Adam Falkowski

Lectures on SMEFT

Lectures given during the IMEPNP workshop in Bhubaneswar on 11-12 February 2022

Part 1

$$
\text { Brief Philosophy of } \mathcal{E F T}
$$

Role of scale in physical problems

Some distribution of electric charges
Near observer

Far observer

Near observer, $L \sim R$, needs to know the position of every charge to describe electric field in her proximity Far observer, $r \gg \mathbf{R}$, can instead use multipole expansion: $\quad V(\vec{r})=\frac{q}{r}+\frac{\vec{d} \cdot \vec{r}}{r^{3}}+\frac{Q_{i j} r_{i} r_{j}}{r^{5}}+\ldots$

$$
\sim 1 / r \quad \sim R / r^{\wedge} 2 \quad \sim R^{\wedge} 2 / r^{\wedge} 3
$$

Higher order terms in the multipole expansion are suppressed by powers of the small parameter (R / r). One can truncate the expansion at some order depending on the value of (R / r) and experimental precision Far observer is able to describe electric field in his vicinity using just a few parameters: the total electric charge, eventually the dipole moment

On the other hand, far observer can only guess the "fundamental" distributions of the charges, as many distinct distributions lead to the same first few moments

Far observer, like Molière's Mr. Jourdain, discovers that he has been using EFT all his life

Scale in quantum field theory

Consider a theory of a light particle φ interacting with a heavy particle H

Heavy particle H propagator in coordinate space:

$$
P\left(x_{1}, x_{2}\right) \sim \exp \left(-m_{H}\left|x_{1}-x_{2}\right|\right)
$$

At small distance scales, $\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| \ll 1 / \mathrm{m}_{\mathrm{H}}$, the heavy particle H propagates.
Force acting between light particles φ

$$
m_{H} \sim \Delta E \ll \frac{1}{\left|x_{1}-x_{2}\right|} \sim \frac{1}{\Delta t} \quad \Rightarrow \quad \Delta E \Delta t \ll 1 \quad m_{H} \sim \Delta E \gg \frac{1}{\left|x_{1}-x_{2}\right|} \sim \frac{1}{\Delta t} \quad \Rightarrow \quad \Delta E \Delta t \gg 1
$$

Scale in quantum field theory

Consider a theory of a light particle φ interacting with a heavy particle H

Heavy particle H propagator in momentum space:

At large momentum scales, $\mathbf{p}^{2} \gg \mathrm{~m}_{\mathbf{H}^{2}}$, we see propagation of the heavy particle H. Long range force acting between light particles φ
$P\left(p^{2}\right) \sim \frac{1}{p^{2}-m_{H}^{2}}=\left\{\begin{aligned} \frac{1}{p^{2}} & p^{2} \gg m_{H}^{2} \\ -\frac{1}{m_{H}^{2}} & p^{2} \ll m_{H}^{2}\end{aligned}\right.$

At small momentum scales, $\mathbf{p}^{2} \ll \mathbf{m}_{\mathbf{H}^{2}}$, propagation of the heavy particle H effectively leads to a contact interaction between light particles φ

Scale in particle theory

- Processes probing distance scales >> $1 / m_{H}$, equivalently energies scales << m_{H}, cannot resolve the propagation of H
- Then, intuitively, exchange of heavy particle H between light particles φ should be indistinguishable from a contact interaction of φ
- In other words, the effective theory describing φ interactions should be well approximated by a local Lagrangian, that is, by a polynomial in φ and its derivatives

This is the generic way how the effective theory description arise in particle physics, which will be repeated in many examples that follow

Part 2

Introducing the $S M \mathcal{F} F T$

Elementary particles we know today

All these particles are propagating degrees of freedom right above the electroweak scale, that is at $E \sim 100 \mathrm{GeV}-1 \mathbf{~ T e V}$

SMEFT

SMEFT is an effective theory for these degrees of freedom incorporating certain physical assumptions:

1. Locality, unitarity, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Higgs field

G_{μ}^{a}		W_{μ}^{k}	B_{μ}	1	$\langle H\rangle=\binom{0}{v / \sqrt{2}}$
	SU(3)c	SU(2)w	U(1)r	Spin	
Q = ($\mathrm{LL}_{\mathrm{L}} \mathrm{d}_{\mathrm{L}}$)	3	2	1/6	1/2	
u_{R}	3	1	2/3	1/2	
d_{R}	3	1	-1/3	1/2	
$\mathrm{L}=\left(\mathrm{L}, \mathrm{e}_{\mathrm{L}}\right.$)	1	2	-1/2	1/2	
$\Theta_{\text {e }}$	1	1	-1	1/2	
H	1	2	1/2	0	

1. Locality, unitarity, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) x S U(2) x U(1)$ symmetry strictly respected by all interactions

If these assumptions are true we can organize the EFT as an expansion in $1 / \Lambda$, where Λ is identified with the mass scale of the UV completion of the SMEFT, and each term is a linear combination of $\operatorname{SU}(3) \times S U(2) x U(1)$ invariant operators of a given canonical dimension D

$$
\mathscr{L}_{\mathrm{SMEFT}}=\mathscr{L}_{D=2}+\mathscr{L}_{D=3}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots
$$

SM Lagrangian

Higher-dimensional SU(3)c x SU(2) $\times \mathbf{U}(1)$ y invariant interactions added to the SM

In the spirit of EFT, each \mathscr{L}_{D} should include a complete and non-redundant set of interactions

SMEFT

$\mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{D=2}+\mathscr{L}_{D=3}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+$.
$\mathscr{L}_{D=2}=\mu_{H}^{2} H^{\dagger} H$

$$
\text { Experiment: } \quad \mu_{H} \sim 100 \mathrm{GeV}
$$

$$
\text { Unsolved mystery why } \mu_{H}^{2} \ll \Lambda^{2}
$$

which is called the hierarchy problem

$$
\begin{aligned}
\mathscr{L}_{D=3} & =0 \\
\mathscr{L}_{D=4} & =-\frac{1}{4} \sum_{V \in B, W^{i}, G^{a}} V_{\mu \nu} V^{\mu \nu}+\sum_{f \in q, u, d, L, e} i \bar{f} \gamma^{\mu} D_{\mu} f \quad \begin{array}{c}
\text { Simply, no gauge invariant operators made of SM fields } \\
\text { exist at canonical dimension D=3 }
\end{array} \\
& -\left(\bar{u} Y_{u} Q H+\bar{d} Y_{d} H^{\dagger} Q+\bar{e} Y_{e} H^{\dagger} L+\mathrm{h} . \mathrm{c} .\right) \\
& +D_{\mu} H^{\dagger} D^{\mu} H-\lambda\left(H^{\dagger} H\right)^{2}+\tilde{\theta} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \quad{ }_{D_{\mu \nu}^{a}=\partial_{\mu} V_{\nu}^{a}-\partial_{\nu} V_{\mu}^{a}+\partial_{\mu} f-i g_{s} G_{\mu}^{a b} f^{a b} V_{\mu}^{b}-i V_{L} V_{L}^{c} W_{\mu}^{i} \frac{\sigma^{i}}{2} f-i g_{y} B_{\mu} Y f}
\end{aligned}
$$

Experiment: all interactions at $\mathrm{D}=2$ and $\mathrm{D}=4$ above have been observed, except for $\tilde{\theta}$
Strictly speaking, λ has not been observed directly. Its value is known within SM hypothesis, but not within SMEFT, without additional assumptions. Observation of double Higgs production (receiving contribution from cubic Higgs coupling) will be a direct proof that λ is there in the Lagrangian.

Note that $\theta_{B} B_{\mu \nu} \tilde{B}_{\mu \nu}$ is not physical, while $\theta_{W} W_{\mu \nu}^{k} \tilde{W}_{\mu \nu}^{k}$ can be eliminated by chiral rotation

SMEFT at dimension-5

$$
\mathscr{L}_{\mathrm{SMEFT}}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots
$$

Weinberg (1979)
Phys. Rev. Lett. 43, 1566

$$
\frac{c_{i j}}{\Lambda}\left(L_{i} H\right)\left(L_{j} H\right)+\mathrm{h} . \mathrm{c} . \rightarrow c_{i j} \frac{\mathrm{v}^{2}}{\Lambda} \nu_{i} \nu_{j}+\mathrm{h} \cdot \mathrm{c} .
$$

$$
H \rightarrow\binom{0}{v / \sqrt{2}}
$$

$$
L_{i} \rightarrow\binom{\nu_{i}}{e_{i}}
$$

- At dimension 5, the only gauge-invariant operators one can construct are the socalled Weinberg operators, which break the lepton number
- After electroweak symmetry breaking they give rise to Majorana mass terms for the SM (left-handed) neutrinos
- Neutrino oscillation experiments strongly suggest that these operators are present (unless neutrino masses are of the Dirac type)

This is a huge success of the SMEFT paradigm: corrections to the SM Lagrangian predicted at the next order in the EFT expansion, are indeed observed in experiment!

SMEFT at dimension-5

$\mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots$
Naively: $\mathscr{L}_{D=5} \sim \frac{1}{\Lambda}$ and then $\mathscr{L}_{D=6} \sim \frac{1}{\Lambda^{2}}, \mathscr{L}_{D=7} \sim \frac{1}{\Lambda^{3}}$, and so on
If this is really the correct estimate, then we will never see any other effects of higher-dimensional operators, except possibly of baryon-number violating ones :/

Career opportunities

BANK

SMEFT at dimension-5

$\mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots$
Naively: $\mathscr{L}_{D=5} \sim \frac{1}{\Lambda}$ and then $\mathscr{L}_{D=6} \sim \frac{1}{\Lambda^{2}}, \mathscr{L}_{D=7} \sim \frac{1}{\Lambda^{3}}$, and so on
It is however possible that Λ is not far from $\mathbf{T e V}$, but instead $c_{i j} \ll 1$
Alternatively, it is possible (and likely) that there is more than one mass scale of new physics
Dimension- 5 interactions are special because they violate lepton number L. If we assume that the mass scale of new particles with L -violating interactions is Λ_{L}, and there is also L -conserving new physics at the scale $\Lambda \ll \Lambda_{L}$, then the estimate is

$$
\mathscr{L}_{D=5} \sim \frac{1}{\Lambda_{L}}, \mathscr{L}_{D=6} \sim \frac{1}{\Lambda^{2}}, \mathscr{L}_{D=7} \sim \frac{1}{\Lambda_{L}^{3}}, \mathscr{L}_{D=8} \sim \frac{1}{\Lambda^{4}}, \text { and so on }
$$

SMEFT at dimension-6

$$
\mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\left(\mathscr{L}_{D=6}\right)+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots
$$

Grzadkowski et al arXiv:1008.4884

Bosonic CP-even	
O_{H}	$\left(H^{\dagger} H\right)^{3}$
$O_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$
$O_{H D}$	$\left\|H^{\dagger} D_{\mu} H\right\|^{2}$
$O_{H G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$
$O_{H W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$
O_{W}	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
O_{G}	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Bosonic CP-even

Bosonic ©P-odd

$O_{H \widetilde{G}}$
$O_{H \widetilde{W}}$
$O_{H \tilde{B}}$
$O_{H \widetilde{W} B}$
$O_{\widetilde{W}}$
$O_{\widetilde{G}}$

At dimension-6 all hell breaks loose

SMEFT at higher dimensions

$\mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots$

Exponential growth of the number of operators with the canonical dimension D

SMEFT at higher dimensions

$\mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots$
Number of baryon-number-conserving operators as function of \mathbf{D} and number of generations N_{f}

	$\mathrm{N}_{\mathrm{f}}=0$	$\mathrm{N}_{\mathrm{f}}=1$	$\mathrm{N}_{\mathrm{f}}=2$	$\mathrm{N}_{\mathrm{f}}=3$	*'
Dimension-5	0	2	6	12	...
Dimension-6	15	76	582	2499	...
Dimension-7	0	22	212	948	...
Dimension-8	89	895	8251	36971	...

SMEFT at higher dimensions

SMEFT at dimension-5:	Weinberg (1979) Phys. Rev. Lett. 43, 1566
SMEFT at dimension-6:	Grzadkowski et al arXiv: 1008.4884
SMEFT at dimension-7:	Lehman arXiv: 1410.4193
SMEFT at dimension-8:	Li et al arXiv: 2005.00008
SMEFT at dimension-9:	Li et al arXiv: 2012.09188

Li et al arXiv:2201.04639

Part 3

Assumptions befind
 the $S \mathcal{M} \mathcal{E F T}$

SMEFT

But are these assumptions true?

1. Locality, unitarity, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) x S U(2) x U(1)$ symmetry strictly respected by all interactions and spontaneously broken to $\operatorname{SU}(3) x U(1)$ by a VEV of the Higgs field

	G_{μ}^{a}	W_{μ}^{k}	B_{μ}	1
	SU(3) ${ }^{\text {c }}$	su(2)w	U(1)r	Spin
Q = ($\mathrm{u}_{\mathrm{L}, \mathrm{d}}^{\mathrm{d}}$)	3	2	1/6	1/2
UR	3	1	2/3	1/2
d_{R}	3	1	-1/3	1/2
$\mathrm{L}=\left(\mathrm{VL}_{\mathrm{L}, \mathrm{e}} \mathrm{L}\right)$	1	2	-1/2	1/2
$e_{\text {e }}$	1	1	-1	1/2
H	1	2	1/2	0

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $S U(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Higgs field

	G_{μ}^{a}	W_{μ}^{k}	B_{μ}	1
	SU(3) ${ }^{\text {c }}$	SU(2)w	U(1) r	Spin
Q = ($\mathrm{LL}_{L}, \mathrm{~d}_{\mathrm{L}}$)	3	2	1/6	1/2
u_{R}	3	1	2/3	1/2
d_{R}	3	1	-1/3	1/2
$\mathrm{L}=\left(\mathrm{LL}, \mathrm{e}_{\mathrm{L}}\right)$	1	2	-1/2	1/2
$e_{\text {R }}$	1	1	-1	1/2
H	1	2	1/2	0

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to $\operatorname{SU}(3) x U(1)$ by a VEV of the Higgs field

G_{μ}^{a}		W_{μ}^{k}	B_{μ}	1
	SU(3)c	SU(2) w	U (1) Y	Spin
	3	2	1/6	1/2
UR_{R}	3	1	2/3	1/2
d_{R}	3	1	-1/3	1/2
L = ($\mathrm{v}_{\mathrm{L}, \mathrm{e}_{\mathrm{E}} \text {) }}$	1	2	-1/2	1/2
$\epsilon_{\text {R }}$	1	1	-1	1/2
H	1	2	1/2	0

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $S U(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Higgs field

	G_{μ}^{a}	W_{μ}^{k}	B_{μ}	1
	SU(3)c	SU(2)w	U (1) r	Spin
Q = ($\mathrm{LL}_{\mathrm{L}, \mathrm{d} \text { L }) ~}^{\text {a }}$	3	2	1/6	1/2
u_{R}	3	1	2/3	1/2
d_{R}	3	1	-1/3	1/2
$\mathrm{L}=\left(\mathrm{VL}_{\mathrm{L}, \mathrm{e} \mathrm{L}}\right)$	1	2	-1/2	1/2
e_{R}	1	1	-1	1/2
H	1	2	1/2	0

SMEFT

> But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Highs field

Certainly not,
because gravity deists!

