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Brief Philosophy of EFT
Part 1



Role of scale in physical problems
Some distribution  
of electric charges 

r

Near 
observer

Far 
observer

R

L

Near observer, L~R, needs to know the position of every charge to describe electric field in her proximity  

Far observer, r >> R,  can instead use multipole expansion: V( ⃗r ) =
q
r

+
⃗d ⋅ ⃗r

r3
+

Qijrirj

r5
+ …

~1/r ~R/r^2 ~R^2/r^3

Far observer is able to describe electric field in his vicinity using just a few parameters: 
the total electric charge, eventually the dipole moment …. 

Higher order terms in the multipole expansion are suppressed by powers of the small parameter (R/r). 
 One can truncate the expansion at some order depending on the value of (R/r) and experimental precision

Far observer, like Molière's Mr. Jourdain,  
discovers that he has been using EFT all his life  

On the other hand, far observer can only guess the "fundamental" distributions of the charges, 
as many distinct distributions lead to the same first few moments   



Scale in quantum field theory

Consider a theory of a light particle φ  
interacting with a heavy particle H

φ

φ

H

φ

φ

H

φ

φ

x1 x2

At small distance scales, |x1-x2| << 1/mH,  
the heavy particle H propagates.  

Force acting between light particles φ

At large distance scales, |x1-x2| >> 1/mH,  
propagation of the heavy particle H suppressed. 
Interaction looks like a delta function potential 

P(x1, x2) ∼ exp(−mH |x1 − x2 | )

mH ∼ ΔE ≪
1

|x1 − x2 |
∼

1
Δt

⇒ ΔEΔt ≪ 1 mH ∼ ΔE ≫
1

|x1 − x2 |
∼

1
Δt

⇒ ΔEΔt ≫ 1

Heavy particle H propagator in coordinate space:
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Scale in quantum field theory
Consider a theory of a light particle φ  

interacting with a heavy particle H

φ

φ

φ

φ

φ

φ

H

φ

φ

At large momentum scales, p2 >> mH2,  
we see propagation of the heavy particle H. 

Long range force acting between light particles φ

P(p2) ∼
1

p2 − m2
H

=

1
p2

p2 ≫ m2
H

−
1

m2
H

p2 ≪ m2
H

Heavy particle H propagator in momentum space:

ℳ ∼
g2

p2 ℳ ∼
g2

m2
H

At small momentum scales, p2 << mH2,  
propagation of the heavy particle H 

effectively leads to a contact interaction 
between light particles φ 



Scale in particle theory
φ

φ

H

φ

φ

φ

φ

φ

φ

• Processes probing  distance scales >> 1/mH, equivalently  energies scales << mH, 
cannot  resolve the propagation of H


• Then, intuitively, exchange of heavy particle H between light particles φ should be 
indistinguishable from a contact interaction of φ  


• In other words, the effective theory describing  φ interactions should be well 
approximated by a local Lagrangian, that is, by a polynomial in φ and its derivatives 

This is the generic way how the effective theory description arise in particle physics,  
which will be repeated in many examples that follow 
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Introducing the SMEFT

Part 2



Elementary particles we know today

All these particles are propagating degrees of freedom right above the electroweak scale,  
that is at 100 GeV - 1 TeV E ∼



SMEFT

SMEFT is an effective theory for these degrees of freedom 
incorporating certain physical assumptions: 

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field

⟨H⟩ = (
0

v/ 2)



SMEFT

 SM Lagrangian
Higher-dimensional 

SU(3)C x SU(2)L x U(1)Y invariant  
interactions added to the SM

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

If these assumptions are true we can organize the EFT as an expansion in 1/Λ,  
where  is identified with the mass scale of the UV completion of the SMEFT,  
and each term is a linear combination of SU(3)xSU(2)xU(1) invariant operators 

of a given canonical dimension D  

Λ

In the spirit of EFT, each  should include a complete and non-redundant set of interactionsℒD

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions



ℒD=4 = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈q,u,d,L,e

if̄γμDμ f

−(ūYuQH + d̄YdH†Q + ēYeH†L + h . c . )
+DμH†DμH − λ(H†H)2 + θ̃Ga

μνG̃a
μν

ℒD=3 = 0

Experiment: μH ∼ 100 GeV

Strictly speaking,  has not been observed directly. Its value is known within SM hypothesis, but not within SMEFT, without additional assumptions.  
Observation of double Higgs production (receiving contribution from cubic Higgs coupling) will be a direct proof that  is there in the Lagrangian. 

