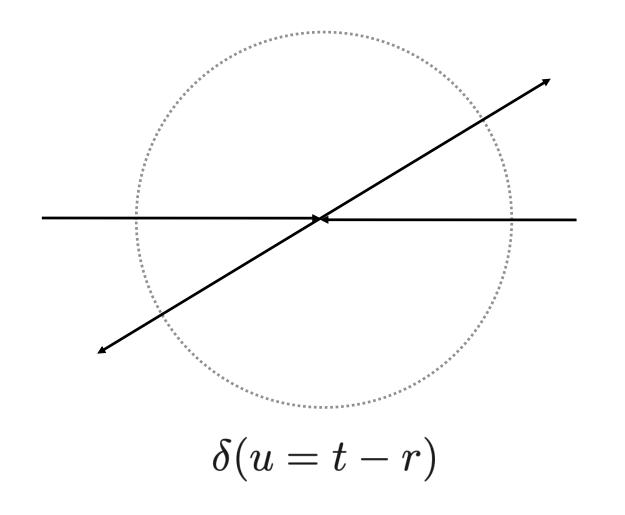
Zero-Frequency Limit & Leading order

(Weinberg soft theorem, memory effect, ...)

[see talks by Pasterski, Pate, Spradlin] Stress-energy Pseudotensor

$$\mathcal{T}^{\mu\nu}(k)|_{\omega\to 0^+} = -i\pi\delta(\omega)\sum_a \frac{p_a^{\mu}p_a^{\nu}}{E_a - \hat{\mathbf{k}}\cdot\mathbf{p}_a} + \frac{1}{\omega+i0}\sum_a \left(\frac{p_a^{\mu}p_a^{\nu}}{E_a - \hat{\mathbf{k}}\cdot\mathbf{p}_a}\right)\Big|_i^f$$

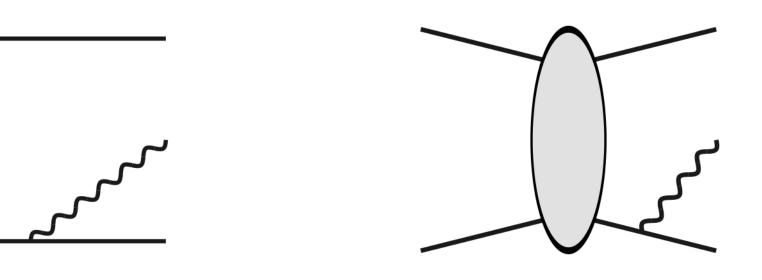
Free particles (Coulomb mode)



[Weinberg]

• Zoom out the time scale so collision occurs at t=0 (zero-frequency limit)

deflection turned on at t=0 valid to all orders



• Zero-frequency limit $P^{\mu}=0,$

$$J^{\mu\nu} = 8\pi G \int \underbrace{\widetilde{dk}}_{\omega} \left(\underbrace{\mathcal{T}^{*\rho\sigma}(k) \mathcal{L}^{\mu\nu}}_{\delta(\omega)} \underbrace{\mathcal{T}_{\rho\sigma}(k)}_{\omega} - \frac{\underbrace{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\sigma}^{\sigma}(k)}_{D-2} + 2i \, \mathcal{T}^{*\rho[\mu}(k) \mathcal{T}^{\nu]}_{\rho}(k) \right)$$
$$d\omega \, \omega \quad \delta(\omega) \qquad \frac{1}{\omega}$$

^ r L

$$\mathbf{J} = \mathbf{r} \times \mathbf{p} \sim \int d\Omega r^2 \, \mathbf{r}$$

• Nothing wrong w/ zero energy but non-zero angular momentum

$$imes \left({f E} imes {f B}
ight) \ {1\over r^2} ~~ {1\over r}$$

• Leading order in deflection angle θ

$$\frac{J_{\rm CM,2}^{12}}{\mathsf{J}_{\rm CM}} = 2 \times \frac{J_{\rm rest,2}^{12}}{\mathsf{J}_{\rm rest}} = 2$$

$$\mathcal{I}(\sigma) = -\frac{16}{3} + \frac{2\sigma^2}{\sigma^2 - 1} + \frac{4(2\sigma^2 - 3)}{\sigma^2 - 1} \frac{\sigma \operatorname{arcsinh}\left(\sqrt{\frac{\sigma - 1}{2}}\right)}{\sqrt{\sigma^2 - 1}}$$

- Model independent (GR, with spin, dilaton gravity, supergravity, etc)
- Radiated Angular momentum *is positive* when scattering is *attractive*

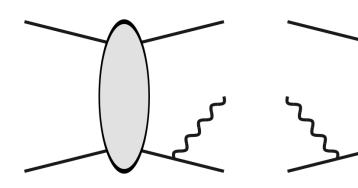
- $2m_1m_2\mathcal{I}(\sigma)\theta$

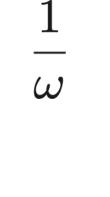
Soft Finiteness to all orders

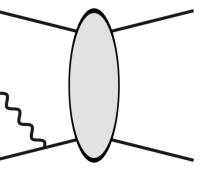
• Total radiated angular momentum is finite

$$J^{\mu\nu} = 8\pi G \int \widetilde{dk} \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} + 2i \,\mathcal{T}^{*\rho[\mu}(k) \mathcal{T}^{\nu]}{}_{\rho}(k) \right)$$

$$\int d\Omega \int d\omega \,\omega \quad \frac{1}{\omega}$$







• soft divergence cancels after integrating the full sphere

Comparison

- J¹² at G² agrees with [Damour]