GR-SMEFT

In principle, the relevant effective theory at the electroweak scale is GR-SMEFT rather than SMEFT

First of all, Einstein's GR can be generalised to an effective theory: GR-EFT

$\mathscr{L}_{\text {GR-EFT }}=\sqrt{-g}\left\{\Lambda_{c}^{4}+\frac{1}{2} M_{\text {Planck }}^{2} \sqrt{-g} R\right\}+\frac{1}{\Lambda^{2}}\left\{c_{1} C_{\mu \nu \alpha \beta} C^{\alpha \beta \rho \sigma} C_{\rho \sigma}{ }^{\mu \nu}+c_{2} C_{\mu \nu \alpha \beta} C^{\alpha \beta \rho \sigma} \tilde{C}_{\rho \sigma}{ }^{\mu \nu}\right\}+.$.
EFT corrections

Ruhdorfer et al arXiv:1908.08050

Weyl tensor $C_{\mu \nu \rho \sigma}$ is the $(2,0) \oplus(0,2)$ part in decomposition of Riemann tensor: $-\frac{1}{6}\left(y_{a y} H_{5 s}-\xi_{\alpha,} \xi_{s s}\right) R$

Furthermore, one can consider the EFT of SM degrees of freedom coupled to gravity: GR-SMEFT.
At lowest order, graviton couples to the energy-momentum tensor of matter, without any free parameters. At higher order one can construct effective operators with arbitrary Wilson coefficients, for example at dimension- 6 in the gauge-gravity sector one has:

$$
\begin{aligned}
\mathscr{L}_{D=6} \subset & \frac{c_{1}}{\Lambda^{2}} C_{\mu \nu}{ }^{\rho \sigma} C^{\mu \nu \alpha \beta} C_{\alpha \beta \rho \sigma}+\frac{\tilde{c}_{1}}{\Lambda^{2}} C_{\mu \nu}{ }^{\rho \sigma} C^{\mu \nu \alpha \beta} \tilde{C}_{\alpha \beta \rho \sigma} \\
& +\frac{c_{2}}{\Lambda^{2}} H^{\dagger} H C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}+\frac{\tilde{c}_{2}}{\Lambda^{2}} H^{\dagger} H C_{\mu \nu \rho \sigma} \tilde{C}^{\mu \nu \rho \sigma} \\
& +\frac{c_{3}}{\Lambda^{2}} B^{\mu \nu} B^{\rho \sigma} C_{\mu \nu \rho \sigma}+\frac{\tilde{c}_{3}}{\Lambda^{2}} B^{\mu \nu} B^{\rho \sigma} \tilde{C}_{\mu \nu \rho \sigma}+\frac{c_{4}}{\Lambda^{2}} G^{\mu \nu} G^{\rho \sigma} C_{\mu \nu \rho \sigma}+\frac{\tilde{c}_{4}}{\Lambda^{2}} G^{\mu \nu} G^{\rho \sigma} \tilde{C}_{\mu \nu \rho \sigma} \\
& +\frac{c_{5}}{\Lambda^{2}} W^{\mu \nu} W^{\rho \sigma} C_{\mu \nu \rho \sigma}+\frac{\tilde{c}_{5}}{\Lambda^{2}} W^{\mu \nu} W^{\rho \sigma} \tilde{C}_{\mu \nu \rho \sigma} .
\end{aligned}
$$

SMEFT

	G_{μ}^{a}	W_{μ}^{k}	B_{μ}	1
	SU(3)c	SU(2)w	$\mathrm{U}(1) \mathrm{r}$	Spin
Q = ($\mathrm{L}_{\mathrm{L}, \mathrm{d} \text { L }}$)	3	2	1/6	1/2
u_{R}	3	1	2/3	1/2
d_{R}	3	1	-1/3	1/2
$\mathrm{L}=\left(\mathrm{V}_{\mathrm{L}, \mathrm{e}}^{\mathrm{L}}\right.$)	1	2	-1/2	1/2
$e_{\text {R }}$	1	1	-1	1/2
H	1	2	1/2	0

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to $\operatorname{SU}(3) x U(1)$ by a VEV of the Higgs field

However, unless something weird happens at the level of higher-dimensional operators, we expect graviton couplings to matter to be very suppressed, likely by powers of $M_{\text {Planck }}$
In such a case, the GR- part of GR-SMEFT has tiny impact on collider or low-energy experiments. For the sake of these applications, we can safely ignore the graviton and focus on the SMEFT. On the other hand, for applications like black hole scattering/inspiral, weak gravity conjecture, early cosmology, etc. GR-SMEFT remains relevant

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $S U(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to $\operatorname{SU}(3) x U(1)$ by a VEV of the Highs field

Maybe not, because
light right-handedneutrinos
might as well exist

R-SMEFT

$\mathscr{L}_{\mathrm{R}-\mathrm{SMEFT}}=\mathscr{L}_{D=2}+\mathscr{L}_{D=3}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\mathscr{L}_{D=6}+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots$

Effective theory should include all interactions with singlet neutrinos:

$$
\begin{aligned}
& \mathscr{L}_{D=2}=\mu_{H}^{2} H^{\dagger} H \\
& \mathscr{L}_{D=3}=-M_{N}(N N)+\mathrm{h} . \mathrm{c} . \quad \begin{aligned}
\mathscr{L}_{D=4}= & -\frac{1}{4} \sum_{V \in B, W^{i}, G^{a}} V_{\mu \nu} V^{\mu \nu}+\sum_{f \in q, u, d, L, e, N} i \bar{f} \gamma^{\mu} D_{\mu} f \\
& -\left(\bar{u} Y_{u} Q H+\bar{d} Y_{d} H^{\dagger} Q+\bar{e} Y_{e} H^{\dagger} L+\bar{N} Y_{N} H L+\mathrm{h.c} .\right) \\
& +D_{\mu} H^{\dagger} D^{\mu} H-\lambda\left(H^{\dagger} H\right)^{2}+\tilde{\theta} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}
\end{aligned} \\
& \mathscr{L}_{D=5}=\frac{1}{\Lambda}\left\{c_{1}(L H)(L H)+c_{2}(N N) H^{\dagger} H+c_{3}\left(N \sigma_{\mu \nu} N\right) B^{\mu \nu}\right\}+\text { h.c. }
\end{aligned}
$$

$\mathscr{L}_{D=6}=$	$\psi^{2} H^{3}$		$\psi^{2} H^{2} D$		$\psi^{2} H X(+$ h.c. $)$	
	$\mathscr{O}_{L N H}(+$ h.c. $)$	$(\bar{L} N) \tilde{H}\left(H^{\dagger} H\right)$	$\begin{gathered} \hline \mathscr{O}_{H N} \\ \mathscr{O}_{H N e}(+ \text { h.c. }) \end{gathered}$	$\begin{gathered} \left(\bar{N} \gamma^{\mu} N\right)\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right) \\ \left(\bar{N} \gamma^{\mu} e\right)\left(\tilde{H}^{\dagger} i D_{\mu} H\right) \end{gathered}$	$\begin{aligned} & \mathscr{O}_{N B} \\ & \mathscr{O}_{N W} \end{aligned}$	$\begin{gathered} \left(\bar{L} \sigma_{\mu v} N\right) \tilde{H} B^{\mu v} \\ \left(\bar{L} \sigma_{\mu v} N\right) \tau^{I} \tilde{H} W^{I \mu v} \end{gathered}$
	$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$		$(\bar{L} R)(\bar{L} R)(+$ h.c. $)$	
	$\mathscr{O}_{N N}$ $\mathscr{O}_{e N}$ $\mathscr{O}_{u N}$ $\mathscr{O}_{d N}$ $\mathscr{O}_{d u N e}(+$ h.c. $)$	$\begin{gathered} \hline\left(\bar{N} \gamma^{\mu} N\right)\left(\bar{N} \gamma_{\mu} N\right) \\ \left(\bar{e} \gamma^{\mu} e\right)\left(\bar{N} \gamma_{\mu} N\right) \\ \left(\bar{u} \gamma^{u} u\right)\left(\bar{N} \gamma^{\prime} N\right) \\ \left(\bar{d} \gamma^{\mu} d\right)\left(\bar{N} \gamma_{\mu} N\right) \\ \left(\bar{d} \gamma^{\mu} u\right)\left(\bar{N} \gamma_{\mu} e\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathscr{O}_{L N} \\ & \mathscr{O}_{Q N} \end{aligned}$	$\begin{aligned} & \left(\bar{L} \gamma^{\mu} L\right)\left(\bar{N} \gamma_{\mu} N\right) \\ & \left(\bar{Q} \gamma^{u} Q\right)\left(\bar{N} \gamma_{\mu} N\right) \end{aligned}$	$\begin{aligned} & \mathscr{O}_{L N L e} \\ & \mathscr{O}_{L N Q d} \\ & \mathscr{O}_{L d Q N} \end{aligned}$	$\begin{gathered} (\bar{L} N) \varepsilon(\bar{L} e) \\ (\bar{L} N) \varepsilon(\bar{Q} d)) \\ (\bar{L} d) \varepsilon(\bar{Q} N) \end{gathered}$
	$(\bar{L} R)(\bar{R} L)$		$(\mathbb{L} \cap B)(+$ h.c. $)$		$(\underline{L} \cap \boldsymbol{B})(+$ h.c. $)$	
	$\mathscr{O}_{\text {QuNL }}(+$ h.c. $)$	$(\bar{Q} u)(\bar{N} L)$	$\mathscr{O}_{N N N N}$	$(N C N)(N C N)$	$\begin{gathered} \mathscr{O}_{Q Q d N} \\ \mathscr{O}_{u d d N} \\ \hline \end{gathered}$	$\begin{gathered} \varepsilon_{i j} \varepsilon_{\alpha \beta \sigma}\left(Q_{\alpha}^{i} C Q_{\beta}^{j}\right)\left(d_{\sigma} C N\right) \\ \varepsilon_{\alpha \beta \sigma}\left(u_{\alpha} C d_{\beta}\right)\left(d_{\sigma} C N\right) \\ \hline \end{gathered}$

Liao, Ma arXiv:1612.04527

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $S U(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Higgs field

	G_{μ}^{a}	W_{μ}^{k}	B_{μ}	1
	SU(3) c	SU(2) w	U(1) Y	Spin
$\mathrm{Q}=\left(\mathrm{UL}_{\mathrm{L}}, \mathrm{d}_{\mathrm{L}}\right)$	3	2	1/6	1/2
UR_{R}	3	1	2/3	1/2
d_{R}	3	1	-1/3	1/2
$\underline{L}=\left(\mathrm{V}_{\mathrm{L}, \mathrm{e}} \mathrm{e}\right)$	1	2	-1/2	1/2
$\Theta_{\text {e }}$	1	1	-1	1/2
H	1	2	1/2	0
a	1	1	1	0

Maybe not, because

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $S U(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to $\operatorname{SU}(3) x U(1)$ by a VEV of the Highs field

Maybe not, because

might as well exist

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $S U(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to $\operatorname{SU}(3) x U(1)$ by a VEV of the Highs field

$$
\begin{aligned}
& \text { All in all, } \\
& \text { assumption \#2 is reasonable, } \\
& \text { but it is a serious leap of faith }
\end{aligned}
$$

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Higgs field

	G_{μ}^{a}	W_{μ}^{k}	B_{μ}	1
	SU(3)c	SU(2)w	U (1) r	Spin
$\mathrm{Q}=\left(\mathrm{UL}_{\mathrm{L}, \mathrm{d}}^{\mathrm{L}}\right.$)	3	2	1/6	1/2
u_{R}	3	1	2/3	1/2
d_{R}	3	1	-1/3	1/2
$\mathrm{L}=\left(\mathrm{V}_{\left.\mathrm{L}, \mathrm{e}_{\mathrm{L}}\right)}\right.$	1	2	-1/2	1/2
e_{R}	1	1	-1	1/2
H	1	2	1/2	0

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) x S U(2) x U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Highs field

Why should physics beyond SM
respect the SM gauge symmetry?

Gauge symmetry

- Gauge symmetries are not real symmetries, in the sense that they do not relate distinct physical states (unlike global symmetries)
- Instead, gauge symmetries are now understood as a redundancy of our theoretical description of fundamental interactions
- As explained e.g. in Weinberg's QFT vol 1 sec 5.9 , this redundancy is inevitable if one wants to write down a Lagrangian containing massless gauge bosons in a manifestly Lorentz-invariant way
- Since we need a gauge symmetry for each massless gauge bosons, thus the EFT for SM degrees of freedom must have at least $\mathrm{SU}(3) \times U(1)$ symmetry

HEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to $\operatorname{SU}(3) x U(1)$ by a VEV of the Higgs field

$$
\begin{aligned}
& \text { We can work with HEFT } \\
& \text { where only SUA } 3 \text {)eUH(1) } \\
& \text { is linearly realized }
\end{aligned}
$$

Two mathematical formulations for effective theories with SM spectrum

SU(3)c x SU(2) x U(1) y

Non-linearly realized electroweak symmetry
$S U(3) c \times U(1)_{\mathrm{em}}$

$$
L \in S U(2)_{L} \quad R \in U(1)_{Y}
$$

$$
H \rightarrow L H
$$

$$
U \rightarrow L U R^{\dagger} \quad h \rightarrow h
$$

$H=\frac{1}{\sqrt{2}}\binom{i G_{1}+G_{2}}{\mathrm{v}+h+i G_{3}} \quad \begin{gathered}\text { 125 GeV Higgs boson } \\ \text { Goldstone bosons } \\ \text { eaten by W and 2 }\end{gathered} \quad U=\exp \left(\frac{i \pi^{a} \sigma^{a}}{\mathrm{v}}\right)$
In general, the two formulations lead to two distinct effective theories

Higgs VEV $v \approx 246 \mathrm{GeV}$

Expansion parameter $v \approx 246 \mathrm{GeV}$

Linear vs non-linear: Higgs self-couplings

In the SM
self-coupling completely fixed...

$$
\mathscr{L}_{\mathrm{SM}} \supset m^{2}|H|^{2}-\lambda|H|^{4}
$$

$$
\rightarrow-\frac{1}{2} m_{h}^{2} h^{2}-\frac{m_{h}^{2}}{2 \mathrm{v}} h^{3}-\frac{m_{h}^{2}}{8 \mathrm{v}^{2}} h^{4}
$$

