EFTS FOR HIGGS PHYSICS

EFFECTIVE PATHWAYS TO NEW PHYSICS WORKSHOP

S. DAWSON, BNL, 2022

THE PARTICLE PHYSICS WORLD HAS CHANGED DRAMATICALLY IN THE LAST DECADE

- The triumph of the Standard Model
- European Strategy Study and Snowmass Study inspire us to think about the future
- What is missing from our knowledge of the Higgs?

IN THE LAST 10 YEARS....

2012: LHC discovered a Higgs boson; it appears to have predicted properties

THE SM IS SIMPLE AND PREDICTIVE

- SU(3) x SU(2) x U(1)
- Electroweak sector described in terms of masses and 3 inputs
 - Typically G_F , α , M_Z
- Particle couplings fixed
 Only unknown parameter
 is Higgs mass
 Testable model !

REVIEW OF HIGGS COUPLINGS

- Couplings to fermions proportional to mass: $\frac{m_f}{m}h\overline{f}f$
- Couplings to massive gauge bosons proportional to (mass)²: $2M_W^2 \frac{h}{n} W_{\mu}^+ W^{-\mu} + M_Z^2 \frac{h}{n} Z_{\mu} Z^{\mu}$
- Couplings to massless gauge bosons at 1-loop:* $F(m_f)\frac{\alpha_s}{12\pi}\frac{h}{v}G^A_{\mu\nu}G^{A,\mu\nu} + F(m_f, M_W)\frac{\alpha}{8\pi}\frac{h}{v}F_{\mu\nu}F^{\mu\nu} + F(m_f, M_W)\frac{\alpha}{8\pi s_W}\frac{h}{v}F_{\mu\nu}Z^{\mu\nu}$ • Higgs self-couplings proportional to $M_h^{2:}$ $\frac{m_h^2}{2}h^2 + \frac{M_h^2}{2v}h^3 + \frac{M_h^2}{8v^2}h^4$ Only unpredicted parameter is M_h

* Normalization is such that $F \rightarrow I$ for $m_t, M_W \rightarrow \infty$

HIGGS PRODUCTION AT A HADRON COLLIDER

 How do we know if the SM with the Higgs is just the low energy manifestation of some more complete model that exists at high scales?

HIGH SCALE DECOUPLING

- Suppose there is a new particle X, with mass $M_X >> M_W$
- SM scattering: • Contribution from X: • Contribution from X: • Scattering rate: • Scattering rate: • Scattering rate: • Comparison of X vanish as $1/M_X^2$ for weak coupling

Applequist-Carrazone decoupling theorem

THE HIGGS IS DIFFERENT

• Particles whose couplings are proportional to mass don't decouple

See non-decoupling effect in gg \rightarrow H: Rate is independent of m_t for M_H<< m_t Longitudinal polarizations also change counting (growth with energy)

Suggests that Higgs sector is good place to look for new physics

COUNTER-EXAMPLE OF NON-DECOUPLING

 Most familiar example of non-decoupling is gluon fusion with heavy chiral fermion:

- For heavy chiral fermion, $F_{1/2} \rightarrow -4/3$, independent of mass
- This result can be derived from the effective Lagrangian

 $\phi^0 \to \frac{H+v}{\sqrt{2}}$

$$L_{EFT} = \frac{\alpha_s}{12\pi v^2} \mid \phi \mid^2 G^A_{\mu\nu} G^{A,\mu\nu}$$

κ rescaling of higgs couplings

- $\kappa_i = (\text{Higgs coupling to particle i})/(\text{SM Higgs coupling to particle i})$
- Problems:
 - Gauge invariance requires κ =1
 - Higgs couplings not free parameters in SM
 - Not a consistent field theory \rightarrow no higher order corrections
 - EW corrections don't factorize (can't be included)
 - No kinematic information
 - Higgs coupling measurements cannot be combined with other measurements

Higgs couplings to fermions and gauge bosons *fixed in SM*

S. Dawson

HIGGS COUPLINGS CLOSE TO SM

- Couplings proportional to mass
- A deviation from this pattern signals new physics!