- [Jakobsen, Mogull, Plefka, Steinhoff][Mougiakakos, Riva, Vernizzi]

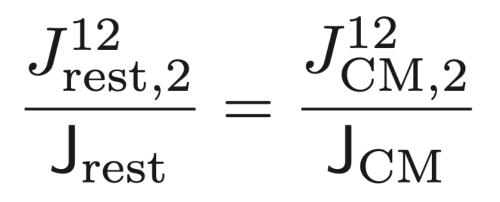
• Fully agrees arbitrary deflection [Di Vecchia, Heissenberg, Russo]

• J^{0i} at G^2 agrees with [Gralla, Lobo] (modulo a potential extra term)

Disagree with the textbook formula in the initial rest frame by x2

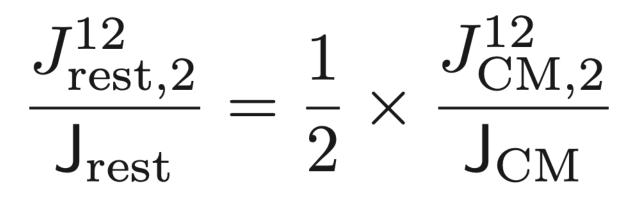
Leading $O(G^2)$ results

Textbook formula TT part of metric



- Both agree in the CM frame

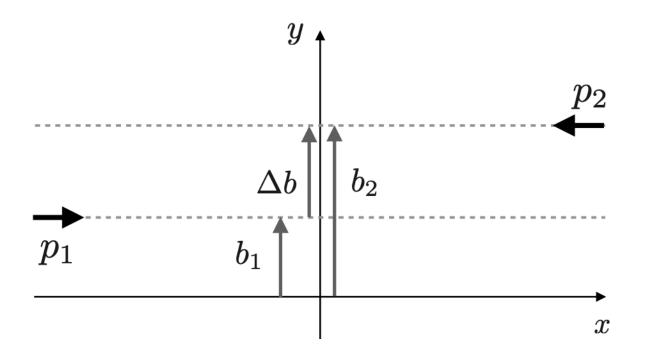
Our formula stress-energy pseudotensor



• Independent checks: general covariance and 3.5PN RR force

[Jaranowski, Schafer; Nissanke, Blanchet]

Non-perturbative Parametrization



$$P^{\mu} = F_1 p_1^{\mu} + F_2 p_2^{\mu} + F_3 \Delta b^{\mu},$$

$$J^{\mu\nu} = \overline{b}^{[\mu} \left(F_1 p_1^{\nu]} + F_2 p_2^{\nu]} + F_3 \Delta b^{\nu]} \right) + \Delta b^{[\mu} \left(G_1 p_1^{\nu]} - G_2 p_2^{\nu]} \right) + H_{12} p_2^{[\mu} p_1^{\nu]}$$

CM Frame

$$\frac{J_{\rm CM}^{12}}{J_{\rm CM}}\bigg|_{\omega=0} = G_1 + G_2$$

[Manohar, Ridgway, CHS]

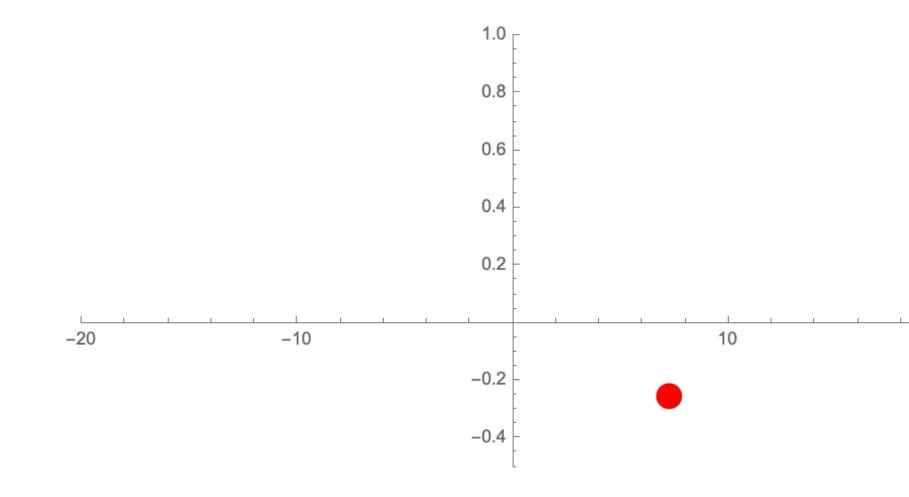
• Form factors: Lorentz covariance +Poincare algebra

Rest Frame

$$\frac{J_{\text{rest}}^{12}}{\mathsf{J}_{\text{rest}}}\Big|_{\omega=0} = G_2$$

• Since $G_1 = G_2$ at leading order, our answer agrees with this general prediction