...but they can be deformed by BSM effects

$\mathscr{L}_{\mathrm{SMEFT}}=\mathscr{L}_{\mathrm{SM}}-\frac{c_{6}}{\Lambda^{2}}|H|^{6}+\mathcal{O}\left(\Lambda^{-4}\right) \left\lvert\, \mathscr{L}_{\mathrm{HEFT}} \supset-c_{3} \frac{m_{h}^{2}}{2 \mathrm{v}} h^{3}-c_{4} \frac{m_{h}^{2}}{8 \mathrm{v}^{2}} h^{4}-\frac{c_{5}}{\mathrm{v}} h^{5}-\frac{c_{6}}{\mathrm{v}^{2}} h^{6}+\ldots\right.$
$\mathscr{L}_{\text {SMEFT }} \supset-\frac{m_{h}^{2}}{2 \mathrm{v}}\left(1+\delta \lambda_{3}\right) h^{3}-\frac{m_{h}^{2}}{8 \mathrm{v}^{2}}\left(1+\delta \lambda_{4}\right) h^{4}-\frac{\lambda_{5}}{\mathrm{v}} h^{5}-\frac{\lambda_{6}}{\mathrm{v}^{2}} h^{6}$
$\delta \lambda_{3}=\frac{2 c_{6} \mathrm{v}^{4}}{m_{h}^{2} \Lambda^{2}}, \delta \lambda_{4}=\frac{12 c_{6} \mathrm{v}^{4}}{m_{h}^{2} \Lambda^{2}}, \lambda_{5}=\frac{3 c_{6} \mathrm{v}^{2}}{4 \Lambda^{2}}, \lambda_{6}=\frac{c_{6} \mathrm{v}^{2}}{8 \Lambda^{2}}$

SMEFT: Predicts correlations between self-couplings as long as $\Lambda \gg v$

HEFT: no correlations between self-couplings

- SMEFT and HEFT lead to a vastly different phenomenology at the electroweak scale
- Choosing SMEFT or HEFT implicitly entails an assumption about a class of BSM theories that we want to characterize
- SMEFT is appropriate to describe BSM theories which can be parametrically decoupled, that is to say, where the mass scale of the new particles depends on a free parameter(s) that can be taken to infinity
- Conversely, HEFT is appropriate to describe nondecoupling BSM theories, where the masses of the new particles vanish in the limit $v \rightarrow 0$

Example: cubic Higgs deformation

Consider a toy EFT model where Higgs cubic (and only that) deviates from the SM

$$
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}-\Delta_{3} \frac{m_{h}^{2}}{2 \mathrm{~V}} h^{3}
$$

$$
V(h)=\frac{m_{h}^{2}}{2} h^{2}+\frac{m_{h}^{2}}{2 \mathrm{v}}\left(1+\Delta_{3}\right) h^{3}+\frac{m_{h}^{2}}{8 \mathrm{v}^{2}} h^{4}
$$

This EFT belongs to the HEFT but not SMEFT parameter space

$$
\begin{equation*}
V(h)=\frac{m_{h}^{2}}{2} h^{2}+\frac{m_{h}^{2}}{2 \mathrm{v}}\left(1+\Delta_{3}\right) h^{3}+\frac{m_{h}^{2}}{8 \mathrm{v}^{2}} h^{4} \tag{1}
\end{equation*}
$$

Given a Lagrangian for Higgs boson h, one can always uplift it to a manifestly $\operatorname{SU}(2) \times U(1)$ invariant form by replacing

$$
h \rightarrow \sqrt{2 H^{\dagger} H}-\mathrm{v}
$$

After this replacement, Higgs potential contains terms non-analytic at $\mathbf{H}=\mathbf{0}$

$$
\begin{equation*}
V(H)=\frac{m_{h}^{2}}{8 \mathrm{v}^{2}}\left(2 H^{\dagger} H-\mathrm{v}^{2}\right)^{2}+\Delta_{3} \frac{m_{h}^{2}}{2 \mathrm{v}}\left(\sqrt{2 H^{\dagger} H}-\mathrm{v}\right)^{3} \tag{2}
\end{equation*}
$$

(1) and (2) are equal in the unitary gauge

$$
H \rightarrow \frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

Thus, (1) and (2) describe the same physics

Non-analytic Higgs potential

$$
V(H)=\frac{m_{h}^{2}}{8 \mathrm{v}^{2}}\left(2 H^{\dagger} H-\mathrm{v}^{2}\right)^{2}+\Delta_{3} \frac{m_{h}^{2}}{2 \mathrm{v}}\left(\sqrt{2 H^{\dagger} H}-\mathrm{v}\right)^{3}
$$

In the unitary gauge, the Higgs potential looks totally healthy and renormalizable...

Going away from the unitary gauge:

$$
\begin{array}{r}
H=\frac{1}{\sqrt{2}}\binom{i G_{1}+G_{2}}{\mathrm{v}+h+i G_{3}} \quad V \supset \Delta_{3} \frac{m_{h}^{2}}{2 \mathrm{v}}\left(\sqrt{(h+\mathrm{v})^{2}+G^{2}}-\mathrm{v}\right)^{3} \\
G^{2} \equiv \sum_{i} G_{i}^{2}
\end{array}
$$

Away from the unitary gauge, it becomes clear that the Higgs potential contains non-renormalizable interactions suppressed only by the EW scale v

$$
V \supset \Delta_{3} \frac{3 m_{h}^{2}}{4 \mathrm{~V}} \frac{G^{2} h^{2}}{h+\mathrm{v}}+\mathcal{O}\left(G^{4}\right)=\Delta_{3} \frac{3 m_{h}^{2}}{4} G^{2} \sum_{n=2}^{\infty}\left(\frac{-h}{\mathrm{~V}}\right)^{n}+\mathcal{O}\left(G^{4}\right)
$$

Consider VBF production of $\mathrm{n} \geq 2$ Higgs bosons: $\quad V_{L} V_{L} \rightarrow n \times h$
By the equivalence theorem, at high energies the same as $G G \rightarrow n \times h$

Expanded potential contains interactions

$$
V \supset=\Delta_{3} \frac{3 m_{h}^{2}}{4} G^{2} \sum_{n=2}^{\infty}\left(\frac{-h}{\mathrm{v}}\right)^{n}
$$

leading to interaction vertices with arbitrary number of Higgs bosons

$$
\mathscr{M}(G G \rightarrow \underbrace{h \ldots h}) \sim \Delta_{3} \frac{n!m_{h}^{2}}{\mathrm{v}^{n}}
$$

n

Amplitudes for multi-Higgs production in W/Z boson fusion are only suppressed by the scale v and do not decay with growing energy, leading to unitarity loss at some scale right above v

S matrix unitarity $\quad S^{\dagger} S=1$
implies relation between forward scattering amplitude, and elastic and inelastic production cross sections
$2 \operatorname{Im} . \mathscr{M}\left(p_{1} p_{2} \rightarrow p_{1} p_{2}\right)=S_{2} \int d \Pi_{2}\left|\mathscr{M}^{\text {elastic }}\left(p_{1} p_{2} \rightarrow k_{1} k_{2}\right)\right|^{2}+\sum S_{n} \int d \Pi_{n}\left|\mathscr{M}^{\text {inelastic }}\left(p_{1} p_{2} \rightarrow k_{1} \ldots k_{n}\right)\right|^{2}$
Equation is "diagonalized" after
initial and final 2-body state are projected into partial waves

$$
\begin{gathered}
a_{l}(s)=\frac{S_{2}}{16 \pi} \sqrt{1-\frac{4 m^{2}}{s}} \int_{-1}^{1} d \cos \theta P_{l}(\cos \theta) \mathcal{M}(s, \cos \theta), \\
2 \operatorname{Im} a_{l}=a_{l}^{2}+\sum S_{n} \int d \prod_{n}\left|\mathscr{M}_{l}^{\text {inelastic }}\right|^{2}
\end{gathered}
$$

This can be rewritten as the Argand circle equation

$$
\left(\operatorname{Re} a_{l}\right)^{2}+\left(\operatorname{Im} a_{l}-1\right)^{2}=R_{l}^{2}, \quad R_{l}^{2}=1-\sum S_{n} \int d \Pi_{n}\left|\mathscr{M}_{l}^{\text {inelastic }}\right|^{2}
$$

Unitarity primer

Argand circle equation

$$
\left(\operatorname{Re} a_{l}\right)^{2}+\left(\operatorname{Im} a_{l}-1\right)^{2}=R_{l}^{2}, \quad R_{l}^{2}=1-\sum S_{n} \int d \Pi_{n}\left|\mathscr{M}_{l}^{\text {inelastic }}\right|^{2}
$$

implies constraints on both elastic and inelastic amplitudes

Often used
$\left|\operatorname{Re} a_{l}\right| \leq 1$
$\sum S_{n}\left|d \Pi_{n}\right| \cdot\left|l_{l}^{\text {ieasasicic }}\right|^{2} \leq 1$

Unitarity constraints on inelastic channels

Unitarity (strong coupling) constraint on inelastic multi-Higgs production

$$
\sum_{n=2}^{\infty} \frac{1}{n!} \int d \Pi_{n}\left|\mathscr{M}\left(G G \rightarrow h^{n}\right)\right|^{2}=\sum_{n=2}^{\infty} \frac{1}{n!} V_{n}(\sqrt{s})\left|\mathscr{M}\left(G G \rightarrow h^{n}\right)\right|^{2} \lesssim \mathcal{O}(1)
$$

Volume of phase space in the massless limit:

$$
V_{n}(\sqrt{s})=\int d \Pi_{n}=\frac{s^{n-2}}{2(n-1)!(n-2)!(4 \pi)^{2 n-3}} \sim \frac{s^{n-2}}{(n!)^{2}(4 \pi)^{2 n}}
$$

In a fundamental theory, $2 \rightarrow \mathrm{n}$ amplitude must decay as $1 / \mathrm{s}^{\mathrm{n} / 2-1}$ in order to maintain unitarity up to arbitrary high scales

Process	Unitarity limit
$2 \rightarrow 2$	1
$2 \rightarrow 3$	$1 / s^{1 / 2}$
$2 \rightarrow 4$	$1 / s$
\ldots	\ldots

Unitarity constraints on HEFT

Unitarity equation

$$
\sum_{n=2}^{\infty} \frac{1}{n!} V_{n}(\sqrt{s})\left|\mathscr{M}\left(G G \rightarrow h^{n}\right)\right|^{2} \lesssim \mathcal{O}(1)
$$

Our amplitude

$$
\mathscr{M}(G G \rightarrow \underbrace{h \ldots h}_{n}) \sim \Delta_{3} \frac{n!m_{h}^{2}}{\mathrm{v}^{n}}
$$

$\mathcal{O}(1) \gtrsim \sum_{n=2}^{\infty} \frac{1}{n!} V_{n}(\sqrt{s})\left|\mathscr{M}\left(G G \rightarrow h^{n}\right)\right|^{2} \sim \sum_{n=2}^{\infty} \frac{1}{n!} \frac{s^{n-2}}{(n!)^{2}(4 \pi)^{2 n}} \Delta_{3}^{2} \frac{(n!)^{2} m_{h}^{4}}{\mathrm{v}^{2 n}} \sim \frac{\Delta_{3}^{2} m_{h}^{4}}{s^{2}} \exp \left[\frac{s}{(4 \pi \mathrm{v})^{2}}\right]$
In model with deformed Higgs cubic, multi-Higgs amplitude do not decay with energy leading to unitarity loss at a finite value of energy

$$
\Lambda \lesssim(4 \pi \mathrm{v}) \log ^{1 / 2}\left(\frac{4 \pi \mathrm{v}}{m_{h}\left|\Delta_{3}\right|^{1 / 2}}\right)
$$

Unless Δ_{3} is unobservably small, unitarity loss happens at the scale $4 \pi \mathrm{v} \sim 3 \mathrm{TeV}$!

Perspective on HEFT

Example of UV model leading to non-analytic terms in low-energy effective theory

$$
\mathscr{L}_{\mathrm{UV}}=\mathscr{L}_{\mathrm{SM}}-\frac{\kappa}{2}|\Phi|^{4}+\mu^{2}\left(\Phi^{\dagger} H+\mathrm{h} . \mathrm{c} .\right)
$$

Eqs of motion:

$$
\Phi=\left(\frac{\mu^{2}}{\kappa H^{\dagger} H}\right)^{1 / 3} H
$$

Effective Lagrangian:

$$
\mathscr{L}_{\mathrm{EFT}} \approx \mathscr{L}_{\mathrm{SM}}+\frac{3 \mu^{8 / 3}}{2 \kappa^{1 / 3}}\left(H^{\dagger} H\right)^{2 / 3}
$$

Non-analyticity appears because of integrating out particle that would be massless in the absence of EW symmetry breaking

Perspective on HEFT

More familiar example is integrating out 4th chiral generation at one loop, which produces Log $|\mathrm{H}|^{2}$ terms in the Coleman-Weinberg potential

Below a similar example with scalar instead of fermion:

$$
\mathcal{L}_{\mathrm{UV}}=|\partial H|^{2}+\mu_{H}^{2}|H|^{2}-\lambda_{H}|H|^{4}+\frac{1}{2} S\left(-\partial^{2}-m^{2}-\kappa|H|^{2}\right) S
$$

Cohen et al arXiv:2008.08597

Integrating out the scalar S at one produces the CW potential:

$$
\int \mathrm{d}^{4} x \mathcal{L}_{\text {Eff, 1-loop }}(H)=\frac{i}{2} \log \operatorname{det}_{S}\left(\partial^{2}+m^{2}+\kappa|H|^{2}\right)
$$

Effective Lagrangian at zero and two derivative levels:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Eff}}^{(0)} & =\mu_{H}^{2}|H|^{2}-\lambda_{H}|H|^{4}+\frac{1}{64 \pi^{2}}\left(m^{2}+\kappa|H|^{2}\right)^{2}\left(\ln \frac{\mu^{2}}{m^{2}+\kappa|H|^{2}}+\frac{3}{2}\right) \\
\mathcal{L}_{\mathrm{Eff}}^{(2)} & =|\partial H|^{2}+\frac{1}{384 \pi^{2}} \frac{\kappa^{2}}{m^{2}+\kappa|H|^{2}}\left(\partial|H|^{2}\right)^{2}
\end{aligned}
$$

For $m^{2} \gg \kappa \mathrm{v}^{2}$ we can expand in powers if $1 / m^{2}$, which leads to analytic SMEFT Lagrangian For $m^{2} \ll \kappa v^{2}$ we cannot expand, and effective Lagrangian is non-analytic, which corresponds to HEFT

- EFT with non-linearly realized electroweak symmetry (aka HEFT) is equivalent to EFT with linearly realized electroweak symmetry but whose Lagrangian is a non-polynomial function of the Higgs field that is non-analytic at $\mathrm{H}=0$
- This non-analyticity leads to explosion of multi-Higgs amplitudes at the scale $4 \pi v$. For this reason, the validity regime of HEFT is limited below the scale of order $4 \pi v \sim 3 \mathrm{TeV}$
- HEFT is useful to approximate BSM theories where new particles' masses vanish in the limit $v \rightarrow 0$, e.g. $\mathrm{SM}+\mathrm{a} 4$ th generation of chiral fermions or when most of the new particle mass comes from EW symmetry breaking
- On the other hand, an EFT with linearly realized electroweak symmetry and the Lagrangian polynomial in the Higgs field (aka SMEFT) is useful to approximate BSM theories where new particles' masses do not vanish in the limit $v \rightarrow 0$, and are parametrically larger than the electroweak scale, e.g. SM + vector-like fermions

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) x S U(2) x U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Highs field

SMEFT

But are these assumptions true?