λ
λ

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT

ℒD=2 = μ2
HH†H

Simply, no gauge invariant operators made of SM fields 
exist at canonical dimension D=3

Dμ f = ∂μ f − igsGa
μTaf − igLWi

μ
σi

2
f − igY BμYf

Va
μν = ∂μVa

ν − ∂νVa
μ + g f abcVb

μVc
ν

Unsolved mystery why , 
which is called the hierarchy problem   

μ2
H ≪ Λ2

G̃a
μν ≡

1
2

ϵμναβGαβ a

Experiment: all interactions at D=2 and D=4 above have been observed, except for  θ̃

Note that  is not physical, while  can be eliminated by chiral rotation θBBμνB̃μν θWWk
μνW̃k

μν



• At dimension 5, the only gauge-invariant operators one can construct are the so-
called Weinberg operators, which break the lepton number


• After electroweak symmetry breaking they give rise to Majorana mass terms for 
the SM (left-handed) neutrinos


• Neutrino oscillation experiments strongly suggest that these operators are present  
(unless neutrino masses are of the Dirac type)

cij

Λ
(LiH)(LjH) + h . c . → cij

v2

Λ
νiνj + h . c .

SMEFT at dimension-5

H → (
0

v/ 2)
Li → (νi

ei)

This is a huge success of the SMEFT paradigm:  
corrections to the SM Lagrangian predicted at the next order in the EFT expansion, are 

indeed observed in experiment!

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 



SMEFT at dimension-5

ℒSMEFT ⊃ cij
v2

Λ
νiνj + h . c .

Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark  
 (while the lightest neutrino may even be massless)

It follows that  GeV 
Λ
cij

∼ 1015 One problem now:

If this is really the correct estimate, then we will never see any other effects  
of higher-dimensional operators, except possibly of baryon-number violating ones :/ 

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Naively:  and then  , , and so onℒD=5 ∼
1
Λ

ℒD=6 ∼
1

Λ2
ℒD=7 ∼

1
Λ3



?

Career opportunities



SMEFT at dimension-5

ℒSMEFT ⊃ cij
v2

Λ
νiνj + h . c .

Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark  
 (while the lightest neutrino may even be massless)

Dimension-5 interactions are special because they violate lepton number L.  
If we assume that the mass scale of new particles with L-violating interactions  is ,  

and there is also L-conserving new physics at the scale   , then the estimate is  
ΛL

Λ ≪ ΛL

It follows that  GeV 
Λ
cij

∼ 1015 One problem now:

Alternatively, it is possible (and likely) that there is more than one mass scale of new physics

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Naively:  and then  , , and so onℒD=5 ∼
1
Λ