Crosscheck with Burke-Throne

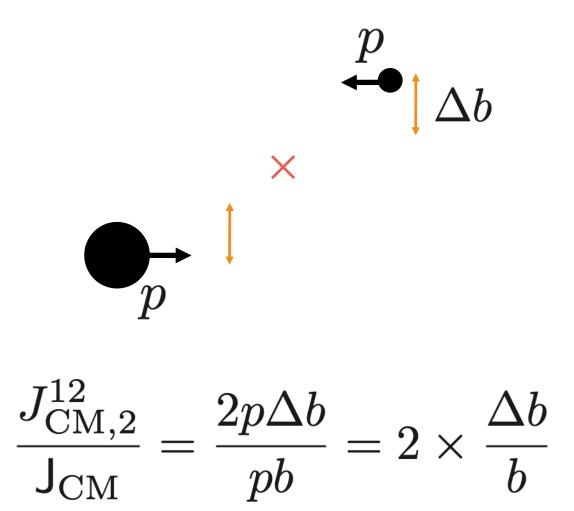


• Burke-Throne force at G²: $\mathbf{a_1} = -\mathbf{a_2} = \frac{4G^2m_1m_2}{5r^3} \left(3v^2v_r\hat{\mathbf{r}} - v^2\mathbf{v}\right)$

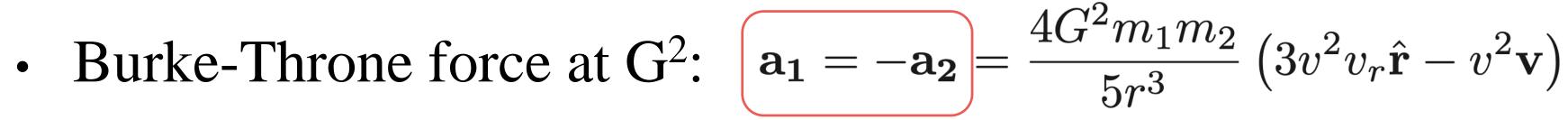
- Final energy is the same as initial
- Impact parameter shrinks equally •
- Non-decoupling of heavy particle

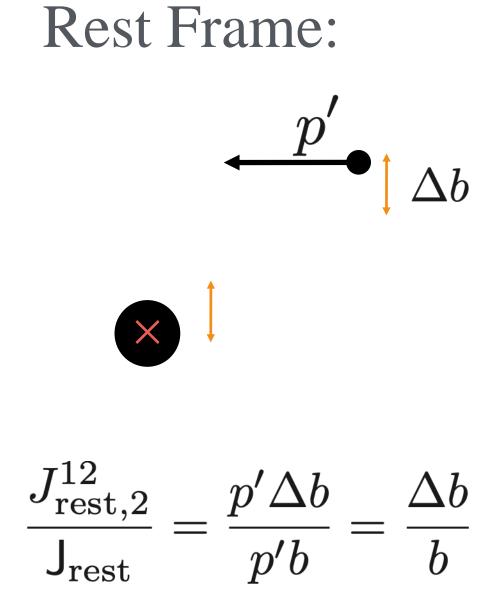
20

Crosscheck with Burke-Throne



Non-decoupling of heavy particle. Back reaction is important!





$$J^{\mu\nu} = 8\pi G \int \widetilde{dk} \left(\mathcal{T}^{*\rho\sigma}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\rho\sigma}(k) - \frac{\mathcal{T}_{\rho}^{*\rho}(k) \mathcal{L}^{\mu\nu} \mathcal{T}_{\sigma}^{\sigma}(k)}{D-2} + 2i \,\mathcal{T}^{*\rho[\mu}(k) \mathcal{T}^{\nu]}{}_{\rho}(k) \right)$$

Our formula agrees with covariance and Burke-Throne force

Standard formula is incomplete for scattering because of the presence of soft mode

Precision Frontier:

Radiated angular momentum at G^3

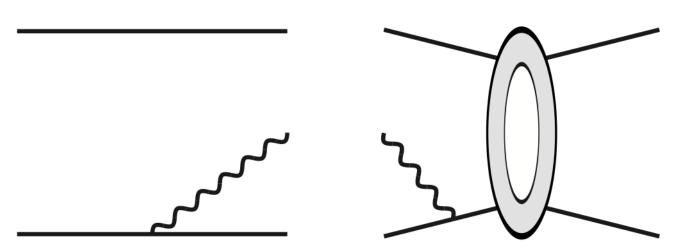
Radiated Poincare Charges

State of the art precision at G³ •

 $P^{\mu} \rightarrow \text{Known}$ [Herrmann, Parra-Martinez, Ruf, Zeng]

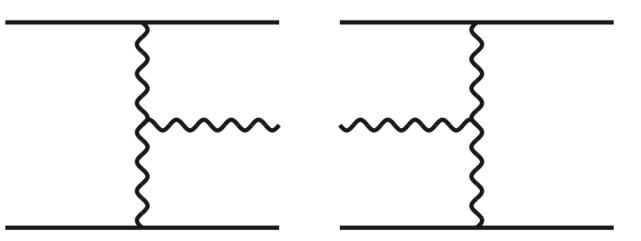
 $J^{\mu\nu} \rightarrow$ Both zero and finite frequency contributions

Soft Theorem



• Same as before, just use G² impulses [Westpfahl 80's]

Double Copy & Generalized Unitarity



- Waveform from 2-to-3 amplitude via KMOC
- Resum velocity expansion from $O(v^{60})$ series [See Carlos Heissenberg's poster]