Need to go beyond $\boldsymbol{\kappa}$ framework

Can we determine source of new physics?

No resonance or light resonance or new signatures

No need for EFT in this scenario

Current limits will be strengthened at HL-LHC

(13)

ASSUME A HIERARCHY OF SCALES

$\Lambda >> M_W$ where complete theory exists

- Any new particles or symmetries are at this scale
- Expect effects of heavy particles at low scales to be suppressed

This is sad scenario where there is no intermediate scale physics

 M_{W}

Only SM particles in theory at low scales

Learn about high scale physics by measuring coefficients of effective operators with global fits

SMEFT: SM EFFECTIVE FIELD THEORY

- Assumptions: New physics decouples $\Lambda >> v, E$
- At the weak scale: SM SU(3) x SU(2) x U(1) symmetry and SM particles only
- New physics described by

$$L_{SMEFT} = L_{SM} + \frac{L_5}{\Lambda} + \frac{L_6}{\Lambda^2} + \frac{L_7}{\Lambda^3} + \frac{L_8}{\Lambda^4}$$
$$L_n = \sum_i C_i^n O_i^n$$

Assume Higgs is in an SU(2) doublet

- New physics contributions contained in coefficients C
- Operators form a complete basis (not unique)
- L_5 and L_7 are lepton number violating

ADVANTAGES OF SMEFT APPROACH

- Quantum field theory where calculations done order by order i
 - Compute cross sections without knowing high scale (UV) physics
- Systematically improvable
- At this level, SMEFT calculations are model independent
- Measurements interpreted in terms of SMEFT coefficients
- Can compare very different classes of measurements

Sounds good, but how does this work in practice?

And even more important, how model independent is this?

S. Dawson

FIND A BASIS OF OPERATORS

- Start with dimension-6 operators: with no assumptions, 2499 possibilities
- Most popular basis is "WARSAW BASIS"
- Work to tree level with one occurrence of dimension-6 operator
- Consider contributions to processes dominated by H/Z/W resonances, and interference with SM only (linear in EFT) (REASONABLE ASSUMPTION)

	Total	Not resonance suppressed
General	2499	46
MFV	108	30
U(3) ⁵	70	24

Brivio, Jiang, Trott, 1709.06492

WARSAW BASIS

	X ³	φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	Qep	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{\tau}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	Quq	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi G^A_{\mu \nu}$	Que	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{\tau})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu \nu} d_r) \varphi B_{\mu \nu}$	Quad	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
Qu	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Qee	$(\bar{e}_p\gamma_\mu e_\tau)(\bar{e}_s\gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Quu	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$	Qlu	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{dd}	$(d_p\gamma_\mu d_r)(d_s\gamma^\mu d_t)$	Qu	$(l_p\gamma_\mu l_r)(d_s\gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(l_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Qeu	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_\tau) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Qed	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
265		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
		-		$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	1	B-viol	ating	
Qledg	$(l_p^j e_r)(d_s q_t^j)$	Qduq	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$^{T}Cu_{r}^{\beta}$	$\left[(q_{\mathbf{s}}^{\gamma j})^{T}Cl_{t}^{k}\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{qqu} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[\left(q_{p}^{\alpha}\right)\right]$	$^{j})^{T}Cq_{T}^{j}$	$\left[(q_s^{\gamma m})^T C l_t^n \right]$
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Qduu	$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T ight]$	Cu_r^β]	$\left[(u_s^{\gamma})^T C e_t\right]$
$Q_{lequ}^{(3)}$	$(l_p^j \sigma_{\mu\nu} e_{\tau}) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$				prest vite the during in other

+....