ℒD=6 ∼
1

Λ2
ℒD=7 ∼

1
Λ3

It is however possible that  is not far from TeV, but instead    Λ cij ≪ 1

 ,   , , ,  and so onℒD=5 ∼
1

ΛL
ℒD=6 ∼

1
Λ2

ℒD=7 ∼
1

Λ3
L

ℒD=8 ∼
1

Λ4



SMEFT at dimension-6

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h
= 2µ2

H
= 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH

]IJ H†Hec
I
H†`J

[O†
uH

]IJ H†Huc
I
eH†qJ

[O†
dH

]IJ H†Hdc
I
H†qJ

Vertex

[O(1)
H`

]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`

]IJ i¯̀I�i�̄µ`JH†�i
 !
DµH

[OHe]IJ iec
I
�µēcJH

† !DµH

[O(1)
Hq

]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq

]IJ iq̄I�i�̄µqJH†�i
 !
DµH

[OHu]IJ iuc
I
�µūcJH

† !DµH

[OHd]IJ idc
I
�µd̄cJH

† !DµH

[OHud]IJ iuc
I
�µd̄cJH̃

†DµH

Dipole

[O†
eW

]IJ ec
I
�µ⌫H†�i`JW i

µ⌫

[O†
eB

]IJ ec
I
�µ⌫H†`JBµ⌫

[O†
uG

]IJ uc
I
�µ⌫T a eH†qJ Ga

µ⌫

[O†
uW

]IJ uc
I
�µ⌫ eH†�iqJ W i

µ⌫

[O†
uB

]IJ uc
I
�µ⌫ eH†qJ Bµ⌫

[O†
dG

]IJ dc
I
�µ⌫T aH†qJ Ga

µ⌫

[O†
dW

]IJ dc
I
�µ⌫H̄†�iqJ W i

µ⌫

[O†
dB

]IJ dc
I
�µ⌫H†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a

14

(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud

(uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu

(q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd

(q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq

⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q

(¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd

(ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ

(ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

At dimension-6 all hell breaks loose

Grzadkowski et al 
arXiv:1008.4884 



|H |6 |H |2 Ga
μνGa

μν

|H |2 Wa
μνWa

μν| H |2 W a
μν W̃ a

μν
|H |2 Ga

μν G̃ a
μν | H |2 Bμ ν Bμ ν

| H |2 Bμ ν B̃ μ ν
Ga

μνGa
νρ G̃ a

ρμ



SMEFT at higher dimensions

Exponential growth of the number of operators with the canonical dimension D

Henning et al 
arXiv:1512.03433 
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

information (i.e. setting all spurions equal to unity), but still retaining Nf dependence:

# Dim 13 = �109Nf +
159296

15
N2

f
+

32063

90
N3

f
+

5140756

45
N4

f
+

78253

72
N5

f
+

42846881

360
N6

f
+

68723

360
N7

f

+
4311047

360
N8

f

# Dim 14 = 40715� 2Nf +
105860297

180
N2

f
+

89759

18
N3

f
+

1513774187

720
N4

f
+

63971

72
N5

f
+

299553293

180
N6

f

�
117979

72
N7

f
+

51562231

240
N8

f

# Dim 15 = �2427Nf +
21647887

180
N2

f
�

114619

20
N3

f
+

387130705

216
N4

f
�

10026269

1440
N5

f
+

456200951

160
N6

f

�
3717991

720
N7

f
+

103741331

144
N8

f
�

534941

1440
N9

f
+

9163865

864
N10

f

(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in Fig. 1. We see the
growth is exponential, which is to be expected on general grounds [43].

5 Discussion

The method we have outlined in this paper can be extended trivially to determining the
content and number of higher dimension operators for any four-dimensional relativistic
gauge theory with scalar and fermionic matter. The master equation is eq. (3.16), which
needs to be modified from the SM to the theory of interest. The pieces of eq. (3.16)
which are SM specific are the gauge groups (and as such the Haar measures that need to be

– 17 –

Nf = 1

Nf = 3

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

For complex operators

complex conjugates counted


as separate operators



SMEFT at higher dimensions

Number of baryon-number-conserving operators as function of D and number of generations Nf

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Nf=0 Nf=1 Nf=2 Nf=3 ...

Dimension-5 0 2 6 12 ...

Dimension-6 15 76 582 2499 ...

Dimension-7 0 22 212 948 ...

Dimension-8 89 895 8251 36971 ...

... ... ... ... ... ...



SMEFT at higher dimensions

SMEFT at dimension-6: Grzadkowski et al 
arXiv: 1008.4884 

SMEFT at dimension-5: Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 

SMEFT at dimension-7: Lehman 
arXiv: 1410.4193

SMEFT at dimension-8: Li et al 
arXiv: 2005.00008

SMEFT at dimension-9: Li et al 
arXiv: 2012.09188 

Code to generate a basis at arbitrary dimension in SMEFT: Li et al 
arXiv:2201.04639 



Assumptions behind  
the SMEFT

Part 3



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 
1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

But are these assumptions true? 