New Results in General Relativity

• New results for G³ radiated angular momentum

$$\frac{J_3}{\pi} = \frac{28}{5}p_\infty^2 + \left(\frac{739}{84} - \frac{163}{15}\nu\right)p_\infty^4 + \left(-\frac{115769}{126720} + \frac{1469}{504}\nu + \frac{9235}{672}\nu^2 - \frac{557}{24}\right)$$

2.5PN 3.5PN 4.5PN

		\square					
(v^3)	+	v^5	+	v^7	+	v^9	_
(v	+	v^3	+	v^5	+	v^7	_
		(v					

[Bini, Damour, Geralico '21] $\left(\frac{5777}{2520} - \frac{5339}{420}\nu + \frac{50}{3}\nu^2\right)p_{\infty}^6$ $\left(\frac{53}{54}\nu^3\right)p_{\infty}^8+\ldots$ [Manohar, Ridgway, CHS] $\mathcal{I}(\sigma) = -\frac{16}{3} + \frac{2\sigma^2}{\sigma^2 - 1} + \frac{(2\sigma^2 - 3)}{\sigma^2 - 1} \frac{\sigma \operatorname{arcsinh}\left(\sqrt{\frac{\sigma - 1}{2}}\right)}{\sqrt{\sigma^2 - 1}}$ $\frac{\mathcal{E}(\sigma)}{\pi} = f_1 + f_2 \log\left(\frac{\sigma+1}{2}\right) + f_3 \frac{\sigma \operatorname{arcsinh}\left(\sqrt{\frac{\sigma-1}{2}}\right)}{\sqrt{\sigma^2 - 1}}$ $\frac{\mathcal{C}(\sigma)}{\pi} = g_1 + g_2 \log\left(\frac{\sigma+1}{2}\right) + g_3 \frac{\sigma \operatorname{arcsinh}\left(\sqrt{\frac{\sigma-1}{2}}\right)}{\sqrt{\sigma^2 - 1}}$ $\mathcal{D}(\sigma) = \frac{3\pi(5\sigma^2 - 1)}{8}\mathcal{I}(\sigma)$ $f_1 = \frac{210\sigma^6 - 552\sigma^5 + 339\sigma^4 - 912\sigma^3 + 3148\sigma^2 - 3336\sigma + 1151}{48(\sigma^2 - 1)^{3/2}}$ G^3 $f_2 = -\frac{35\sigma^4 + 60\sigma^3 - 150\sigma^2 + 76\sigma - 8\sqrt{\sigma^2 - 1}}{8\sqrt{\sigma^2 - 1}}$ + ...) G^4 $f_3 = \frac{(2\sigma^2 - 3)(35\sigma^4 - 30\sigma^2 + 11)}{8(\sigma^2 - 1)^{3/2}}$ $g_1 = \frac{105\sigma^7 - 411\sigma^6 + 240\sigma^5 + 537\sigma^4 - 683\sigma^3 + 111\sigma^2 + 386\sigma - 237}{24(\sigma^2 - 1)^2}$ $g_2 = \frac{35\sigma^5 - 90\sigma^4 - 70\sigma^3 + 16\sigma^2 + 155\sigma - 62}{4(\sigma^2 - 1)}$ $g_3 = \frac{-(2\sigma^2 - 3)(35\sigma^5 - 60\sigma^4 - 70\sigma^3 + 72\sigma^2 + 19\sigma - 12)}{4(\sigma^2 - 1)^2}$

Applications: impulses at G⁴

• Predict for G⁴ odd-in-v impulses [Bini, Damour, Geralico]

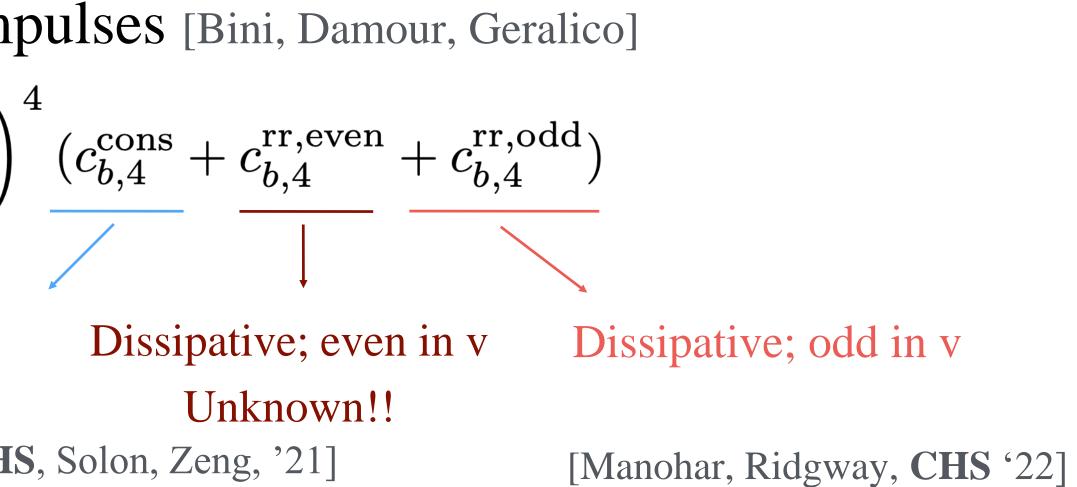
$$\Delta p_{\perp,4} = \nu M^5 \left(\frac{G}{b}\right)$$