1. Unitarity, locality, Poincaré symmetry
2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
3. Gauge symmetry: local $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Highs field

$$
\begin{aligned}
& \text { In assumptions \#2 and \#3 are related } \\
& \text { \#3 means that the mass gap is such that } \\
& \qquad \Lambda \gtrsim 4 \pi \mathrm{v} \sim 3 \mathrm{TeV}
\end{aligned}
$$

Part 4

Bases of SMEFT

Bases of EFT

- Quantum field theories formulated in terms of fields and Lagrangians have an important redundancy, in addition to the gauge symmetry redundancy
- The point is that quantum fields are not physical observables, but merely tools in our computations, akin to integration variables under the integral
- Continuing with this analogy, changing variables, that is field redefinitions, do not change the physical content of the theory. However they do change the Lagrangian!
- Therefore Lagrangian parameters are "measurable" only after (redundant) operators in the same equivalence classes are eliminated. This can be done in practice by eliminating certain terms using equations of motion for the EFT fields, as this is equivalent to using field redefinitions.
- Since the elimination of redundant operators can be performed in many different manners, a single EFT corresponds to an infinite number of Lagrangians that lead to equivalent results. For a given canonical dimension, these different Lagrangians are called bases.
- Thus, the SMEFT has an infinite number of equivalent bases, at each canonical dimension. They are multi-dimensional, e.g. at dimension 6 each basis has 3045 different interaction terms
- To illustrate the concept of the basis, let us first consider a simpler toy example, where the dimension- 6 basis has one element

Toy model EFT Lagrangian

Consider an EFT of a single real scalar field ϕ with Z2 symmetry $\phi \rightarrow-\phi$
By general arguments, the EFT Lagrangian must have the following form

$$
\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4!}-\frac{C_{6}}{\Lambda^{2}} \frac{\phi^{6}}{6!}+\mathcal{O}\left(\Lambda^{-4}\right)
$$

In this discussion we truncate the Lagrangian at order Λ^{-4}, ignoring all operators with dimension higher than six

Operators with odd dimensions do not appear in this EFT because of the $\mathbf{Z 2}$ symmetry

What about other dimension-6 operators, e.g.

$$
\hat{O}_{6} \equiv(\square \phi)^{2}, \quad \tilde{O}_{6} \equiv \phi \square \phi^{3}, \quad \tilde{O}_{6}^{\prime} \equiv \phi^{2} \square \phi^{2}, \quad \tilde{O}_{6}^{\prime \prime} \equiv \phi^{2} \partial_{\mu} \phi \partial_{\mu} \phi,
$$

These are all redundant, that is to say, they can be expressed by the operators already present in $\mathscr{L}_{\mathrm{EFT}}$ by using equations of motion, fields redefinitions, and integration by parts

Redundant operators

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4!}-\frac{C_{6}}{\Lambda^{2}} \frac{\phi^{6}}{6!}+\mathcal{O}\left(\Lambda^{-4}\right) \\
& O_{6} \equiv \phi^{6}, \quad \hat{O}_{6} \equiv(\square \phi)^{2}, \quad \tilde{O}_{6} \equiv \phi^{3} \square \phi, \quad \tilde{O}_{6}^{\prime} \equiv \phi^{2} \square \phi^{2}, \quad \tilde{O}_{6}^{\prime \prime} \equiv \phi^{2} \partial_{\mu} \phi \partial_{\mu} \phi, \quad \ldots \\
& \text { Use Leibniz rule + integration by parts: } \\
& \phi^{2} \partial_{\mu} \phi \partial_{\mu} \phi=-2 \phi \partial_{\mu} \phi \partial_{\mu} \phi \phi-\phi^{3} \square \phi \quad \Rightarrow \quad \tilde{O}_{6}^{\prime \prime}=-\frac{1}{3} \phi^{3} \square \phi=-\frac{1}{3} \tilde{O}_{6} \\
& \phi^{2} \square \phi^{2}=2 \phi^{2} \partial_{\mu}\left(\phi \partial_{\mu} \phi\right)=2 \phi^{3} \square \phi+2 \phi^{2}\left(\partial_{\mu} \phi\right)^{2} \quad \Rightarrow \quad \tilde{O}_{6}^{\prime}=2 \tilde{O}_{6}+2 \tilde{O}_{6}^{\prime \prime}=\frac{4}{3} \tilde{O}_{6}
\end{aligned}
$$

$$
\text { Use equations of motion: } \square \phi=-m^{2} \phi-\frac{C_{4}}{6} \phi^{3}+\mathcal{O}\left(\Lambda^{-2}\right)
$$

$$
\tilde{O}_{6} \equiv \phi^{3} \square \phi=-m^{2} \phi^{4}-\frac{C_{4}}{6} \phi^{6}=-m^{2} O_{4}-\frac{C_{4}}{6} O_{6}
$$

This is relevant only if we want to keep track of dimension-8 operators
$\hat{O}_{6} \equiv(\square \phi)^{2}=m^{4} \phi^{2}+\frac{m^{2} C_{4}}{3} \phi^{4}+\frac{C_{4}^{2}}{36} \phi^{6}=m^{4} O_{2}+\frac{m^{2} C_{4}}{3} O_{4}+\frac{C_{4}^{2}}{36} O_{6}$

$$
\begin{aligned}
& O_{2} \equiv \phi^{2} \\
& O_{4} \equiv \phi^{4}
\end{aligned}
$$

Bases of operators

"Unbox basis"

$\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4!}-\frac{C_{6}}{\Lambda^{2}} \frac{\phi^{6}}{6!}+\mathcal{O}\left(\Lambda^{-4}\right)$
We can equivalently use an EFT Lagrangian where O_{6} is absent, and replaced by another equivalent operator

$$
\tilde{O}_{6} \equiv \phi^{3} \square \phi=-m^{2} O_{4}-\frac{C_{4}}{6} O_{6} \Rightarrow O_{6}=-\frac{6}{C_{4}} \phi^{3} \square \phi-\frac{6 m^{2}}{C_{4}} O_{4}
$$

$$
\begin{aligned}
& O_{2} \equiv \phi^{2} \\
& O_{4} \equiv \phi^{4} \\
& O_{6} \equiv \phi^{6}
\end{aligned}
$$

"Box basis"
$\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-\tilde{m}^{2} \phi^{2}\right]-\tilde{C}_{4} \frac{\phi^{4}}{4!}-\frac{\tilde{C}_{6}}{\Lambda^{2}} \frac{\phi^{3} \square \phi}{4!}+\mathcal{O}\left(\Lambda^{-4}\right)$

Map between
the Wilson coefficients
in the two bases:

$$
\begin{aligned}
& \tilde{C}_{6}=-\frac{C_{6}}{5 C_{4}} \\
& \tilde{C}_{4}=C_{4}-\frac{m^{2}}{\Lambda^{2}} \frac{C_{6}}{5 C_{4}} \\
& \tilde{m}=m
\end{aligned}
$$

Bases of operators

"Unbox basis"

$\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4!}-\frac{C_{6}}{\Lambda^{2}} \frac{\phi^{6}}{6!}+\mathcal{O}\left(\Lambda^{-4}\right)$
We can equivalently use an EFT Lagrangian where O_{6} is absent, and replaced by another equivalent operators
$\hat{O}_{6} \equiv(\square \phi)^{2}=m^{4} \phi^{2}+\frac{m^{2} C_{4}}{3} \phi^{4}+\frac{C_{4}^{2}}{36} \phi^{6} \quad \Rightarrow \quad O_{6}=\frac{36}{C_{4}^{2}} \hat{O}_{6}-12 \frac{m^{2}}{C_{4}} O_{4}+\frac{36 m^{4}}{C_{4}^{2}} O_{2}$
$O_{2} \equiv \phi^{2}$
$O_{4} \equiv \phi^{4}$
$O_{6} \equiv \phi^{6}$
"Double-Box basis"
$\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-\hat{m}^{2} \phi^{2}\right]-\hat{C}_{4} \frac{\phi^{4}}{4!}-\frac{\hat{C}_{6}}{\Lambda^{2}} \frac{(\square \phi)^{2}}{2}+\mathcal{O}\left(\Lambda^{-4}\right)$

Map between the Wilson coefficients in the two bases

$$
\begin{aligned}
& \hat{C}_{6}=-\frac{C_{6}}{10 C_{4}^{2}} \\
& \hat{C}_{4}=C_{4}-\frac{m^{2}}{\Lambda^{2}} \frac{2 C_{6}}{5 C_{4}} \\
& \hat{m}^{2}=m^{2}-\frac{m^{4}}{\Lambda^{2}} \frac{C_{6}}{30 C_{4}^{2}}
\end{aligned}
$$

Bases of operators

Every EFT has an infinite number of equivalent bases

Physics is independent of which basis we use, but the Lagrangian and intermediate calculations look different in different bases!

In our toy example, a basis of dimension-6 operators is one dimensional (to be compared e.g. with the -dimensional basis of dimension-6 operators in the SMEFT)

Bases of operators

Consider 2-to-2 scattering in the box and unbox bases
"Unbox basis"

$$
\text { Map } \begin{aligned}
& \tilde{C}_{6}=-\frac{C_{6}}{5 C_{4}} \\
& \tilde{C}_{4}=C_{4}-\frac{m^{2}}{M^{2}} \frac{C_{6}}{5 C_{4}}
\end{aligned}
$$

$$
\begin{gathered}
\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4!}-\frac{C_{6}}{\Lambda^{2}} \frac{\phi^{6}}{6!}+\mathcal{O}\left(\Lambda^{-4}\right) \\
\mathscr{M}_{E F T}^{\mathrm{unbox}}=-C_{4}+\mathcal{O}\left(\Lambda^{-4}\right) \\
\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-\tilde{C}_{4} \frac{\phi^{4}}{4!}-\frac{\tilde{C}_{6}}{\Lambda^{2}} \frac{\phi^{3} \square \phi}{4!}+\mathcal{O}\left(\Lambda^{-4}\right) \\
\mathscr{M}_{E F T}^{\mathrm{box}}=-\tilde{C}_{4}+\frac{\tilde{C}_{6}}{4 \Lambda^{2}}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}\right)+\mathcal{O}\left(\Lambda^{-4}\right) \\
=-\tilde{C}_{4}+\tilde{C}_{6} \frac{m^{2}}{\Lambda^{2}}+\mathcal{O}\left(\Lambda^{-4}\right) \\
\frac{C_{6}}{C_{4}} \\
-\frac{m^{2}}{M^{2}} \frac{C_{6}}{5 C_{4}}
\end{gathered}
$$

SMEFT at dimension-6

$$
\mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\left(\mathscr{L}_{D=6}\right)+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots
$$

Grzadkowski et al arXiv:1008.4884

Warsaw basis of B-conserving dimension-6 operators

Bosonic CP-even

O_{H}	$\left(H^{\dagger} H\right)^{3}$
$O_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$
$O_{H D}$	$\left\|H^{\dagger} D_{\mu} H\right\|^{2}$
$O_{H G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$
$O_{H W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$
O_{W}	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
O_{G}	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Bosonic CP-odd

$O_{H \widetilde{G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H \widetilde{W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H \widetilde{B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
$O_{H \widetilde{W} B}$	$H^{\dagger} \sigma^{i} H \widetilde{W}_{\mu \nu}^{i} B_{\mu \nu}$
$O_{\widetilde{W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
$O_{\widetilde{G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

SMEFT at dimension-6

$\left(H^{\dagger} H\right)\left(D_{\mu} H^{\dagger} D_{\mu} H\right) \quad$ why it's not in Warsaw basis?

Integration by parts

$$
\begin{aligned}
& \left(H^{\dagger} H\right)\left(D_{\mu} H^{\dagger} D_{\mu} H\right)=\frac{1}{2}\left(H^{\dagger} H\right)\left[\square\left(H^{\dagger} H\right)-H^{\dagger} \square H-\square H^{\dagger} H\right] \\
& \partial_{\nu} B_{\nu \mu}=-\frac{i g_{Y}}{2} H^{\dagger} \overleftrightarrow{D_{\mu}} H-g_{Y} j_{\mu}^{Y}, \\
& \left(\partial_{\nu} W_{\nu \mu}^{i}+\epsilon^{i j k} g_{L} W_{\nu}^{j} W_{\nu \mu}^{k}\right)=D_{\nu} W_{\nu \mu}^{i}=-\frac{i}{2} g_{L} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H-g_{L} j_{\mu}^{i}, \\
& D_{\nu} G_{\nu \mu}^{a}=-g_{s} j_{\mu}^{a}, \\
& D_{\mu} D_{\mu} H=\mu_{H}^{2} H-2 \lambda\left(H^{\dagger} H\right) H-f^{c} y_{f} F
\end{aligned}
$$

$O_{H \square} \quad \mathrm{SM} \quad O_{H}$

$\left(H^{\dagger} H\right)\left(D_{\mu} H^{\dagger} D_{\mu} H\right)=\frac{1}{2}\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)-\mu_{H}^{2}\left(H^{\dagger} H\right)^{2}+2 \lambda\left(H^{\dagger} H\right)^{3}$

$$
+\frac{1}{2}\left(H^{\dagger} H\right)\left[f^{c} y_{J} H^{\dagger} F+\text { h.c. }\right]
$$

$\rho_{f: H}^{f}$

SMEFT at dimension-6

$$
\mathscr{L}_{\mathrm{SMEFT}}=\mathscr{L}_{D=2}+\mathscr{L}_{D=4}+\mathscr{L}_{D=5}+\left(\mathscr{L}_{D=6}\right)+\mathscr{L}_{D=7}+\mathscr{L}_{D=8}+\ldots
$$

Giudice et al hep-ph/0703164 Contino et al 1303.3876

SILH basis of B-conserving dimension-6 operators

Table 98: Two-fermion dimension-6 operators in the SIL H basis. They are the same as in the Warsaw basis, except that the operators $\left[O_{H \ell}\right]_{11},\left[O_{H \ell}^{\prime}\right]_{11}$ are absent by definition. We define $\sigma_{\mu \nu}=i\left[\gamma_{\mu}, \gamma_{\nu}\right] / 2$. In this table, e, u, d are always right-handed fermions, while ℓ and q are left-handed. For complex operators the complex conjugate operator is implicit.

Vertex	
$\left[O_{H \ell}\right]_{i j}$	$\frac{i}{v^{2}} \bar{\imath}_{i} \gamma_{\mu} \ell_{j} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H e}^{\prime}\right]_{i j}$	$\frac{i}{v^{2}} \bar{q}_{i} \sigma^{k} \gamma_{\mu} \ell_{j} H^{\dagger} \sigma^{k} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H e}\right]_{i j}$	$\frac{i}{v^{2}} \bar{e}_{i} \gamma_{\mu} \bar{e}_{j} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}\right]_{i j}$	$\frac{i}{v^{2}} \bar{q}_{i} \gamma_{\mu} q_{j} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}^{\prime}\right]_{i j}$	$\frac{i}{v^{2}} \bar{q}_{i} \sigma^{k} \gamma_{\mu} q_{j} H^{\dagger} \sigma^{k} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u}\right]_{i j}$	$\frac{i}{v^{2}} \bar{u}_{i} \gamma_{\mu} u_{j} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H d}\right]_{i j}$	$\frac{i}{v^{2}} \bar{d}_{i} \gamma_{\mu} d_{j} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u d}\right]_{i j}$	$\frac{i}{v^{2}} \bar{u}_{i} \gamma_{\mu} d_{j} \tilde{H}^{\dagger} D_{\mu} H$

	Yukawa and Dipole
$\left[O_{e}\right]_{i j}$ $\left[O_{u}\right]_{i j}$ $\left[O_{d}\right]_{i j}$ $\left[O_{e W}\right]_{i j}$ $\left[O_{e B}\right]_{i j}$ $\left[O_{u G}\right]_{i j}$ $\left[O_{u W}\right]_{i j}$ $\left[O_{u B}\right]_{i j}$ $\left[O_{d G}\right]_{i j}$ $\left[O_{d W}\right]_{i j}$ $\left[O_{d B}\right]_{i j}$	

Table 99: Four-fermion operators in the SILH basis. They are the same as in the Warsaw basis [614], except that the operators $\left[O_{\ell \ell}\right]_{1221},\left[O_{\ell \ell}\right]_{1122},\left[O_{u u}\right]_{3333}$ are absent by definition. In this table, e, u, d are always right-handed fermions, while ℓ and q are left-handed. A flavour index is implicit for each fermion field. For complex operator he complex conjugate operator is implicit.