- The interesting operators are those with derivatives
- Derivative operators introduce new structures into kinematic distributions
- Most of 2499 operators come from flavor permutations

HIGGS MECHANISM IN SMEFT

• Higgs mechanism as usual, but with extra terms

$$L_{H} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) + \mu^{2}\phi^{\dagger}\phi - \lambda(\phi^{\dagger}\phi)^{2} + \frac{C_{6}}{\Lambda^{2}}(\phi^{\dagger}\phi)^{3} + \frac{C_{H\Box}}{\Lambda^{2}}(\phi^{\dagger}\phi)\Box(\phi^{\dagger}\phi) + \frac{C_{HD}}{\Lambda^{2}}(\phi^{\dagger}D_{\mu}\phi)^{*}(\phi^{\dagger}D^{\mu}\phi)$$

 $\phi = \left(\begin{array}{c} \phi_0^+ \\ \frac{1}{\sqrt{2}}(v + H_0 + i\phi_0^0) \end{array}\right)$

*subscript 0 indicates field before shift of field to get canonical normalization

• Minimize potential (keeping only terms up to $1/\Lambda^2$):

$$v = \sqrt{\frac{\mu^2}{\lambda}} + \frac{3\mu^3}{8\lambda^{5/2}} \frac{C_6}{\Lambda^2}$$

S. Dawson

*This is Warsaw basis

HIGGS MECHANISM IN SMEFT, #2

Higgs field is not canonically normalized:

$$L_{H} \sim \frac{1}{2} \left[1 + \frac{v^{2}}{2\Lambda^{2}} C_{HD} - \frac{2v^{2}}{\Lambda^{2}} C_{H\Box} \right] (\partial_{\mu} H_{0})^{2} + \frac{1}{2} \left[\mu^{2} - 3\lambda v^{2} + \frac{15v^{4}}{4\Lambda^{2}} C_{6} \right] H_{0}^{2} + \text{Goldstones...}$$

• Canonical normalization recovered: $H = Z_h H_0$ • All Higgs interactions shifted $Z_h = 1 + \frac{v^2}{4\Lambda^2}C_{HD} - \frac{v^2}{\Lambda^2}C_{H\Box}$

Other possible purely scalar operators can be eliminated by integration by parts, or by use of the equations of motion

SMEFT GAUGE SECTOR

- Shift fields so that gauge fields have canonical forms
- Find mass eigenstates as usual:

$$M_W = \frac{\overline{g}_2 v}{2}$$
$$M_Z = \frac{v}{2} \sqrt{(\overline{g}_1)^2 + (\overline{g}_2)^2} \left(1 + \frac{\overline{g}_1 \overline{g}_2}{(\overline{g}_1)^2 + (\overline{g}_1)^2} \frac{v^2}{\Lambda^2} C_{HWB} + \frac{v^2}{4\Lambda^2} C_{HD} \right)$$

• SM relationships among parameters altered (barred fields remind us of this)

HIGGS DECAYS

- Example: $H \rightarrow b\bar{b}$ $\frac{\Gamma(H \rightarrow b\bar{b})}{\Gamma(H \rightarrow b\bar{b}) \mid_{SM}} = (1 + \Delta\kappa_b)^2$ $\Delta\kappa_b = \frac{1}{\sqrt{2}G_F\Lambda^2} \left(C_{H\Box} - \frac{C_{HD}}{4} - C_{Hl}^{(3)} + \frac{C_{ll}^1}{2} - \frac{C_{dH}}{2^{3/4}m_b\sqrt{G_F}} \right)$ From normalizing From change in relation between G_F and v
 - Is this just a fancy way of writing the κ 's?