Conservative; even in v

[Bern, Parra-Martinez, Roiban, Ruf, CHS, Solon, Zeng, '21] [Dlapa, Kalin, Liu, Porto '21]

ulletfactorizations in EFT [Bini, Damour]

$$2\chi^{\rm rr} = \frac{\partial \chi^{\rm cons}}{\partial J} \Delta J + \frac{\partial \chi^{\rm cons}}{\partial E} \Delta E$$

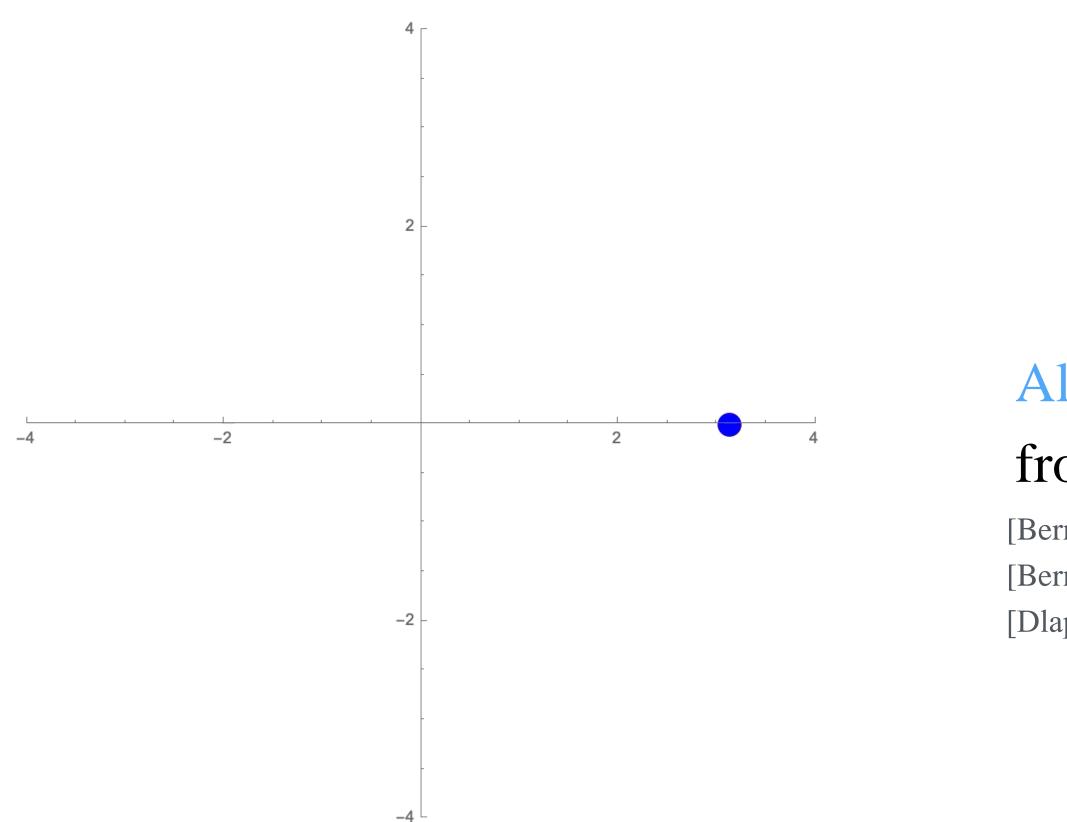


Simplify a G⁴ problem into mostly leading order inputs via

Precision Binary Dynamics

m1=m2, G=0.01, E[0]=-0.0176, J[0]=0.4, v[0]=0.128 t = 0.0

 $\{E,J\} = \{-0.0176, 0.400\}$



$$\dot{\boldsymbol{x}} = \frac{\partial H}{\partial \boldsymbol{p}} \\ \dot{\boldsymbol{p}} = \frac{\partial H}{\partial \boldsymbol{x}} + \boldsymbol{F}_{RR}$$

Conservative

All orders in v to G^4

from the scattering angle

[Bern, Cheung, Roiban, CHS, Solon, Zeng, '19] [Bern, Parra-Martinez, Roiban, Ruf, CHS, Solon, Zeng, '21] [Dlapa, Kalin, Liu, Porto '21]