$(\bar{L} L)(\bar{L} L)$ and $(\bar{L} R)(\bar{L} R)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$O_{\ell \ell}$	$\frac{1}{v^{2}}\left(\overline{\ell_{\mu}} \ell\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)$	$O_{e e}$	$\frac{1}{v^{2}}\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{e} \gamma_{\mu} e\right)$	$O_{\ell e}$	$\frac{1}{v^{2}}\left(\bar{\chi} \gamma_{\mu} \ell\right)\left(\bar{e} \gamma_{\mu} e\right)$
$O_{q q}$	$\frac{1}{v^{2}}\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{q} \gamma_{\mu} q\right)$	$O_{u u}$	$\frac{1}{v^{2}}\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{u} \gamma_{\mu} u\right)$	$O_{\ell u}$	$\frac{1}{v^{2}}\left(\bar{\ell} \gamma_{\mu} \ell\right)\left(\bar{u} \gamma_{\mu} u\right)$
$O_{q q}^{\prime}$	$\frac{1}{v^{2}}\left(\bar{q} \gamma_{\mu} \sigma^{i} q\right)\left(\bar{q} \gamma_{\mu} \sigma^{i} q\right)$	$O_{d d}$	$\frac{1}{v^{2}}\left(\bar{d} \gamma_{\mu} d\right)\left(\bar{d} \gamma_{\mu} d\right)$	$O_{\ell d}$	$\frac{1}{v^{2}}\left(\bar{\ell} \gamma_{\mu} \ell\right)\left(\bar{d} \gamma_{\mu} d\right)$
$O_{\ell q}$	$\frac{1}{v^{2}}\left(\bar{\ell} \gamma_{\mu} \ell\right)\left(\bar{q} \gamma_{\mu} q\right)$	$O_{e u}$	$\frac{1}{v^{2}}\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{u} \gamma_{\mu} u\right)$	$O_{e q}$	$\frac{1}{v^{2}}\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{e} \gamma_{\mu} e\right)$
$O_{\ell q}^{\prime}$	$\frac{1}{v^{2}}\left(\bar{\ell} \gamma_{\mu} \sigma^{i} \ell\right)\left(\bar{q} \gamma_{\mu} \sigma^{i} q\right)$	$O_{e d}$	$\frac{1}{v^{2}}\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{d} \gamma_{\mu} d\right)$	$O_{q u}$	$\frac{1}{v^{2}}\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{u} \gamma_{\mu} u\right)$
$O_{q u q d}$	$\frac{1}{v^{2}}\left(\bar{q}^{j} u\right) \epsilon_{j k}\left(\bar{q}^{k} d\right)$	$O_{u d}$	$\frac{1}{v^{2}}\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{d} \gamma_{\mu} d\right)$	$O_{q u}^{\prime}$	$\frac{1}{v^{2}}\left(\bar{q} \gamma_{\mu} T^{a} q\right)\left(\bar{u} \gamma_{\mu} T^{a} u\right)$
$O_{q u q d}^{\prime}$	$\frac{1}{v^{2}}\left(\bar{q}^{j} T^{a} u\right) \epsilon_{j k}\left(\bar{q}^{k} T^{a} d\right)$	$O_{u d}^{\prime}$	$\frac{1}{v^{2}}\left(\bar{u} \gamma_{\mu} T^{a} u\right)\left(\bar{d} \gamma_{\mu} T^{a} d\right)$	$O_{q d}$	$\frac{1}{v^{2}}\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{d} \gamma_{\mu} d\right)$
$O_{\ell \text { equ }}$	$\frac{1}{v^{2}}\left(\bar{\ell}^{j} e\right) \epsilon_{j k}\left(\bar{q}^{k} u\right)$			$O_{q d}^{\prime}$	$\frac{1}{v^{2}}\left(\bar{q} \gamma_{\mu} T^{a} q\right)\left(\bar{d} \gamma_{\mu} T^{a} d\right)$
$O_{\text {equ }}^{\prime}$	$\frac{1}{v^{2}}\left({ }^{\dagger}{ }^{j} \sigma_{\mu \nu} e\right) \epsilon_{j k}\left(\bar{q}^{k} \sigma^{\mu \nu} u\right)$				
$O_{\ell e d q}$	$\frac{1}{v^{2}}\left(\bar{\ell}{ }^{j} e\right)\left(\bar{d} q^{j}\right)$				

Part 5

Running in SMEFT

Back to toy model example

$$
\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4!}-\frac{C_{6}}{\Lambda^{2}} \frac{\phi^{6}}{6!}
$$

In this EFT, there is a single diagram contributing to ϕ mass at one loop

$$
\begin{aligned}
\delta M_{2}^{\mathrm{EFT}} & =-\frac{C_{4}}{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{i}{k^{2}-m^{2}} \\
& =C_{4} \frac{m^{2}}{32 \pi^{2}}\left[\frac{1}{\bar{\epsilon}}+\log \left(\frac{\mu^{2}}{m^{2}}\right)+1\right]
\end{aligned}
$$

Note that we use dimensional regularization, which is very convenient in the EFT context, as it does not introduce new mass scale, so it does not mess up the EFT power counting Furthermore, we will use the MSbar renormalization, simply dropping all $\frac{1}{\bar{\epsilon}}$ poles The physical ϕ mass in the EFT at one loop:

$$
m_{\mathrm{phys}}^{2}=m^{2}-C_{4} \frac{m^{2}}{32 \pi^{2}}\left[\log \left(\frac{\mu^{2}}{m^{2}}\right)+1\right]
$$

Running of the mass parameter

The physical mass is an observable in this model therefore it cannot depend on the arbitrary parameter μ

$$
\frac{d m_{\mathrm{phys}}^{2}}{d \log \mu}=0
$$

This means that the Lagrangian mass parameter, up to higher-loop corrections, must satisfy

$$
\frac{d m^{2}}{d \log \mu}=C_{4} \frac{m^{2}}{16 \pi^{2}}
$$

The solution is

$$
m^{2}(\mu)=m^{2}(\Lambda)\left(\frac{\mu}{\Lambda}\right)^{\frac{c_{4}}{16 \pi^{2}}}
$$

We can interpret μ as the renormalization group scale

This also shows that naive scaling of EFT parameters with Λ is modified by loop effects therefore the exponent is called the anomalous dimension

Note that, within the EFT, there is no hierarchy problem, that is to say, if $m^{2}(\Lambda) \ll \Lambda^{2}$ then $m^{2}(\mu) \ll \Lambda^{2}$ at all scales

Running of the quartic coupling

We move to one-loop matching of the quartic coupling

EFT calculation

$$
\mathscr{L}_{\mathrm{EFT}}=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4!}-\frac{C_{6}}{\Lambda^{2}} \frac{\phi^{6}}{6!}
$$

Answer

$$
\begin{aligned}
M_{4}^{\mathrm{EFT}} & =-C_{4}+\frac{C_{4}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)] \\
& +\frac{3 C_{4}^{2}}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \left(\frac{\mu^{2}}{m^{2}}\right)+2\right)+\frac{C_{6} m^{2}}{32 \pi^{2} \Lambda^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \left(\frac{\mu^{2}}{m^{2}}\right)+1\right)
\end{aligned}
$$

Running of the EFT quartic coupling

$$
\begin{gathered}
M_{4}^{\mathrm{EFT}}=-C_{4}+\frac{C_{4}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)]+\frac{3 C_{4}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+2\right)+\frac{C_{6} m^{2}}{32 \pi^{2} \Lambda^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+1\right) \\
\text { The observable is } \quad S_{4}^{\mathrm{EFT}} \equiv \frac{M_{4}^{\mathrm{EFT}}}{\left(1+\delta_{\phi}\right)^{2}} \quad \begin{array}{l}
\text { where } \delta_{\phi} \text { is wave }
\end{array} \\
\text { function renormalization }
\end{gathered}
$$

S_{4}^{EFT} can be related to the cross section, so it must not depend on μ
One can show that $\delta_{\phi}=0$ at one loop in the unbox basis
Therefore M_{4}^{EFT} cannot depend on the arbitrary parameter $\mu: \quad \frac{d M_{4}^{\mathrm{EFT}}}{d \log \mu}=0$
This means that the Lagrangian parameters, up to higher-loop corrections, must satisfy

$$
\frac{d C_{4}}{d \log \mu}=\frac{3 C_{4}^{2}}{16 \pi^{2}}+\frac{C_{6} m^{2}}{16 \pi^{2} \Lambda^{2}}
$$

Note that higher-order Wilson coefficients affect the running of lower-order Wilson coefficients, but not vice versa

$$
M_{4}^{\mathrm{EFT}}=-C_{4}(\mu)+\frac{C_{4}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)]+\frac{3 C_{4}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+2\right)+\frac{C_{6} m^{2}}{32 \pi^{2} \Lambda^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+1\right)
$$

$$
\frac{d C_{4}}{d \log \mu}=\frac{3 C_{4}^{2}}{16 \pi^{2}}+\frac{C_{6} m^{2}}{16 \pi^{2} \Lambda^{2}}
$$

$$
C_{4}(\mu) \approx C_{4}(m)+\frac{3 C_{4}^{2}}{16 \pi^{2}} \log \left(\frac{\mu}{m}\right)+\frac{C_{6} m^{2}}{16 \pi^{2} \Lambda^{2}} \log \left(\frac{\mu}{m}\right)
$$

$M_{4}^{\mathrm{EFT}}=-C_{4}(m)+\frac{C_{4}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)+6]+\frac{C_{6} m^{2}}{32 \pi^{2} \Lambda^{2}}$

No large logarithms in the EFT if we use the couplings evolve down to the characteristic mass scale The potentially problematic $\log (\mu / \Lambda)$ terms are all hidden (resummed) in the running Wilson coefficient $\mathrm{C}_{4}(\mathrm{~m})$

Running in SMEFT

Running of dimension-6 Wilson coefficients

$$
\frac{d C_{k}}{d \log \mu}=[\gamma]_{k l} C_{l}
$$

C_{k} is a vector of all dimension-6 Wilson coefficients in a given basis $[\gamma]$ is the matrix of anomalous dimensions

For Warsaw basis complete matrix [γ] written down in series of papers:

Jenkins et al
arXiv: 1308.2627, 1310.4838,1312.2014

Running in SMEFT

Example: running of SILH operators most relevant for Higgs physics:

Elias-Miro et al 1308.1879

$\begin{gathered} \mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}\|H\|^{2}\right)^{2} \\ \mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \stackrel{\rightharpoonup}{D}_{\mu} H\right)^{2} \\ \mathcal{O}_{6}=\lambda\|H\|^{6} \end{gathered}$
$\begin{gathered} \hline \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\ \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \\ --\mathcal{O}_{2 W}=-\frac{1}{2}\left(\bar{D}^{\bar{\mu}} W_{\mu \nu}^{a}{ }^{-}\right)^{2-}- \\ \mathcal{O}_{2 B}=-\frac{1}{2}\left(\partial^{\mu} B_{\mu \nu}\right)^{2} \\ \mathcal{O}_{2 G}=-\frac{1}{2}\left(D^{\mu} G_{\mu \nu}^{A}\right)^{2} \\ \hline \end{gathered}$

$$
\begin{aligned}
16 \pi^{2} \gamma_{c_{H}}= & {\left[4 N_{c} y_{t}^{2}+24 \lambda-\frac{3}{2}\left(3 g^{2}+2 g^{\prime 2}\right)\right] c_{H}+12 N_{c} y_{t}^{2} c_{L}^{(3)} } \\
16 \pi^{2} \gamma_{\lambda c_{6}}= & 6\left[N_{c} y_{t}^{2}+18 \lambda-\frac{3}{4}\left(3 g^{2}+g^{\prime 2}\right)\right] \lambda c_{6}+2\left(40 \lambda-3 g^{2}\right) \lambda c_{H} \\
& -16 N_{c} \lambda y_{t}^{2} c_{L}^{(3)}+8 N_{c} y_{t}^{2}\left(\lambda-y_{t}^{2}\right) c_{y_{t}}, \\
16 \pi^{2} \gamma_{c_{y_{t}}}= & {\left[\left(4 N_{c}+9\right) y_{t}^{2}+24 \lambda-\frac{3}{2}\left(3 g^{2}+g^{\prime 2}\right)\right] c_{y_{t}}+\left(3 y_{t}^{2}+2 \lambda-\frac{3}{2} g^{2}\right) c_{H} } \\
& +\left(2 y_{t}^{2}+4 \lambda-3 g^{2}-g^{\prime 2}\right) c_{R}-2\left(y_{t}^{2}+2 \lambda+2 g^{\prime 2}\right) c_{L} \\
& +4\left(-N_{c} y_{t}^{2}+3 \lambda+g^{\prime 2}\right) c_{L}^{(3)}+8\left(y_{t}^{2}-\lambda\right)\left[c_{L R}+C_{F} c_{L R}^{(8)}\right], \\
16 \pi^{2} \gamma_{c_{y_{b}}}= & {\left[2\left(N_{c}+1\right) y_{t}^{2}+24 \lambda-\frac{3}{2}\left(3 g^{2}+g^{\prime 2}\right)\right] c_{y_{b}}+\left(2 \lambda-\frac{3}{2} g^{2}\right) c_{H}+\left(2 N_{c}-1\right) y_{t}^{2} c_{y_{t}} } \\
& +2\left(2 \lambda+g^{\prime 2}\right) c_{L}+2\left[\left(3-2 N_{c}\right) y_{t}^{2}+6 \lambda+g^{\prime 2}\right] c_{L}^{(3)}-4 \frac{y_{t}^{2}}{g_{*}^{2}}\left(y_{t}^{2}+2 \lambda-\frac{3}{2} g^{2}\right) c_{R}^{t b} \\
& +2 \frac{y_{t}^{2}}{g_{*}^{2}}\left(\lambda-y_{t}^{2}\right)\left[\left(2 N_{c}+1\right) c_{y_{t} y_{b}}+C_{F} c_{y_{t} y_{b}}^{(8)}\right], \\
16 \pi^{2} \gamma_{c_{y_{\tau}}}= & {\left[2 N_{c} y_{t}^{2}+24 \lambda-\frac{3}{2}\left(3 g^{2}+g^{\prime 2}\right)\right] c_{y_{\tau}}+\left(2 \lambda-\frac{3}{2} g^{2}\right) c_{H}+2 N_{c} y_{t}^{2}\left[c_{y_{t}}-2 c_{L}^{(3)}\right] } \\
& -2 \frac{y_{t}^{2}}{g_{*}^{2}} N_{c}\left(\lambda-y_{t}^{2}\right)\left(2 c_{y_{t} y_{\tau}}+c_{y_{t} y_{\tau}}^{\prime}\right)
\end{aligned}
$$