Certainly not,  

because gravity exists ! 

graviton

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

hμν

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field
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SM + Gravity (GRSMEFT): Dimension 6

ℒD=6 ⊂

GR-SMEFT

In principle, the relevant effective theory at the electroweak scale is GR-SMEFT rather than SMEFT

First of all, Einstein's GR can be generalised to an effective theory: GR-EFT

ℒGR−EFT = −g{Λ4
c +

1
2

M2
Planck −gR} +

1
Λ2 {c1CμναβCαβρσCρσ

μν + c2CμναβCαβρσC̃ρσ
μν} + …

GR EFT corrections Ruhdorfer et al 
arXiv:1908.08050

Furthermore, one can consider the EFT of SM degrees of freedom coupled to gravity: GR-SMEFT.  
At lowest order, graviton couples to the energy-momentum tensor of matter, without any free 

parameters. At higher order one can construct effective operators with arbitrary Wilson coefficients, 
for example at dimension-6 in the gauge-gravity sector one has: 

 

Weyl tensor  is  
the  part in  

decomposition of Riemann tensor:

Cμνρσ

(2,0) ⊕ (0,2)



SMEFT

But are these assumptions true? 

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

hμν

graviton

However, unless something weird happens  
at the level of higher-dimensional operators,  
we expect graviton couplings to matter to be 
very suppressed, likely by powers of  
In such a case, the GR- part of GR-SMEFT 

has tiny impact on collider or low-energy experiments. 
For the sake of these applications, we can safely 

ignore the graviton and focus on the SMEFT.  
On the other hand, for applications like black hole 

scattering/inspiral, weak gravity conjecture, 
early cosmology, etc. GR-SMEFT remains relevant

MPlanck

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin
Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2
dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2
eR 1 1 -1 1/2
H 1 2 1/2 0
N  1 1 1 1/2

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

Maybe  not, because 

light right-handed neutrinos

might as well exist

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



R-SMEFT

Liao, Ma 
arXiv:1612.04527

Effective theory should include all interactions with singlet neutrinos: 

ℒD=5 =
1
Λ {c1(LH)(LH) + c2(NN )H†H + c3(NσμνN )Bμν} + h . c .

ℒD=6 =

ψ2H3 ψ2H2D ψ2HX(+h.c.)
OLNH(+h.c.) (L̄N)H̃(H†H) OHN (N̄γµN)(H†i←→DµH) ONB (L̄σµνN)H̃Bµν

OHNe(+h.c.) (N̄γµe)(H̃†iDµH) ONW (L̄σµνN)τ IH̃W Iµν

(R̄R)(R̄R) (L̄L)(R̄R) (L̄R)(L̄R)(+h.c.)
ONN (N̄γµN)(N̄γµN) OLN (L̄γµL)(N̄γµN) OLNLe (L̄N)ε(L̄e)
OeN (ēγµe)(N̄γµN) OQN (Q̄γµQ)(N̄γµN) OLNQd (L̄N)ε(Q̄d))
OuN (ūγµu)(N̄γµN) OLdQN (L̄d)ε(Q̄N)
OdN (d̄γµd)(N̄γµN)

OduNe(+h.c.) (d̄γµu)(N̄γµe)
(L̄R)(R̄L) (/L∩B)(+h.c.) (/L∩ /B)(+h.c.)