 $O_{dH} = Y_d(\phi^{\dagger}\phi)\overline{q}_L\phi d_R$

CONSIDER $H \rightarrow ZZ$

- Compare H \rightarrow ZZ (on-shell) to H \rightarrow Zff

$$\frac{\Gamma(H \to ZZ)}{\Gamma(H \to ZZ) \mid_{SM}} = 1 + \frac{1}{\sqrt{2}G_F\Lambda^2} \begin{bmatrix} c_k \left(-.4c_{ZZ} \right) \end{bmatrix}$$
$$\frac{\Gamma(H \to Zf\overline{f})}{\Gamma(H \to Zf\overline{f}) \mid_{SM}} = 1 + \frac{1}{\sqrt{2}G_F\Lambda^2} \begin{bmatrix} c_k \left(-.97c_{ZZ} \right) \end{bmatrix}$$

c_{ZZ} are momentum dependent operators

- EFT can capture off-shell effects (not $\kappa)$

$$c_{k} = \frac{C_{HD}}{2} + 2C_{H\Box} + C_{ll} - 2C_{Hl}^{(3)}$$

$$c_{ZZ} = \frac{M_{W}^{2}}{M_{Z}^{2}}C_{HW} + (1 - \frac{M_{W}^{2}}{M_{Z}^{2}})C_{HB} + \frac{M_{W}}{M_{Z}}\sqrt{1 - \frac{M_{W}^{2}}{M_{Z}^{2}}}C_{HWB}$$

• EFT has more information than total rate

- Integrate up to $\boldsymbol{q}_{\text{cut}}$
- $(G_F q^2 / \Lambda^2) f(q_{cut})$ is coefficient of c_{ZZ}

24

GLUON FUSION

$$\begin{split} L = & L_{SM} + \frac{C_{HG}}{\Lambda^2} O_{HG} + \frac{C_{tH}}{\Lambda^2} O_{tH} \\ \sim & \left[-Y_t \overline{q}_L \tilde{\phi} t_R + \frac{C_{tH}}{\Lambda^2} \phi^{\dagger} \phi \overline{q}_L \tilde{\phi} t_R + hc \right] + \frac{C_{HG}}{\Lambda^2} (\phi^{\dagger} \phi) G^A_{\mu\nu} G^{A,\mu\nu} \end{split}$$

 $\phi^0 = \frac{H+v}{\sqrt{2}}$

• Changes relationship between top mass and SM Yukawa, Y_t:

$$m_t = \frac{v}{\sqrt{2}} \left[-Y_t + \frac{v^2}{2\Lambda^2} C_{tH} \right]$$

$$\frac{m_t}{v} \left[1 - \frac{v^2}{\Lambda^2} \frac{C_{tH}}{Y_t} \right]$$

K

WHAT DOES GLUON FUSION MEASURE?

- gg \rightarrow H cannot distinguish C_{HG} from C_{tH} in the large m_t limit
- Flat directions like this are common in SMEFT

MOMENTUM DEPENDENT OPERATORS CHANGE KINEMATIC DISTRIBUTIONS

• Typically quite small effects:

 $\mathcal{O}\left(\frac{p_T^2}{\Lambda^2}\right)$

- Couplings contrained to give correct rate for ggH
- Look in tails of distributions

Schlaffer, Spannowsky, Takeuchi, Weiler, Wymant, arxiv:1405.4295

IDENTIFY SMEFT COEFFICIENTS

- Is the ttH coupling the Standard Model coupling?
- Non-SM contributions change rate/distributions

Observation of gluon fusion • production of Higgs at expected rate doesn't mean Higgs has SM ttH coupling

28

- Need ttH production •
- High luminosity will pin • down coupling

Battaglia, Grazzini, Spira, Wiesemann, Arxiv:2109.02987

WHEN IS EFT VALID?

$$L \to L_{SM} + \Sigma_i \frac{C_{6i}}{\Lambda^2} O_{6i} + \Sigma_i \frac{C_{8i}}{\Lambda^4} O_{8i} + \dots$$