Dissipative

All orders in v to G^3

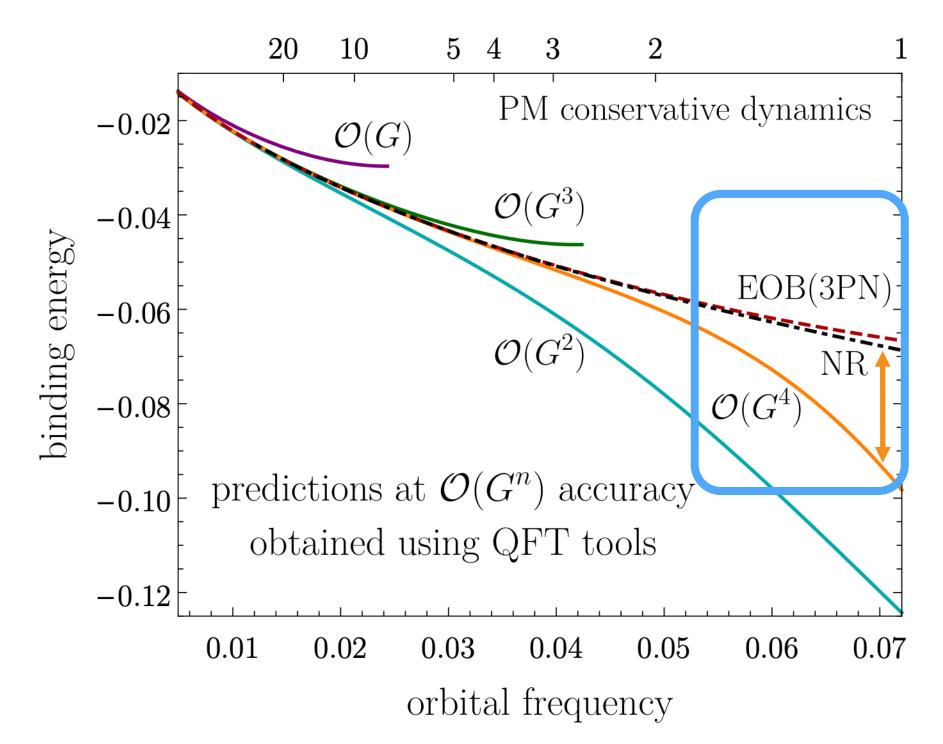
from radiated E and J

[Manohar, Ridgway, CHS '22]

*Caveat: illustration only Don't trust a plot made by theorists

Precision Binary Dynamics

Only conservative effect included in PM so far



Snowmass white paper [Buonanno, Khalil, O'Connell, Roiban, Solon, Zeng, 2204.05194] [Khalil, Buonanno, Steinhoff, Vines, 2204.05047]

Can dissipation bring closer to numerical data?

Summary & Outlook

- Symmetries are powerful
- ullet
- ulletangular momentum
- Higher order dissipative effects?
 - •
- Applications of angular momentum in **particle physics**?

State-of-the-art dissipative force in GR purely from YM

New formulae, perturbative and non-perturbative results of

Interesting functions & Tail effect. Mapping to bound states?

Thank you

Backups

New Results in General Relativity

• New results for G³ radiated angular momentum

$$J_{\text{rest},3}^{12} = bm_1 m_2^2 \left(m_1 \mathcal{C}(\sigma) \right)$$

As the form factors show, radiated energy enters • when translating from rest to CM frame

$$\frac{J_{\rm CM,3}^{12}}{J_{\rm CM}} = \frac{m_1 m_2 (m_1 + m_2)}{\sqrt{\sigma^2 - 1}} \left[\frac{\mathcal{C}(\sigma) + 2\mathcal{D}(\sigma) - \frac{m_1 m_2 \sqrt{\sigma^2 - 1}}{E^2}}{E^2} \frac{\mathcal{E}(\sigma)}{E^2} \right]$$

• when considering G^4 scattering

[Manohar, Ridgway, CHS]

$$+(m_1+m_2)\mathcal{D}(\sigma))$$

$$\begin{split} \mathcal{I}(\sigma) &= -\frac{16}{3} + \frac{2\sigma^2}{\sigma^2 - 1} + \frac{(2\sigma^2 - 3)}{\sigma^2 - 1} \frac{\sigma \operatorname{arcsinh}\left(\sqrt{\frac{\sigma - 1}{2}}\right)}{\sqrt{\sigma^2 - 1}} \\ \frac{\mathcal{E}(\sigma)}{\pi} &= f_1 + f_2 \log\left(\frac{\sigma + 1}{2}\right) + f_3 \frac{\sigma \operatorname{arcsinh}\left(\sqrt{\frac{\sigma - 1}{2}}\right)}{\sqrt{\sigma^2 - 1}} \\ \frac{\mathcal{C}(\sigma)}{\pi} &= g_1 + g_2 \log\left(\frac{\sigma + 1}{2}\right) + g_3 \frac{\sigma \operatorname{arcsinh}\left(\sqrt{\frac{\sigma - 1}{2}}\right)}{\sqrt{\sigma^2 - 1}} \\ \mathcal{D}(\sigma) &= \frac{3\pi(5\sigma^2 - 1)}{8} \mathcal{I}(\sigma) \\ f_1 &= \frac{210\sigma^6 - 552\sigma^5 + 339\sigma^4 - 912\sigma^3 + 3148\sigma^2 - 3336\sigma + 1151}{48(\sigma^2 - 1)^{3/2}} \\ f_2 &= -\frac{35\sigma^4 + 60\sigma^3 - 150\sigma^2 + 76\sigma - 5}{8\sqrt{\sigma^2 - 1}} \\ f_3 &= \frac{(2\sigma^2 - 3)(35\sigma^4 - 30\sigma^2 + 11)}{8(\sigma^2 - 1)^{3/2}} \\ g_1 &= \frac{105\sigma^7 - 411\sigma^6 + 240\sigma^5 + 537\sigma^4 - 683\sigma^3 + 111\sigma^2 + 386\sigma - 237}{24(\sigma^2 - 1)^2} \\ g_2 &= \frac{35\sigma^5 - 90\sigma^4 - 70\sigma^3 + 16\sigma^2 + 155\sigma - 62}{4(\sigma^2 - 1)} \\ g_3 &= \frac{-(2\sigma^2 - 3)(35\sigma^5 - 60\sigma^4 - 70\sigma^3 + 72\sigma^2 + 19\sigma - 12)}{4(\sigma^2 - 1)^2} \end{split}$$