OQuNL(+h.c.) (Q̄u)(N̄L) ONNNN (NCN)(NCN) OQQdN εi jεαβσ (Qi
αCQ

j
β )(dσCN)

OuddN εαβσ (uαCdβ )(dσCN)
Redundant operators

OLNNL (L̄N)(N̄L) OQNNQ (Q̄N)(N̄Q) O ′NN (N̄NC)(NCN)
OQNdQ(+h.c.) (Q̄NC)(d̄QC) OuNd(+h.c.) εαβσ (ūαNC)(d̄βdCσ )
ODN(+h.c.) (L̄DµN)DµH̃ OD̄N(+h.c.) (L̄←−D µN)DµH̃

Table 1: The 19 complete and independent dim-6 operators involving N named similarly to Refs. [3, 10] are shown
in the upper part of the table while the 7 redundant ones named as in [16] are in the lower part. The notation (+h.c.)
indicates the Hermitian conjugates of relevant operators, and α , β , σ (i, j) are SU(3)C (SU(2)L) indices.

where ΨC
L = CΨL

T and anticommutativity of fermion fields has been considered. The identities also hold true on
chirality flip ΨL↔ΨR.

We first reduce the five redundant operators not involving a derivative as a direct consequence of the above Fierz
identities. We attach flavor indices p, r, v, w to fields and operators to show better the shift of flavors:

O
prst
LNNL

(4)
= −

1
2
O
ptsr
LN ,

O
prst
QNNQ

(4)
= −

1
2
O
ptsr
QN ,

O
′prst
NN

(3)
=

1
2
O
ptrs
NN ,

(O prst
uNd)

† (5)
= O

ptsr
uddN −O

pstr
uddN , (7)

where the operators on the right-hand side are among the 19 operators in Table 1, while O
prst
QNdQ = 0 trivially because of

chirality mismatch. To prove the redundancy of the operators involving derivatives, we require the well-known relations

2gµν = {γµ ,γν}, (8)

γµγν = gµν − iσµν , (9)

as well as IBP and EoM, so that we can transform them in steps:

OD̄N
IBP
= −ODN− (L̄N)D2H̃
EoM
= −ODN+ . . . , (10)

4

ℒD=3 = − MN(NN) + h . c .

ℒD=2 = μ2
HH†H

ℒR−SMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

ℒD=4 = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈q,u,d,L,e,N

if̄γμDμ f

−(ūYuQH + d̄YdH†Q + ēYeH†L + N̄YNHL + h . c . )
+DμH†DμH − λ(H†H)2 + θ̃Ga

μνG̃a
μν



SMEFT

SU(3)C SU(2)W U(1)Y Spin
Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2
dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2
eR 1 1 -1 1/2
H 1 2 1/2 0
a 1 1 1 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

Maybe  not, because 

axions

might as well exist

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin
Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2
dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2
eR 1 1 -1 1/2
H 1 2 1/2 0

DM 1 ? ? ?

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

Maybe  not, because 

light dark matter

might as well exist

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin
Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2
dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2
eR 1 1 -1 1/2
H 1 2 1/2 0
? ? ? ? ?

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

All in all, 

assumption #2 is reasonable, 

but it is a serious leap of faith

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 
1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

Why should physics beyond SM

respect the SM gauge symmetry? 

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



• Gauge symmetries are not real symmetries, in the sense that they 
do not relate distinct physical states (unlike global symmetries) 


• Instead, gauge symmetries are now understood as a redundancy 
of our theoretical  description of fundamental interactions


• As explained e.g. in Weinberg's QFT vol 1 sec 5.9, this redundancy 
is inevitable if one wants to write down a Lagrangian containing 
massless gauge bosons in a manifestly Lorentz-invariant way


• Since we need a gauge symmetry for each massless gauge 
bosons, thus the EFT for SM degrees of freedom must have at 
least SU(3)xU(1) symmetry 

Gauge symmetry



HEFT

But are these assumptions true? 