• SMEFT

$$A^2 \sim |A_{SM} + \frac{A_6}{\Lambda^2} + \dots |^2 \sim A_{SM}^2 + \frac{A_{SM}A_6}{\Lambda^2} + \frac{A_6^2}{\Lambda^4} + \dots$$

- Problem is that $(A_6)^2$ terms are the same order as A_8 terms that we have dropped when counting in $1/\Lambda$
- If we only keep A_6/Λ^2 terms and drop $(A_6/\Lambda^2)^2$, the cross section is not guaranteed to be finite
- Corrections are $O(s/\Lambda^2)$ or $O(v^2/\Lambda^2)$

Leads to idea that there is a maximum energy scale where SMEFT is valid

S. Dawson

COUNTING LORE

$$\sigma \sim g_{SM}^2 (A_{SM})^2 + g_{SM} g_{BSM} A_{SM} A_6 \frac{s}{\Lambda^2} + g_{BSM}^2 (A_6)^2 \frac{s^2}{\Lambda^4} + g_{SM} g_{BSM} A_{SM} A_8 \frac{s^2}{\Lambda^4}$$
Same order of magnitude if $g_{SM} \sim g_{BSM}$
(Dim-6)² could dominate if $g_{BSM} >> g_{SM}$

Dimension-6 quadratic expansion can be valid for strongly interacting theory

SM particles have just the right couplings so amplitudes don't grow with energy

HIGGS COUPLINGS TO GAUGE BOSONS

Operators that contribute to VVV vertices and Higgs-VV vertices

 $O_W = (D_\mu \phi)^{\dagger} W^{\mu\nu} (D_\nu \phi)$ $O_B = (D_\mu \phi)^{\dagger} B^{\mu\nu} (D_\phi)$ $O_{WW} = Tr(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho})$

32

• Effective Field Theory effects enhanced at high energy, high p_T

Derivative interactions change kinematic shapes

CAN'T JUST FIT HIGGS COUPLINGS

Operators that contribute to VVV vertices and Higgs-VV vertices

Anomalous qqZ vertices too!

33

• Changing ZWW, γ WW vertices spoils high energy cancellations between contributions

DIBOSON PRODUCTION

• Sensitive to variations of Zff and $Z(\gamma)WW$ couplings

No growth with energy in SM

34

- Old story: Individual contributions grow with energy
- Cancellations keep amplitudes from growing at high energy in SM

Changing gauge or fermion couplings spoils cancellation

Hagiwara, Peccei, Zeppenfeld, Hikasa, NPB482 (1987) S. Dawson

OBVIOUS PROBLEM

• One proposal for dealing with this issue is to put a cut on the maximum energy where the SMEFT is assumed to be valid, <u>1604.06444</u>

NLO CORRECTIONS IN SMEFT

- Compute NLO corrections to $O(v^2/\Lambda^2)$ (ie linear in EFT coefficients)
- SMEFT is a new theory; calculate consistently to one-loop QCD and EW
- One-loop SMEFT QCD corrections automated in SMEFT@NLO, 2008.11743
- One-loop SMEFT EW corrections done on case by case basis
- Coefficient functions renormalized in \overline{MS}
 - Solved problem at one-loop

$$C_i(\mu) = C_i^0 - \frac{1}{32\pi^2\hat{\epsilon}}\gamma_{ij}C_j$$

Alonso, Jenkins, Manohar, Trott, <u>arxiv:1312.2014</u>; Jenkins, Manohar, Trott, <u>arxiv:1310.4838</u>, <u>1309.0819</u> S. Dawson EW SMEFT corrections done on individual basis at present

QCD MATTERS

- K factors aren't the same as in SM
- Effect is enhanced for large momenta

Baglio, Dawson, Homiller, 1909.11576

FIT TO LINEARIZED RATES

- Drop all coefficients where cross section is negative
- Linearized limits significantly weaker than $1/\Lambda^4$ limits (can cancel terms)

IS IT ALL THE LAST BIN?