Running in SMEFT

Example: running of SILH operators most relevant for Higgs physics:

Elias-Miro et al 1308.1879

$\mathcal{O}_{y_{u_{u}}}=y_{u}\|H\|^{2} \bar{Q}_{L} \widetilde{H} u_{R}$	$\mathcal{O}_{y_{d}}=y_{d}\|H\|^{2} \bar{Q}_{L} H d_{R}$	$\mathcal{O}_{y_{e}}=y_{e}\|H\|^{2} \bar{L}_{L} H e_{R}$
$\begin{gathered} \mathcal{O}_{R}^{u}=\left(i H^{\dagger}{ }^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\ \mathcal{O}_{L}^{a}=\left(i H^{\dagger} \ddot{D}_{\mu} H\right)\left(\bar{Q}_{L} \nu^{\mu} Q_{L}\right) \\ \mathcal{O}_{L}^{(3) q}=\left(i H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right) \end{gathered}$	$\mathcal{O}_{R}^{d}=\left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	
$\begin{gathered} \mathcal{O}_{L R}^{u}=\left(\bar{Q}_{L} \gamma^{\prime} Q_{L}\right)\left(\bar{u}_{R} \gamma_{\mu} u_{R}\right) \\ \mathcal{O}_{L R}^{(8) u}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{u}_{R} \gamma_{\mu} T^{A} u_{R}\right) \\ \mathcal{O}_{R R}^{u}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{u}_{R} \gamma_{\mu} u_{R}\right) \\ \mathcal{O}_{L L}^{q}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{Q}_{L} \gamma_{\mu} Q_{L}\right) \\ \mathcal{O}_{L L}^{(8) q}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{Q}_{L} \gamma_{\mu} T^{A} Q_{L}\right) \end{gathered}$	$\begin{gathered} \mathcal{O}_{L R}^{d}=\left(\bar{Q}_{L} \gamma^{\bar{Q}} Q_{L}\right)\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right) \\ \mathcal{O}_{L R}^{(8) d}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{d}_{R} \gamma_{\mu} T^{A} d_{R}\right) \\ \mathcal{O}_{R R}^{d}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right) \end{gathered}$	$\begin{gathered} \mathcal{O}_{L R}^{e}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{e}_{R} \gamma_{\mu} e_{R}\right) \\ \mathcal{O}_{R R}^{e}=\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)\left(\bar{e}_{R} \gamma_{\mu} e_{R}\right) \\ \mathcal{O}_{L L}^{l}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} L_{L}\right) \end{gathered}$
$\begin{gathered} \mathcal{O}_{L L}^{\overline{q u}}=\left(\bar{Q}_{L L}^{\left.\nu^{\mu} Q_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} L_{L}\right)}\right. \\ \mathcal{O}_{L L}^{(3)}=\left(\bar{Q}_{L}{ }^{\mu} \sigma^{a} Q_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} \sigma^{a} L_{L}\right) \\ \mathcal{O}_{L R}^{q e}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{e}_{R} \gamma_{\mu} e_{R}\right) \\ \mathcal{O}_{L R}^{u}=\left(\bar{L}_{L} \mu^{\mu} L_{L}\right)\left(\bar{u}_{R} \gamma_{\mu} u_{R}\right) \\ \mathcal{O}_{R R}^{u d}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right) \\ \mathcal{O}_{R R}^{(8) u d}=\left(\bar{u}_{R} \gamma^{\mu} T^{A} u_{R}\right)\left(\bar{d}_{R} \gamma_{\mu} T^{A} d_{R}\right) \\ \mathcal{O}_{R R}^{u e}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{e}_{R} \gamma_{\mu} e_{R}\right) \end{gathered}$	$\mathcal{O}_{L R}^{l d}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right)$ $\mathcal{O}_{R R}^{d e}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{e}_{R} \gamma_{\mu} e_{R}\right)$	
$\mathcal{O}_{R}^{u d}=y_{u}^{\dagger} y_{d}\left(i \widetilde{H}^{\dagger}{\left.\stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} d_{R}\right)}^{-r^{\prime}}\right.$		
$\begin{gathered} \hline \mathcal{O}_{D B}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \widetilde{H} g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \sigma^{a} \widetilde{H} g W_{\mu \nu}^{a} \\ \mathcal{O}_{D G}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} T^{A} u_{R} \widetilde{H} g_{s} G_{\mu \nu}^{A} \end{gathered}$	$\begin{aligned} & \hline \hline \mathcal{O}_{D B}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} H g^{\prime} B_{\mu \nu} \\ & \mathcal{O}_{D W}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} \sigma^{a} H g W_{\mu \nu}^{a} \\ & \mathcal{O}_{D G}^{d}=y_{d} \bar{Q}_{L} \sigma^{\sigma^{\prime}} T^{A} d_{R} H g_{s} G_{\mu \nu}^{A} \end{aligned}$	$\begin{gathered} \hline \mathcal{O}_{D B}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} H g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} \sigma^{a} H g W_{\mu \nu}^{a} \end{gathered}$

Part 6

$$
\begin{gathered}
\text { Excerpts from } \\
\text { SMEFT' phenomenology }
\end{gathered}
$$

From operators to observables

Two main kinds of effects of higher-dimensional SMEFT operators

New interactions not present in SM Lagrangian

Corrections to coupling strength of SM interactions

New interactions

1. New "harder" vertices
e.g. $\frac{1}{\Lambda^{2}}|H|^{6} \rightarrow \frac{h^{6}}{8 \Lambda^{2}}+\frac{3 \mathrm{v} h^{5}}{4 \Lambda^{2}}+\ldots$

or $\frac{1}{\Lambda^{2}}|H|^{2} G_{\mu \nu}^{a} G_{\mu \nu}^{a} \rightarrow \frac{h^{2}}{2 \Lambda^{2}} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+\frac{\mathrm{v} h}{\Lambda^{2}} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+\ldots$

These examples do not lead to new processes compared to the SM, but they introduce "harder" contributions to amplitudes, leading to different energy/pT dependence

New interactions

2. New Lorentz structures

e.g. $\frac{1}{\Lambda^{2}}|H|^{2} B_{\mu \nu} B_{\mu \nu} \rightarrow \frac{2 \mathrm{v} \sin ^{2} \theta_{W}}{\Lambda^{2}} h Z_{\mu \nu} Z_{\mu \nu}+\ldots$
in addition to

$$
\frac{h}{\mathrm{v}} m_{Z}^{2} Z_{\mu} Z_{\mu}
$$

present in the SM
hZZ vertex

$\frac{2 i}{\mathrm{v}}\left[m_{Z}^{2} \eta^{\mu \nu}-\frac{c_{H B} \mathrm{v}^{2}}{\Lambda^{2}}\left(p_{1}^{\mu} p_{2}^{\nu}+p_{1}^{\nu} p_{2}^{\mu}-2 p_{1} p_{2} \eta^{\mu \nu}\right)\right]$

The presence of the new structure affects e.g. the CM energy depends of $\mathbf{Z h}$ productions But most cleanly it can be extracted from angular distributions in $h \rightarrow Z Z^{*} \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}$decays

New interactions

3. Violation of accidental symmetries of the SM

Lepton number violation, e.g. $\frac{1}{\Lambda}(H L)(H L)$-> neutrino oscillations probing $\Lambda \sim 10^{15} \mathrm{GeV}$
Baryon number violation, e.g. $\frac{1}{\Lambda^{2}} u^{c} d^{c} u^{c} e^{c}->$ proton decay probing $\Lambda \sim 10^{15} \mathrm{GeV}$
Individual lepton number violation, e.g. $\frac{1}{\Lambda^{2}} e_{1}^{c} \sigma^{\mu \nu} H^{\dagger} L_{2} B_{\mu \nu} \rightarrow \mu \rightarrow e \gamma$ decay probing $\Lambda \sim 10^{8} \mathbf{G e V}$

The characteristic feature of these processes is that they probe scales far above TeV, sometime even close to the GUT scale

New interactions

4. Violation of approximate symmetries of the SM

Flavour changing neutral currents, e.g. $\frac{1}{\Lambda^{2}}\left(\bar{s} \gamma^{\alpha} b\right)\left(\bar{\mu} \gamma_{\alpha} \mu\right)$ probes $\Lambda \sim 30 \mathrm{TeV}$ CP violation, e.g. $\frac{1}{\Lambda^{2}} \bar{e}_{R} \sigma^{\mu \nu} H L F_{\mu \nu}$ with complex Wilson coefficient probes $\Lambda \sim 10^{6} \mathrm{TeV}$

These often probe Λ far above TeV as well

From operators to observables

Two main kinds of effects of higher-dimensional SMEFT operators

New interactions not present in SM Lagrangian

Corrections to coupling strength of SM interactions

Modified interaction strength

There are 3 ways higher-dimensional operators may modify SM interaction strength

1. Directly: after electroweak symmetry breaking, an operator contributes to a gauge or Yukawa interaction already present in the SM
2. Indirectly: after electroweak symmetry breaking, an operator contributes to the kinetic term of a SM field, thus effectively shifting the strength of all interactions of that field
3. Stealthily: after electroweak symmetry breaking, an operator contributes to an experimental observable from which some SM parameter is extracted

Modified interaction strength: directly

Example:

$$
\frac{i}{\Lambda^{2}} \bar{e}_{R} \gamma^{\mu} e_{R}\left(H^{\dagger} D_{\mu} H-D_{\mu} H^{\dagger} H\right)
$$

After electroweak symmetry breaking $\quad i\left(H^{\dagger} D_{\mu} H-D_{\mu} H^{\dagger} H\right) \rightarrow-\frac{\mathrm{v}^{2}}{2} \sqrt{g_{L}^{2}+g_{Y}^{2}} Z_{\mu}+\ldots$

$$
\frac{i c_{H e}}{\Lambda^{2}} \bar{e}_{R} \gamma^{\mu} e_{R}\left(H^{\dagger} D_{\mu} H-D_{\mu} H^{\dagger} H\right) \rightarrow-c_{H e} \frac{\mathrm{v}^{2} \sqrt{g_{L}^{2}+g_{Y}^{2}}}{2 \Lambda^{2}} \bar{e}_{R} \gamma^{\mu} e_{R} Z_{\mu}
$$

This adds up to the weak interaction in the SM

$$
\sqrt{g_{L}^{2}+g_{Y}^{2}}\left(T_{f}^{3}-\sin ^{2} \theta_{W} Q_{f}+\delta g^{Z f}\right) \bar{f} \gamma^{\mu} f Z_{\mu}
$$

$$
\delta g_{R}^{Z e}=-c_{H e} \frac{\mathrm{v}^{2}}{2 \Lambda^{2}}
$$

Thus $\mathbf{C H e}$ can be constrained, e.g., form LEP-1 Z-pole data

Modified interaction strength: directly

$$
\delta g_{R}^{Z e}=-c_{H e} \frac{\mathrm{v}^{2}}{2 \Lambda^{2}}
$$

Observable	Experimental value	SM prediction	Definition
$\Gamma_{Z}[\mathrm{GeV}]$	2.4955 ± 0.0023 [4, 28]	2.4941	$\sum_{f} \Gamma(Z \rightarrow f \bar{f})$
$\sigma_{\text {had }}[\mathrm{nb}]$	$41.4802 \pm 0.0325 \quad[4,28]$	41.4842	$\frac{12 \pi}{m_{Z}^{2}} \frac{\Gamma\left(Z \rightarrow e^{+} e^{-}\right) \Gamma(Z \rightarrow q \bar{q})}{\Gamma_{Z}^{2}}$
R_{e}	$20.804 \pm 0.050 \quad[4]$	20.734	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
R_{μ}	$20.785 \pm 0.033 \quad[4]$	20.734	$\sum_{q} \Gamma(Z \rightarrow q \bar{q})$
Ω_{μ}	$20.785 \pm 0.033-4]$	20.734	$\sum^{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)} \overline{\Gamma(Z \rightarrow q \bar{q})}$
R_{τ}	$20.764 \pm 0.045 \quad[4]$	20.781	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
$A_{\mathrm{FB}}^{0, e}$	$0.0145 \pm 0.0025 \quad[4]$	0.0162	$\frac{3}{4} A_{e}^{2}$
$A_{\mathrm{FB}}^{0, \mu}$	$0.0169 \pm 0.0013 \quad[4]$	0.0162	${ }_{4}^{3} A_{e} A_{\mu}$
$A_{\text {FB }}^{0, \tau}$	0.0188 ± 0.0017 [4]	0.0162	${ }_{4}{ }_{4} A_{e} A_{\tau}$
R_{b}	0.21629 ± 0.00066 [4]	0.21581	$\frac{\Gamma(Z \rightarrow b b)}{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}$
R_{c}	$0.1721 \pm 0.0030 \quad[4]$	0.17222	$\frac{\Gamma(Z \rightarrow c \bar{c})}{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}$
A_{b}^{FB}	$0.0996 \pm 0.0016 \quad[4,29]$	0.1032	$\frac{3}{4} A_{e} A_{b}$
A_{c}^{FB}	$0.0707 \pm 0.0035 \quad[4]$	0.0736	${ }_{4}^{3} A_{e} A_{c}$
A_{e}	$0.1516 \pm 0.0021 \quad[4]$	0.1470	$\frac{\Gamma\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{R}^{+} e_{R}^{-}\right)}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
A_{μ}	0.142 ± 0.015 [4]	0.1470	$\Gamma\left(Z \rightarrow \mu_{L}^{+} \mu_{L}^{-}\right)-\Gamma\left(Z \rightarrow \mu_{R}^{+} \mu_{R}^{-}\right)$
A_{τ}	$0.136 \pm 0.015 \quad[4]$	0.1470	$\frac{\Gamma\left(Z \rightarrow \tau_{L}^{+} \tau_{L}^{-}\right)-\Gamma\left(Z \rightarrow \tau_{R}^{+} \tau_{R}^{-}\right)}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
A_{e}	0.1498 ± 0.0049 [4]	0.1470	$\frac{\Gamma\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{R}^{+} e_{R}^{-}\right)}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
A_{τ}	$0.1439 \pm 0.0043 \quad[4]$	0.1470	$\frac{\Gamma\left(Z \rightarrow \tau_{L}^{+} \tau_{L}^{-}\right)-\Gamma\left(Z \rightarrow \tau_{R}^{+} \tau_{R}^{-}\right)}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
		0.935	$\frac{\Gamma\left(Z \rightarrow b_{L} b_{L}\right)-\Gamma\left(Z \rightarrow b_{R} b_{R}\right)}{\left.\Gamma(Z) \bar{b}^{\prime}\right)}$
A_{c}		0.935	
A_{c}	0.670 ± 0.027 [4]	0.668	$\frac{}{\Gamma}$
A_{s}	0.895 ± 0.091 [30]	0.936	$\frac{\Gamma\left(Z \rightarrow s_{L} \bar{s}_{L}\right)-\Gamma\left(Z \rightarrow s_{R} \bar{s}_{R}\right)}{\Gamma(Z \rightarrow s \bar{s})}$
$R_{u c}$	$0.166 \pm 0.009 \quad[9]$	0.1722	$\frac{\Gamma(Z \rightarrow u \bar{u})+\Gamma(Z \rightarrow c \bar{c})}{2 \sum_{q} \Gamma(Z \rightarrow q \bar{q})}$