We can work with HEFT    

where only SU(3)xU(1)  

is linearly  realized 

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



Two mathematical formulations for effective theories with SM spectrum

Linearly realized 
electroweak symmetry

Non-linearly realized 
electroweak symmetry

SU(3)C x SU(2)L x U(1)Y SU(3)C x U(1)em

In general, the two formulations lead to two distinct effective theories 

Linear vs non-linear

SMEFT HEFT

125 GeV Higgs boson

Goldstone bosons 
eaten by W and Z U = exp ( iπaσa

v )

⊂

H =
1

2 ( iG1 + G2

v + h + iG3)
U → LUR† h → hH → LH

L ∈ SU(2)L R ∈ U(1)Y

v ≈ 246 GeV
Higgs VEV Expansion 

parameter
v ≈ 246 GeV



SMEFT HEFT

HEFT: no correlations between self-couplingsSMEFT: Predicts correlations between self-couplings 
as long as Λ >> v 

In the SM 
self-coupling  

completely fixed…

…but they can be deformed by BSM effects 

ℒSM ⊃ m2 |H |2 − λ |H |4

→ −
1
2

m2
hh2 −

m2
h

2v
h3 −

m2
h

8v2
h4

ℒSMEFT ⊃ −
m2

h

2v
(1 + δλ3)h3 −

m2
h

8v2
(1 + δλ4)h4 −

λ5

v
h5 −

λ6

v2
h6

ℒHEFT ⊃ − c3
m2

h

2v
h3 − c4

m2
h

8v2
h4 −

c5

v
h5 −

c6

v2
h6 + …ℒSMEFT = ℒSM −

c6

Λ2
|H |6 + 𝒪(Λ−4)

δλ3 =
2c6v4

m2
hΛ2

, δλ4 =
12c6v4

m2
hΛ2

, λ5 =
3c6v2

4Λ2
, λ6 =

c6v2

8Λ2

Linear vs non-linear: Higgs self-couplings



• SMEFT and HEFT lead to a vastly different 
phenomenology at the electroweak scale


• Choosing SMEFT or HEFT implicitly entails an 
assumption about a class of BSM theories that we want 
to characterize


• SMEFT is appropriate to describe BSM theories which 
can be parametrically decoupled, that is to say, where the 
mass scale of the new particles depends on a free 
parameter(s) that can be taken to infinity


• Conversely, HEFT is appropriate to describe non-
decoupling BSM theories, where the masses of the new 
particles vanish in the limit v→0  

Linear vs non-linear

AA, Rattazzi 
arXiv:1902.05936 



Example: cubic Higgs deformation

Consider a toy EFT model where Higgs cubic (and only that) deviates from the SM

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

ℒ = ℒSM−Δ3
m2

h

2v
h3

This EFT belongs to the HEFT but not SMEFT parameter space 



HEFT = Non-analytic Higgs potential

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

Given a Lagrangian for Higgs boson h, one can always uplift 
it to a manifestly SU(2)xU(1) invariant form by replacing h → 2H†H − v

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

(1)

(2)

After this replacement, Higgs potential contains terms non-analytic at H=0

(1) and (2) are equal in the unitary gauge H →
1

2 ( 0
v + h)

Thus, (1) and (2) describe the same physics



Non-analytic Higgs potential

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

H =
1

2 ( iG1 + G2

v + h + iG3)

In the unitary gauge, the Higgs potential looks totally healthy and renormalizable…

Away from the unitary gauge,  it becomes clear that the Higgs potential contains  
non-renormalizable interactions suppressed only by the EW scale v

V ⊃ Δ3
m2

h

2v ( (h + v)2 + G2 − v)
3

V ⊃ Δ3
3m2

h

4v
G2h2

h + v
+ 𝒪(G4) = Δ3

3m2
h

4
G2

∞

∑
n=2

( −h
v )

n

+ 𝒪(G4)

Going away from the unitary gauge:

G2 ≡ ∑
i

G2
i



 Multi-Higgs production

Expanded potential contains interactions

Amplitudes for multi-Higgs production in W/Z boson fusion are only 
suppressed by  the scale v and do not decay with growing energy, 

leading to unitarity loss at some scale right above v

VLVL → n × hConsider VBF production of n ≥ 2 Higgs bosons: 

leading to interaction vertices with  
arbitrary number of Higgs bosons

V ⊃ = Δ3
3m2

h

4
G2

∞

∑
n=2

( −h
v )

n

VL

VL

ℳ(GG → h…h
⏟

n

) ∼ Δ3
n!m2

h

vn

By the equivalence theorem,  
at high energies the same as GG → n × h



S matrix unitarity

implies relation between forward scattering amplitude,  
and elastic and inelastic production cross sections