• Fit results depend on cut on maximum energy

ASSUMPTIONS CREEPING IN

- Single parameter fit to WW/WZ/WH/ZH
- For linear fit, throw out points with negative cross section
- Fit assumes SM efficiencies in each bin (not necessarily true)
- Fit ignores flavor

EWPO

WAND Z POLE OBSERVABLES

• Fit to 14 data points—inputs are G_{μ} , M_Z , α

 $M_W, \Gamma_W, \Gamma_Z, \sigma_h, A_{l,FB}, A_{b,FB}, A_{c,FB}, A_b, A_c, A_l, R_l, R_b, R_c$

• Tree level expressions depend on (in Warsaw basis) assuming flavor independence $C_{ll}, C_{\phi WB}, C_{\phi u}, C^{(3)}_{\phi q}, C^{(1)}_{\phi q}, C^{(3)}_{\phi l}, C^{(1)}_{\phi l}, C_{\phi e}, C_{\phi D}, C_{\phi d}$

43

• Tree level SMEFT expressions depend on 8 combinations of operators

 \Rightarrow 2 blind directions (resolved by other measurements)

OBLIQUE PARAMETERS

• Arbitrarily set all parameters except C_{\varphi VVB} and C_{\varphi D}=0

$$\alpha \Delta S = 4c_W s_W \frac{v^2}{\Lambda^2} C_{\phi W B}$$
$$\alpha \Delta T = -\frac{v^2}{2\Lambda^2} C_{\phi D}$$

You get quite different results when you allow all coefficients to vary. Picking specific non-zero coefficients involves assumptions about underlying model

EWPO and SMEFT, Dawson, Giardino arXiv: 1909.02000

COMPUTE EACH OBSERVABLE TO NLO IN SMEFT

- Example $M_W = M_W^{SM} + \delta M_W$ \leftarrow All SMEFT effects here
- Dependence on many coefficients at NLO (QCD + EW)
- Always use "best" SM prediction for fits

$$\begin{split} \delta M_W^{LO} &= \frac{v^2}{\Lambda^2} \left\{ \begin{bmatrix} -30C_{\phi l}^{(3)} \\ -30C_{\phi l}^{(3)} \\ +15C_{ll} \\ -36C_{\phi l}^{(3)} \\ +17C_{ll} \\ -30C_{\phi D} \\ -64C_{\phi WB} \\ \end{bmatrix} \right. \\ & -0.1C_{\phi d} - 0.1C_{\phi e} - 0.2C_{\phi l}^{(1)} - 2C_{\phi q}^{(1)} + C_{\phi q}^{(3)} \\ +3C_{\phi u} + 0.4C_{lq}^{(3)} \\ -0.03C_{\phi B} - 0.03C_{\phi \Box} \\ -0.04C_{\phi W} - 0.9C_{uB} - 0.2C_{uW} \\ -0.02C_{uW} \\ -0.02C_{uW} \\ \end{bmatrix} \end{split}$$

 α , G_{μ} , M_Z scheme

45

NLO SMEFT EFFECTS ON POLE OBSERVABLES

• Fits marginalizing over other coefficients

Coefficient	LO	NLO		
$\mathcal{C}_{\phi D}$	[-0.034, 0.041]	[-0.039, 0.051]		
$\mathcal{C}_{\phi WB}$	[-0.080, 0.0021]	[-0.098, 0.012]		
$\mathcal{C}_{\phi d}$	[-0.81, -0.093]	[-1.07, -0.03]		
$\mathcal{C}^{(3)}_{\phi l}$	[-0.025, 0.12]	[-0.039, 0.16]		
$\mathcal{C}_{\phi u}$	[-0.12, 0.37]	[-0.21, 0.41]		
$\mathcal{C}^{(1)}_{\phi l}$	[-0.0086, 0.036]	[-0.0072, 0.037]		
\mathcal{C}_{ll}	[-0.085, 0.035]	[-0.087, 0.033]		
$\mathcal{C}^{(1)}_{\phi q}$	[-0.060, 0.076]	$\left[-0.095, 0.075 ight]$		