$\left(\begin{array}{c}\delta g_{L}^{W e} \\ \delta g_{L}^{W \mu} \\ \delta g_{L}^{W \tau} \\ \delta g_{L}^{Z e} \\ \delta g_{L}^{Z \mu} \\ \delta g_{L}^{Z \tau} \\ \delta g_{R}^{Z e} \\ \delta g_{R}^{Z \mu} \\ \delta g_{R}^{Z \tau} \\ \delta g_{L}^{Z u} \\ \delta g_{R}^{Z u} \\ \delta g_{L}^{Z d} \\ \delta g_{R}^{Z} \\ \delta g_{L}^{Z s} \\ \delta g_{R}^{Z s} \\ \delta g_{L}^{Z c} \\ \delta g_{R}^{Z} \\ \delta g_{L}^{Z b} \\ \delta g_{R}^{Z b} \\ \delta m_{w}\end{array}\right) \quad=\left(\begin{array}{c}-1.2 \pm 3.2 \\ -2.7 \pm 2.6 \\ 1.5 \pm 4.0 \\ -0.20 \pm 0.28 \\ 0.1 \pm 1.2 \\ -0.09 \pm 0.59 \\ -0.43 \pm 0.27 \\ 0.0 \pm 1.4 \\ 0.62 \pm 0.62 \\ -12 \pm 23 \\ -4 \pm 31 \\ \text { Breso-Pla et al } \\ -19 \pm 36.12074 \\ -30 \pm 130 \\ 11 \pm 28 \\ 32 \pm 48 \\ -1.5 \pm 3.6 \\ -3.3 \pm 5.3 \\ 3.1 \pm 1.7 \\ 21.9 \pm 8.8 \\ 0.29 \pm 0.16\end{array}\right) \times 10^{-3}$.

It follows $\frac{\Lambda}{\left|c_{H e}\right|^{1 / 2}} \gtrsim 5.6 \mathrm{TeV}$

Modified interaction strength: indirectly

Example: $\quad\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$
This contributes to the kinetic term of the Higgs boson

$$
\frac{c_{H \square}}{\Lambda^{2}}\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right) \rightarrow-\frac{c_{H \square} \mathrm{v}^{2}}{\Lambda^{2}}\left(\partial_{\mu} h\right)^{2}
$$

Together with the SM kinetic term:

$$
\mathscr{L}_{\text {SMEFT }} \supset \frac{1}{2}\left(\partial_{\mu} h\right)^{2}\left(1-\frac{2 c_{H \square} \mathrm{v}^{2}}{\Lambda^{2}}\right)
$$

To restore canonical normalization, we need to rescale the Higgs boson field:

$$
h \rightarrow h\left(1+\frac{c_{H \square \square^{2}}}{\Lambda^{2}}\right)
$$

This restore canonical normalization of the Higgs boson field, up to terms of order $1 / \Lambda^{4}$, which we ignore here

Modified interaction strength: indirectly

$$
h \rightarrow h\left(1+\frac{c_{H \square \square^{2}}}{\Lambda^{2}}\right)
$$

After this rescaling, the dimension-6 contribution vanishes from the Higgs boson kinetic term

However, it resurfaces in all Higgs boson couplings present in the SM !

$$
\begin{aligned}
& \frac{h}{\mathrm{v}}\left[2 m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+m_{Z}^{2} Z_{\mu} Z_{\mu}\right] \rightarrow \frac{h}{\mathrm{v}}\left(1+\frac{c_{H \square} \mathrm{v}^{2}}{\Lambda^{2}}\right)\left[2 m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+m_{Z}^{2} Z_{\mu} Z_{\mu}\right] \\
& \frac{h}{\mathrm{v}} m_{f} \bar{f} f \rightarrow \frac{h}{\mathrm{v}}\left(1+\frac{c_{H \square} \mathrm{v}^{2}}{\Lambda^{2}}\right) m_{f} \bar{f} f
\end{aligned}
$$

Hence, the Higgs boson interaction strength predicted by the SM is universally shifted

LHC measurements of the Higgs signal strength provide a bound on the Wilson coefficient

$$
\mu=1.09 \pm 0.11
$$

$$
\frac{c_{H \square \mathrm{v}^{2}}}{\Lambda^{2}}=0.09 \pm 0.11
$$

or, equivalently

$$
\frac{c_{H \square}}{\Lambda^{2}}=\frac{1}{(820 \mathrm{GeV})^{2}} \pm \frac{1}{(740 \mathrm{GeV})^{2}}
$$

Higgs measurements only probe new physics scale of order a TeV

Modified interaction strength: stealthily

Consider the dimension-6 operator $\quad\left|H^{\dagger} D_{\mu} H\right|^{2}$
After electroweak symmetry breaking:
$\frac{c_{H D}}{\Lambda^{2}}\left|H^{\dagger} D_{\mu} H\right|^{2} \rightarrow \frac{c_{H v^{2}} v^{2}\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{2 \Lambda^{2}} \frac{8}{} Z_{\mu} Z_{\mu}+\ldots$
Thus it modifies the \mathbf{Z} boson mass: $\quad m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{4}\left(1+\frac{c_{H D} \mathrm{v}^{2}}{2 \Lambda^{2}}\right)$
We have this very precise $\mathbf{O}\left(10^{-4}\right)$ measurement of the \mathbf{Z} boson mass

$$
m_{Z}=(91.1876 \pm 0.0021) \mathrm{GeV}
$$

From which we find the very stringent constraint

$$
\frac{\left|c_{H D}\right|}{\Lambda^{2}} \leq \frac{1}{(26 \mathrm{TeV})^{2}}
$$

Modified interaction strength: stealthily

Consider the dimension-6 operator $\quad\left|H^{\dagger} D_{\mu} H\right|^{2}$

After electroweak symmetry breaking:
$\frac{c_{H D}}{\Lambda^{2}}\left|H^{\dagger} D_{\mu} H\right|^{2} \rightarrow \frac{c_{H D^{\mathrm{v}^{2}}}}{2 \Lambda^{2}} \frac{\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{8} Z_{\mu} Z_{\mu}+\ldots$
Thus it modifies the \mathbf{Z} boson mass: $\quad m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{4}\left(1+\frac{c_{H D} \mathrm{v}^{2}}{2 \Lambda^{2}}\right)$

Modified interaction strength: stealthily

Consider the dimension-6 operator $\quad\left|H^{\dagger} D_{\mu} H\right|^{2}$

After electroweak symmetry breaking:
$\frac{c_{H D}}{\Lambda^{2}}\left|H^{\dagger} D_{\mu} H\right|^{2} \rightarrow \frac{c_{H V^{2}}{ }^{2}\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{2 \Lambda^{2}} \frac{8}{\Lambda_{\mu}} Z_{\mu}+\ldots$
Thus it modifies the \mathbf{Z} boson mass:

$$
m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{4}\left(1+\frac{c_{H D} \mathrm{v}^{2}}{2 \Lambda^{2}}\right)
$$

We cannot use the Z-boson mass measurement to constrain new physics because, it is one of the inputs to determine the electroweak parameters of the SM

In the SM: $\quad G_{F}=\frac{1}{\sqrt{2} \mathrm{v}^{2}}$

$$
\begin{aligned}
\alpha & =\frac{g_{L}^{2} g_{Y}^{2}}{4 \pi\left(g_{L}^{2}+g_{Y}^{2}\right)} \\
m_{Z}^{2} & =\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
g_{L} & =0.6485 \\
g_{Y} & =0.3580 \\
\mathrm{v} & =246.22 \mathrm{GeV}
\end{aligned}
$$

with very small errors

Modified interaction strength: stealthily

$\left|H^{\dagger} D_{\mu} H\right|^{2} \quad$ In the presence of our dimension-6 operators, the relation between electroweak couplings and observables is disrupted

$$
G_{F}=\frac{1}{\sqrt{2} \mathrm{v}^{2}} \quad \alpha=\frac{g_{L}^{2} g_{Y}^{2}}{4 \pi\left(g_{L}^{2}+g_{Y}^{2}\right)} \quad m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) \mathrm{v}^{2}}{4}\left(1+\frac{c_{H D} \mathrm{v}^{2}}{2 \Lambda^{2}}\right)
$$

Now we cannot assign numerical values to the electroweak parameters, because they depend on C_{HD}
A useful trick is to get rid of the dimension-6 pollution in the input equations by redefining the SM electroweak parameters

$$
g_{L} \rightarrow \tilde{g}_{L}\left(1-\frac{c_{H D} g_{L}^{2} \mathrm{v}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right) \Lambda^{2}}\right) \quad g_{Y} \rightarrow \tilde{g}_{Y}\left(1+\frac{c_{H D} g_{Y}^{2} \mathrm{v}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right) \Lambda^{2}}\right)
$$

For the twiddle electroweak parameter, we can now assign numerical values

$$
\begin{aligned}
G_{F} & =\frac{1}{\sqrt{2} \mathrm{v}^{2}} \\
\alpha & =\frac{\tilde{g}_{L}^{2} \tilde{g}_{Y}^{2}}{4 \pi\left(\tilde{g}_{L}^{2}+\tilde{g}_{Y}^{2}\right)} \\
m_{Z}^{2} & =\frac{\left(\tilde{g}_{L}^{2}+\tilde{g}_{Y}^{2}\right) \mathrm{v}^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{g}_{L} & =0.6485 \\
\tilde{g}_{Y} & =0.3580 \\
\mathrm{v} & =246.22 \mathrm{GeV}
\end{aligned}
$$

same as in the SM

Modified interaction strength: stealthily

Z mass cannot be used to constrain new physics, because it was already used to set numerical values for the twiddle electroweak parameter

But new physics emerges now in other observables, e.g. in the W mass

$$
m_{W}=\frac{g_{L} \mathrm{v}}{2}=\frac{\tilde{g}_{L} \mathrm{v}}{2}\left(1-\frac{c_{H D} g_{L}^{2} \mathrm{v}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right) \Lambda^{2}}\right)=\frac{\tilde{g}_{L} \mathrm{~V}}{2}\left(1-\frac{c_{H D} \tilde{g}_{L}^{2} \mathrm{v}^{2}}{4\left(\tilde{g}_{L}^{2}-\tilde{g}_{Y}^{2}\right) \Lambda^{2}}\right)
$$

We can now use the experimental measurement of the W mass

$$
\begin{gathered}
m_{W}=(80.379 \pm 0.012) \mathrm{GeV} \\
\text { to constrain the Wilson coefficients } \\
-\frac{1}{(7 \mathrm{TeV})^{2}} \leq \frac{c_{H D}}{\Lambda^{2}} \leq-\frac{1}{(12 \mathrm{TeV})^{2}} \quad \text { at } 1 \text { sigma }
\end{gathered}
$$

Modified interaction strength: stealthily

Flavor observables are another class of experiments that depends on a priori unknown parameters

$$
\mathscr{L}_{\text {SMEFT }} \supset V_{u_{k} d_{l}} \bar{u}_{k} \gamma^{\mu} P_{L} d_{l}+\text { h.c. }
$$

CKM matrix:

$$
\begin{aligned}
V & =\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4} & \lambda & A \lambda^{3}\left(1+\frac{1}{2} \lambda^{2}\right)(\bar{\rho}-i \bar{\eta}) \\
-\lambda+A^{2} \lambda^{5}\left(\frac{1}{2}-\bar{\rho}-i \bar{\eta}\right) & 1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}\left(1+4 A^{2}\right) & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2}+A \lambda^{4}\left(\frac{1}{2}-\bar{\rho}-i \bar{\eta}\right) & 1-\frac{1}{2} A^{2} \lambda^{4}
\end{array}\right)+\mathcal{O}\left(\lambda^{6}\right)
\end{aligned}
$$

The 4 Wolfenstein parameters need to be taken from experiment
PDG says:

$$
\begin{array}{ll}
\lambda=0.22650 \pm 0.00048, & A=0.790_{-0.012}^{+0.017}, \\
\bar{\rho}=0.141_{-0.017}^{+0.016}, & \bar{\eta}=0.357 \pm 0.011
\end{array}
$$

But you cannot use it in the SMEFT!

Measurements from which Wolfenstein parameters are normally extracted depend on the CKM parameters, and at the same time on many Wilson coefficients of dimension-6 operators

Modified interaction strength: stealthily

Much as for electroweak parameters,

 in the SMEFT one needs and input scheme for the CKM parametersDescotes-Genon arXiv:1812.08163

Example, extracting the Cabibbo angle λ from pseudoscalar decays

$$
\begin{gathered}
\text { Decay constant } \\
\Gamma\left(P^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}\right)=\left|V_{u q}\right|^{2} \frac{f_{P}^{2} m_{P} m_{\ell}^{2}}{16 \pi \tilde{v}^{4}}\left(1-\frac{m_{\ell}^{2}}{m_{P}^{2}}\right)^{2}\left(1+\delta_{P \ell}\right)\left(1+\Delta_{P \ell 2}\right), \\
\text { True CKM element } \\
\text { SMEFT corrections } \\
\text { depending on dimension-6 Wilson coefficient }
\end{gathered}
$$

$$
\frac{\Gamma(K \rightarrow \mu \nu)}{\Gamma(\pi \rightarrow \mu \nu)}=\frac{\lambda^{2}}{1-\lambda^{2}} \frac{f_{K}^{2}}{f_{\pi}^{2}} \frac{m_{K}}{m_{\pi}} \frac{\left(1-m_{\mu}^{2} / m_{K}^{2}\right)^{2}}{\left(1-m_{\mu}^{2} / m_{\pi}^{2}\right)^{2}}\left(1+\delta_{K \ell}-\delta_{\pi \ell}\right)\left(1+\Delta_{K \ell 2}-\Delta_{\pi \ell 2}\right)
$$

$$
\text { Introduce polluted Cabibbo angle } \tilde{\lambda} \text { defined by } \frac{\lambda^{2}}{1-\lambda^{2}}\left(1+\Delta_{K \ell 2}-\Delta_{\pi \ell 2}\right)=\frac{\tilde{\lambda}^{2}}{1-\tilde{\lambda}^{2}} \Rightarrow \lambda=\tilde{\lambda}\left(1+\Delta_{\lambda}\right)
$$

$$
\frac{\Gamma(K \rightarrow \mu \nu)}{\Gamma(\pi \rightarrow \mu \nu)}=\frac{\tilde{\lambda}^{2}}{1-\tilde{\lambda}^{2}} \frac{f_{K}^{2}}{f_{\pi}^{2}} \frac{m_{K}}{m_{\pi}} \frac{\left(1-m_{\mu}^{2} / m_{K}^{2}\right)^{2}}{\left(1-m_{\mu}^{2} / m_{\pi}^{2}\right)^{2}}\left(1+\delta_{K \ell}-\delta_{\pi \ell}\right)
$$

Everything in this equation is known (experimentally or theoretically) except for $\tilde{\lambda}$ thus we can use it to assign a numerical value to $\tilde{\lambda}$

Modified interaction strength: stealthily

Continuing this procedure, polluted Wolfenstein parameters can be extracted e.g. from the following 4 observables

$$
\Gamma\left(K \rightarrow \mu \nu_{\mu}\right) / \Gamma\left(\pi \rightarrow \mu \nu_{\mu}\right), \quad \Gamma\left(B \rightarrow \tau \nu_{\tau}\right), \quad \Delta M_{d}, \quad \Delta M_{s}
$$

$$
\begin{aligned}
& \tilde{\lambda}=0.22537 \pm 0.00046 \\
& \tilde{A}=0.828 \pm 0.021 \\
& \tilde{\rho}=0.194 \pm 0.024 \\
& \tilde{\eta}=0.391 \pm 0.048
\end{aligned}
$$

All other flavor observables can then be use for constraining dimension-6 SMEFT operators after replacing:

$$
\left(\begin{array}{c}
\lambda \\
A \\
\bar{\rho} \\
\bar{\eta}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\tilde{\lambda}\left(1+\Delta_{\lambda}\right) \\
\tilde{A}\left(1+\Delta_{A}\right) \\
\tilde{\rho}\left(1+\Delta_{\rho}\right) \\
\tilde{\eta}\left(1+\Delta_{\eta}\right)
\end{array}\right)
$$

where Δ_{x} are know linear combinations of SMEFT Wilson coefficients

Part 7

Exercise in

UV matching of SMEFT

Matching new physics to $\mathrm{D}=6$ Lagrangian Example: Vector Triplet Resonance

Why vector triplet?