Elucidate the relation originally found by Bini, Damour, Geralico

Comparison

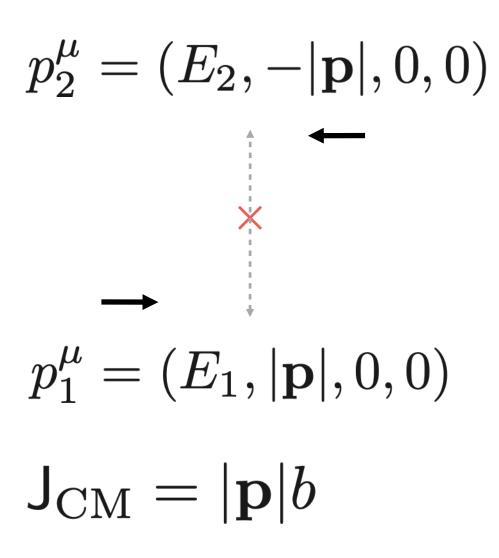
EM	GR
Minkowski	Dynamical
Yes	Yes
yes	yes
Abrham-Lorentz- Dirac	Burke-Throne
No	Maybe?



CM Frame v.s. Rest frame

• They are related by boost and translation

CM Frame:



Rest Frame: $p_2^{\mu} = (\sigma m_2, -\sqrt{\sigma^2 - 1m_2}, 0, 0)$ \mathbf{X} $p_1^{\mu} = (m_1, 0, 0, 0)$ $\mathsf{J}_{\rm rest} = \sqrt{\sigma^2 - 1} m_2 b$

Precision Binary Dynamics

• State-of-the-art EOM all orders in v to G³

$$\begin{split} H(r, p^{2}) & \mathbf{F}_{\mathrm{RR}} = c_{r} p_{r} \hat{\mathbf{r}} + c_{p} \mathbf{p} \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \\ & c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^$$

$$H(r, p^{2}) \qquad \mathbf{F}_{\mathrm{RR}} = c_{r} p_{r} \hat{\mathbf{r}} + c_{p} \mathbf{p}$$

$$c_{i} = \frac{\nu^{2}m^{2}}{\gamma^{2}\xi} (1 - 2\sigma^{2}), \qquad c_{r} = \frac{d^{2}}{\gamma^{2}\xi} \left[\frac{3}{4} (1 - 5\sigma^{2}) - \frac{4\nu\sigma(1 - 2\sigma^{2})}{2\gamma^{5}\xi^{2}} - \frac{\nu^{2}(1 - \xi)(1 - 2\sigma^{2})^{2}}{2\gamma^{5}\xi^{2}}\right], \qquad c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \qquad \left[\frac{\varepsilon(\sigma)}{\pi} = \frac{1}{2} + \frac{2\sigma^{2}}{r^{3}} + \frac{(2\sigma^{2} - 3)}{\sigma^{2} - 1} - \frac{2\sigma(1 - \xi)(1 - 2\sigma^{2})^{2}}{2\gamma^{5}\xi^{2}}\right], \qquad c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \qquad \left[\frac{\varepsilon(\sigma)}{\pi} = \frac{1}{2} + \frac{1}{2} + \frac{2\sigma^{2}}{r^{3}} + \frac{(2\sigma^{2} - 3)}{\sqrt{\sigma^{2} - 1}} - \frac{2\sigma(1 - \xi)(1 - 2\sigma^{2})^{2}}{2\gamma^{5}\xi^{2}}\right], \qquad c_{r} = \frac{G^{2}}{r^{3}} c_{r,2} \left(\mathbf{p}^{2}\right) + \frac{G^{3}}{r^{4}} c_{r,3} \left(\mathbf{p}^{2}\right) + \dots, \qquad \left[\frac{\varepsilon(\sigma)}{\pi} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{2\sigma^{2}}{r^{3}} + \frac{(2\sigma^{2} - 3)}{\sqrt{\sigma^{2} - 1}} - \frac{2\sigma(1 - \xi)(1 - 2\sigma^{2})^{2}}{\sqrt{\sigma^{2} - 1}} - \frac{2\sigma(1 - \xi)(1 - 2\sigma^{2})^{2}}{2\gamma^{5}\xi^{4}} - \frac{1}{\sqrt{\sigma^{2} - 1}} + \frac{2\sigma^{2}}{\sigma^{2} - 1} + \frac{2\sigma^{2}}{\sigma^{2} - 1} + \frac{2\sigma^{2}}{\sigma^{2} - 1} - \frac{2\sigma(1 - 2\sigma^{2})^{2}}{\sigma^{2} - 1} - \frac{2\sigma(1 - 2\sigma^{2})^{2}}{2\gamma^{5}\xi^{4}} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{2\sigma^{2}}{\sigma^{2} - 1} + \frac{2\sigma^{2}}{\sigma^{2} - 1} + \frac{2\sigma^{2}}{\sigma^{2} - 1} - \frac{2\sigma^{2}}{\sigma^{$$