- Neglect flavor effects
- Contribution from top loops

NLO effects can be important

EWPO WITH FLAVOR

- Allow coefficients to have flavor dependence
- Consider operators that contribute both to top pair production at the LHC and to EWPO at 1-loop
- For some operators, similar sensitivity

SMEFT message: CONNECTIONS between data sets

S. Dawson

Dawson, Giardino: arXiv:2201.09887

EXAMPLE OF GLOBAL FIT

- Precision of limits very different for different operators
- Orange and blue are different approaches to expansion in $1/\Lambda^2$

S. Dawson

2105.00006

GLOBAL FITS CONSTRAIN EFT COEFFICIENTS

Very different results when only a single operator is constrained

49

Reina, LHCP, 2019

WHAT DO WE LEARN BY FITTING EFT COUPLINGS?

- In any given high scale model, coefficients of EFT predicted in terms of small number of parameters
- Different operators are generated in Red different models
- By measuring the pattern of coefficients, information is gleaned about high scale physics

Dawson, Murphy: arXv:1704.07851

Example with new scalars at very high mass scales Fit to Higgs data

HOW TO MATCH UV THEORY TO SMEFT

• Consider model with gauge singlet scalar, S, that only couples to SM Higgs

$$L \sim \frac{1}{2} (\partial_{\mu} S)^{2} - V(S, \phi) = -\frac{1}{2} S \Box S - V(S, \phi)$$
$$V = \frac{m_{s}^{2}}{2} S^{2} + A \mid \phi \mid^{2} S + \frac{\kappa}{2} \mid \phi \mid^{2} S^{2} + \frac{m}{6} S^{3} + \frac{\lambda_{S}}{24} S^{4}$$
Find classical solution

$$\frac{\delta L}{\delta S} \mid_{S_c=0} \longrightarrow S_c = \frac{A \mid \phi \mid^2}{\partial^2 + m_s^2 + \kappa \phi^2}$$

51

Covariant Derivative Expansion, arXiv:1412.1837

S. Dawson

CAN WE UNCOVER UV MODEL?

- Plug Sc into original Lagrantian and expand consistently in powers of $1/m_{s}^{\ 2}$
- Generates $O_{H\square}$ and O_{H} with coefficients predicted in terms of parameters of UV model

$$O_{H\Box} = (\phi^{\dagger}\phi)\Box(\phi^{\dagger}\phi) \qquad \frac{v^{2}C_{H\Box}}{\Lambda^{2}} = -\frac{1}{2}\tan^{2}\theta$$
$$O_{H} = (\phi^{\dagger}\phi)^{3} \qquad \frac{v^{2}C_{H}}{\Lambda^{2}} = \frac{\tan^{2}\theta}{2}(\tan\theta\frac{m}{3v} - \kappa)$$

S. Dawson

Dawson, Homiller, Lane: <u>Arxiv:2007.01296</u>

* tan $\theta = Av/M_S^2$

DO FITS TO SUBSETS OF OPERATORS

Interpret fit results in terms of model parameters Information from RGE running of coefficients from Λ to M_Z

S. Dawson

PATTERNS OF COEFFICIENTS

- Compare models with new scalars or new heavy top/bottom quarks at the high energy scale
- Do global fits to just the sets of operators generated in these models
- Fits can restrict high scale models

S. Dawson

2007.01296

*These are particularly simple toy models

POWER OF SMEFT

- Higgs decays, top quark interactions, diboson production, LEP physics all described by overlapping sets of operators
- Coefficients can be predicted in UV complete theories
- Since SMEFT is a consistent field theory, it can be systematically improved by including loop corrections
- Cons: Too many operators; difficult to define consistent criteria for range of validity; what about higher dimension operators?