- Predicted by technicolor and composite Higgs models
- Nice simple model leading to higher-derivative Higgs boson couplings at tree level

Vector Triplet Resonance

A new SU(2) triplet of heavy vector bosons, coupled to SM SU(2) Higgs and fermionic currents:

$$
\begin{aligned}
\Delta \mathcal{L} & =-\frac{1}{4} V_{\mu \nu}^{i} V_{\mu \nu}^{i}+\frac{m_{V}^{2}}{2} V_{\mu}^{i} V_{\mu}^{i} \\
& +\frac{i}{2} \kappa_{H} V_{\mu}^{i} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{1}{2} \kappa_{F} V_{\mu}^{i} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f
\end{aligned}
$$

For, simplicity, couplings to fermions assumed universal.
Thus, model has 3 free parameters: mV , kH , and kF .
This time we identify mV with EFT expansion parameter Λ.
Solving equations of motions to leading order in $1 / \Lambda$:

$$
V_{\mu}^{i}=-\frac{1}{\Lambda^{2}}\left(\frac{i}{2} \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{1}{2} \kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)
$$

Effective Lagrangian

$$
\mathcal{L}_{\mathrm{cff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{8 \Lambda^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)^{2}
$$

Vector Triplet Resonance

Effective Lagrangian can also be obtained another way by 1st shifting: $W_{\mu}^{i} \rightarrow W_{\mu}^{i}-\frac{\kappa_{F}}{g_{L}} V_{\mu}^{i}$

$$
\begin{aligned}
\Delta \mathcal{L} & =-\frac{1}{4} V_{\mu \nu}^{i} V_{\mu \nu}^{i}+\frac{m_{V}^{2}}{2} V_{\mu}^{i} V_{\mu}^{i} \\
& +\frac{i}{2}\left(\kappa_{H}-\kappa_{F}\right) V_{\mu}^{i} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{\kappa_{F}}{g_{L}} V_{\mu}^{i} D_{\nu} W_{\mu \nu}^{i}+\ldots
\end{aligned}
$$

Note that the new vector field does not couple to fermions anymore.
Solving equations of motions to leading order in $1 / \Lambda$, and plugging back, we obtain the effective Lagrangian:

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{2 \Lambda^{2}}\left(\frac{i}{2}\left(\kappa_{H}-\kappa_{F}\right) H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{\kappa_{F}}{g_{L}} D_{\nu} W_{\mu \nu}^{i}\right)^{2}
$$

As compared to
$\mathcal{L}_{\text {cff }}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{8 \Lambda^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)^{2}$
Which one is right? Answer: both!
The equivalence can be proven by using the SM equations of motion:

$$
D_{\nu} W_{\mu \nu}^{i}=\frac{i g_{L}}{2} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{g_{L}}{2} \sum_{f \in \ell, \eta} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f
$$

Vector Triplet Resonance

Table 2.2: Bosonic $D=6$ operators in the Warsaw basis.

$$
\mathcal{L}_{\mathrm{cff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{8 \Lambda^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)^{2}
$$

Vector Triplet Resonance

Bosonic CP-even			Bosonic CP-odd	
O_{H}	$\left(H^{\dagger} H\right)^{3}$			
$O_{H \square}$	$\left.H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$			
$O_{H D}$	$\left\|H^{\dagger} D_{\mu} H\right\|^{2}$			
$O_{H G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$		$O_{H \widetilde{G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$		$O_{H \widetilde{W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$		$O_{H \widetilde{B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
$O_{H W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$		$O_{H \widetilde{W} B}$	$H^{\dagger} \sigma^{i} H \widetilde{W}_{\mu \nu}^{i} B_{\mu \nu}$
O_{W}	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$		$O_{\widetilde{W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
O_{G}	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$		$O_{\widetilde{G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

$$
\begin{gathered}
\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H\right)\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H\right) \\
\left(\partial_{\mu}\left(H^{\dagger} H\right)\right)^{2}-4\left(H^{\dagger} H\right)\left(D_{\mu} H^{\dagger} D_{\mu} H\right) \\
\begin{array}{c}
\left(H^{\dagger} H\right)\left(D_{\mu} H^{\dagger} D_{\mu} H\right)=\frac{1}{2}\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)-\mu_{H}^{2}\left(H^{\dagger} H\right)^{2}+2 \lambda\left(H^{\dagger} H\right)^{3} \\
+\frac{1}{2}\left(H^{\dagger} H\right)\left[f^{c} y_{\rho} H^{\dagger} F+\text { h.c. }\right]
\end{array}
\end{gathered}
$$

Table 2.2: Bosonic $D=6$ operators in the Warsaw basis.

$$
\mathcal{L}_{\mathrm{cff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{8 \Lambda^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)^{2}
$$

Vector Triplet Resonance

Bosonic CP-even			Bosonic CP-odd	
O_{H}	$\left(H^{\dagger} H\right)^{3}$			
$O_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$			
$O_{H D}$	$\left\|H^{\dagger} D_{\mu} H\right\|^{2}$			
$O_{H G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$			
$O_{H W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$		$O_{H \widetilde{G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu} H$		$O_{H \widetilde{W}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu}^{i} W_{\mu \nu}^{i} B_{\mu \nu}$
$O_{H W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$		$O_{H \widetilde{W} B}$	$H^{\dagger} \sigma^{i} H \widetilde{W}_{\mu \nu}^{i} B_{\mu \nu}$
O_{W}	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$		$O_{\widetilde{W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
O_{G}	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$		$O_{\widetilde{G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Table 2.2: Bosonic $D=6$ operators in the Warsaw basis.

Table 2.3: Two-fermion $D=6$ operators in the Warsaw basis. The flavor indices are denoted by I, J. For complex operators ($O_{H u d}$ and all Yukawa and dipole operators) the corresponding complex conjugate operator is implicitly included.

Matching:

$$
\begin{aligned}
c_{H} & =\frac{3 v^{2} \kappa_{H}^{2}}{8 \Lambda^{2}} \\
c_{6 H} & =-\frac{\lambda v^{2} \kappa_{H}^{2}}{\Lambda^{2}}
\end{aligned}
$$

$$
\begin{aligned}
{\left[c_{H \ell}^{\prime}\right]_{J J}=\left[c_{H q}^{\prime}\right]_{J J} } & =-\kappa_{H} \kappa_{F} \frac{v^{2}}{4 \Lambda^{2}} \\
{\left[c_{f}\right]_{I J} } & =\frac{v^{2} \kappa_{H}^{2}}{2 \sqrt{2} \Lambda^{2}} \delta_{I J}
\end{aligned}
$$

+4 fermion operators

$$
\mathcal{L}_{\mathrm{cff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{8 \Lambda^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)^{2}
$$

Vector Triplet Resonance

SILH Basis

Table 97: Bosonic $D=6$ operators in the SILH basis.

Bosonic CP-even
Bosonic CP-odd

$\begin{gathered} O_{H} \\ O_{T} \end{gathered}$	$\frac{\frac{1}{2 v^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}}{\frac{1}{2 v^{2}}\left(H^{\dagger} D_{\mu}^{\prime} H\right)^{2}}$	
O_{6}	$-\frac{\lambda}{v^{2}}\left(H^{\dagger} H\right)^{3}$	
O_{g}	$\frac{g_{s}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a} \quad \widetilde{O}_{g}$	$\frac{g_{s}^{2}}{m_{W}^{2}} H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
O_{γ}	$\frac{g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} B_{\mu \nu} \quad \widetilde{O}_{\gamma}$	$\frac{g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
O_{W}	$\frac{i g}{2 m_{W}^{2}}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H\right) D_{\nu} W_{\mu \nu}^{i}$	
O_{B}	$\frac{i g^{\prime}}{2 m_{\text {wiven }}^{2}}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right) \partial_{\nu} B_{\mu \nu}$	
$O_{H L}$	$\frac{i g}{m_{\omega N}^{2}}\left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H\right) W_{\mu \nu}^{i} \widetilde{O}_{H W}$	$\frac{i g}{m_{W}^{2}}\left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H\right) \widetilde{W}_{\mu \nu}^{i}$
$O_{H B}$	$\frac{i g^{\prime}}{m_{N W}^{2}}\left(D_{\mu} H^{\dagger} D_{\nu} H\right) B_{\mu \nu} \quad \widetilde{O}_{H B}$	$\frac{i g}{m_{W}^{2}}\left(D_{\mu} H^{\dagger} D_{\nu} H\right) \widetilde{B}_{\mu \nu}$
$O_{2 W}$	$\frac{1}{m_{W V}^{2}} D_{\mu} W_{\mu \nu}^{i} D_{\rho} W_{\rho \nu}^{i}$	
$O_{2 B}$		
$O_{2 G}$	$\frac{1}{m_{W V}^{2}} D_{\mu} G_{\mu \nu}^{a} D_{\rho} G_{\rho \nu}^{a}$	
$O_{3 W}$	$\begin{aligned} & g^{m^{W}}{ }^{m^{2}} i^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k} \end{aligned} \quad \widetilde{O}_{3 W}$	$\frac{g^{3}}{m_{W}^{2}} \epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
$O_{3 G}$	$\frac{g_{j}^{s}}{m_{W W}^{2}} f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c} \quad \widetilde{O}_{3 G}$	$\frac{g_{s}^{3}}{m_{W}^{2}} f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Table 2.3: Two-fermion $D=6$ operators in the Warsaw basis. The flavor indices are denoted by I, J. For complex operators ($O_{H u d}$ and all Yukawa and dipole operators) the corresponding complex conjugate operator is implicitly included.

Exercise: find Wilson coefficients in the SILH basis

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{2 \Lambda^{2}}\left(\frac{i}{2}\left(\kappa_{H}-\kappa_{F}\right) H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{\kappa_{F}}{g_{L}} D_{\nu} W_{\mu \nu}^{i}\right)^{2}
$$

Vector Triplet Resonance

Table 2.2: Bosonic $D=6$ operators in the Warsaw basis.

$$
\mathcal{L}_{\mathrm{cff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{8 \Lambda^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)^{2}
$$

Vector Triplet Resonance

Yukawa	
$\left[O_{e H}^{\dagger}\right]_{I J}$	$H^{\dagger} H e_{I}^{c} H^{\dagger} \ell_{J}$
$\left[O_{u H}^{\dagger}\right]_{I J}$	$H^{\dagger} H u_{I}^{c} \widetilde{H}^{\dagger} q_{J}$
$\left[O_{d H}^{\dagger}\right]_{I J}$	$H^{\dagger} H d_{I}^{c} H^{\dagger} q_{J}$

Vertex		Dipole	
$\left[O_{H \ell}^{(1)}\right]_{I J}$	$i \bar{\chi}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$	$\left[O_{e W}^{\dagger}\right]_{I J}$	$e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \sigma^{i} \ell_{J} W_{\mu \nu}^{i}$
(3)	${ }_{I} \sigma^{i} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}}$	$\left[O_{e B}^{\dagger}\right]_{I J}$	$e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \ell_{J} B_{\mu \nu}$
$\left[O_{H e}\right]_{I J}$	${ }_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\top} D_{\mu} H$	$\left[O_{u G}^{\dagger}\right]_{I J}$	$u_{I}^{c} \sigma_{\mu \nu} T^{a} \widetilde{H}^{\dagger} q_{J} G_{\mu \nu}^{a}$
$\left[O_{H q}^{(1)}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$	$\left[O_{u W}^{\dagger}\right]_{I J}$	$u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$
$\left.O_{H q}^{(3)}\right]_{I J}$	$\sigma^{i} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \sigma^{i} \widehat{D_{\mu}}$	$\left[O_{u B}^{\dagger}\right]_{I J}$	$u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} q_{J} B_{\mu \nu}$
$\left[O_{H u}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \widehat{D_{\mu}} H$	$\left[O_{d G}^{\dagger}\right]_{I J}$	$d_{I}^{c} \sigma_{\mu \nu} T^{a} H^{\dagger} q_{J} G_{\mu \nu}^{a}$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$	$\left[O_{d W}^{\dagger}\right]_{I J}$	$d_{I}^{c} \sigma_{\mu \nu} \bar{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$	$\left[O_{d B}^{\dagger}\right]_{I J}$	$d_{I}^{c} \sigma_{\mu \nu} H^{\dagger} q_{J} B_{\mu \nu}$

Table 2.3: Two-fermion $D=6$ operators in the Warsaw basis. The flavor indices are denoted by I, J. For complex operators ($O_{H u d}$ and all Yukawa and dipole operators) the corresponding complex conjugate operator is implicitly included.

Matching:

$$
\left[c_{H \ell}^{\prime}\right]_{J J}=\left[c_{H q}^{\prime}\right]_{J J}=-\kappa_{H} \kappa_{F} \frac{v^{2}}{4 \Lambda^{2}}
$$

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{8 \Lambda^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa_{F} \sum_{f \in \ell, q} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f\right)^{2}
$$

Vector Triplet Resonance

Lessons learned:

- A subset of all possible dimension-6 operators appear in the low-energy EFT for vector triplet model at tree-level
- But different models would give different subset of operators
- Therefore, to be model independent, one should simultaneously constrain *all* dimension-6 operators
- Matching to dimension-6 operators to UV theory is not always trivial. One needs to use equations of motion and other trick to reduce to operator set in given basis
- However, SM EFT approach is basis independent - results can always be transformed from one basis to another, provided all independent operators are taken into account. Predictions for physical observable do not depend on which bases you use