$$c_{p,3}(\mathbf{p}^{2}) = -\frac{2p_{\infty}J_{\text{CM},3}^{12}}{\pi\xi E J_{0}} + \left(2\xi E c_{p,2}'(\mathbf{p}^{2}) - \left(2 - \frac{p_{\infty}^{2}(1-3\xi)}{\xi^{2}E^{2}}\right)\frac{J_{\text{CM},2}^{12}}{2p_{\infty}J_{0}}\right)c_{H,1}(\mathbf{p}^{2}) - p_{\infty}c_{H,1}'(\mathbf{p}^{2})\frac{J_{\text{CM},2}^{12}}{J_{0}}$$

$$c_{r,3}(\mathbf{p}^{2}) = \frac{8}{\pi p_{\infty}}\left(\frac{p_{\infty}^{2}}{J_{0}E\xi}J_{\text{CM},3}^{12} - E_{\text{CM},3}\right) + \left(-6\xi E c_{p,2}'(\mathbf{p}^{2}) + 2\left(1 + \frac{p_{\infty}^{2}(1-3\xi)}{\xi^{2}E^{2}}\right)\frac{J_{\text{CM},2}^{12}}{p_{\infty}J_{0}}\right)c_{H,1}(\mathbf{p}^{2}) + 4p_{\infty}c_{H,1}'(\mathbf{p}^{2}) + 4p_{\infty}c_{H,1}'(\mathbf{p}^{2}) + 4p_{\infty}c_{H,1}'(\mathbf{p}^{2})\right)c_{H,1}'(\mathbf{p}^{2}) + 4p_{\infty}c_{H,1}'(\mathbf{p}^{2}) + 4p_{\infty}c_{H,1}''(\mathbf{p}^{2}) + 4p_{\infty}c_{H,1}''(\mathbf{p}^{2}) + 4p_{\infty}c_{H,$$

Common concerns

- Can zero-energy radiation carries angular momentum? Yes •
- Is radiated angular momentum infrared finite • (due to 1/r potential in 4D)? Yes
- •

All of above can be answered in scalar theory

- - •
 - Need to explain the match to Burke-Throne force in GR •

Are distribution functions (e.g. delta functions) well-defined? Yes

Is there BMS ambiguity on angular momentum? Maybe, I don't know

But need to explain the match to ALD force in electromagnetism

Conservative Dynamics

- •
- Higher order potential •

[Bern, Cheung, Parra-Martinez, Roiban, Ruf, CHS, Solon, Zeng] [Bini, Damour, Geralico] [Blumlein, Maier, Marquard, Schafer] [Dlapa, Kalin, Liu, Porto] [Bjerrum-Bohr, Cristofoli, Damgaard, Festuccia, Plante, Vanhove] [di Vecchia, Heissenberg, Russo, Veneziano] [Kosower, Maybee, O'Connell] [Damgaard, Haddard, Helset] [Jakobsen, Mogull, Plefka, Steinhoff] [Brandhuber, Chen, Travaglini, Wen] [Kol, O'Connell, Telem]....

Spin ullet

[Vaidya] [Vines] [Guevara, Ochirov, Vines] [Chung, Huang, Kim, Lee] [Aoude, Haddard, Helset] [Bern, Luna, Roiban, CHS, Zeng][Bern, Kosmopoulos, Luna, Roiban, Teng] [Steinhoff, Levi] [Levi, Von Hippel, McLeod] [Liu, Porto, Yang] [Maybee, O'Connell, Vines] [Jakobsen, Mogull, Plefka, Steinhoff] [Chiodaroli, Johansson, Pichini]...

Tidal effects ullet

[Bini, Damour][Cheung, Solon][Kalin, Liu, Porto][Aoude, Haddard, Helset] [Bern, Parra-Martinez, Roiban, CHS, Sawyer] [Cheung, Shah, Solon]...

See Snowmass white paper [Buonanno, Khalil, O'Connell, Roiban, Solon, Zeng, 2204.05194] and many other talks in this conference

Impressive progress from both traditional and new methods

Dissipative Dynamics in Scattering

- Double copy structure • [Goldberger, Ridgway] [CHS] [Vazquez-Holm, Carrasco]...
- Radiative contribution to binary deflections ullet[Amati, Ciafaloni, Veneziano][Bini, Damour] [Damour] [Bini, Damour, Geralico]
- Radiated energy via classical or quantum (KMOC) methods ullet[Herrmann, Parra-Martinez, Ruf, Zeng] [Jakobsen, Mogull, Plefka, Steinhoff] [Mougiakakos, Riva, Vernizzi]
- Radiated angular momentum ullet[Damour][Bini, Damour, Geralico] [Di Vecchia, Heissenberg, Russo, Veneziano] [Jakobsen, Mogull, Plefka, Steinhoff][Mougiakakos, Riva, Vernizzi][Gralla, Lobo]
- Waveforms \bullet [Jakobsen, Mogull, Plefka, Steinhoff][Mougiakakos, Riva, Vernizzi]
- Boundary to bound map [Cho, Kalin, Porto]

See Snowmass white paper [Buonanno, Khalil, O'Connell, Roiban, Solon, 2204.05194] and talks by Kosower, Levi, Mogull

[Di Vecchia, Heissenberg, Russo, Veneziano][Herrmann, Parra-Martinez, Ruf, Zeng]...

[Cristofoli, Gonzo, Kosower, O'Connell] [Britto, Gonzo, Jehu] [Cristofoli, Gonzo, Moynihan, O'Connell, Ross]