Equation is “diagonalized” after  
initial and final 2-body state are projected into partial waves

symmetry factor 
for n-body final state

Unitarity primer

This can be rewritten as the Argand circle equation

independently whether the particles are identical or not. The partial wave amplitudes
al are the matrix element of the T operator in that basis:

hE 0, ~p0, l0,m0
|T |E, ~p, l,mi = (2⇡)4�3(~p� ~p0)�(E � E 0)�ll0�mm0 al(s). (2.14)

Note that by the Wigner theorem al must be independent of the spin projection m.
The two bases are related by a linear transformation. Consider the center of mass

frame with the direction of the first momentum given by
~k1

|~k1|
= n̂ ⌘ (sin ✓ cos�, sin ✓ sin�, cos ✓).

Such a state can be expressed in the other basis using the spherical harmonics:

|~k1~k2i =
4
p
2⇡

p
S2

�
1� 4m2

s

�1/4
X

lm

Ylm(✓,�)|
p
s, 0, l,mi, (2.15)

where S2 = 1/2! if |~k1~k2i contains two identical particles, and S2 = 1 otherwise.
The pre-factor here ensures the normalization in Eq. (2.13) given Eq. (2.11). UsingR
d⌦Y ⇤

l0m0(✓,�)Ylm(✓,�) = �ll0�mm0 we can invert Eq. (2.15):

|
p
s, 0, l,mi =

p
S2

⇣
1� 4m2

s

⌘1/4

4
p
2⇡

Z
d⌦Y ⇤

lm
(✓,�)|~k1~k2i. (2.16)

Given Eq. (2.15), the 2-to-2 elastic amplitude can be expressed by the partial wave
amplitude as

M(~p1~p2 ! ~k1~k2) =
8⇡

S2

p
1� 4m2/s

1X

l=0

(2l + 1)Pl(cos ✓)al(s). (2.17)

where ✓ is the angle between ~p1 and ~k1. The other way around:

al(s) =
S2

16⇡

r
1�

4m2

s

Z 1

�1

d cos ✓Pl(cos ✓)M(s, cos ✓), (2.18)

where I used
R 1

�1 d cos ✓Pl(cos ✓)Pl0(cos ✓) =
2

2l+1�ll0 . It follows that the unit a operator
on the subspace of fixed

p
s can be written in terms of the partial wave states as

1 =
X

l,m

|
p
s, 0, l,mih

p
s, 0, l,m|+

X

n>2

Sn

Z
d⇧̃1 . . . d⇧̃n|k1 . . . knihk1 . . . kn|. (2.19)

We can also write the amplitude for a transition between a particular partial wave and
a n-particle state normalized as in Eq. (2.3):

M(
p
s, 0, l,m ! {n}) =

p
1� 4m2/s

p
S2

4
p
2⇡

Z
d⌦Ylm(⌦)M(k1k2 ! {n}). (2.20)

The unitarity condition in Eq. (2.7) evaluated for the in state |E, 0, l,mi becomes:

2Im al = |al|
2 +

X

n2inel.

Sn

Z
d⇧n|M(E, 0, l,m ! {n})|2. (2.21)

4

2Imℳ(p1p2 → p1p2) = S2 ∫ dΠ2 |ℳelastic(p1p2 → k1k2) |2 + ∑ Sn ∫ dΠn |ℳinelastic(p1p2 → k1…kn) |2

2Imal = a2
l + ∑ Sn ∫ dΠn |ℳinelastic

l |2

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2



 implies constraints on both  
elastic and inelastic amplitudes

Unitarity primer

Argand circle equation

Re(al)

Im(al)
Argand circle shrinks 

 in the presence of 
 inelastic channels

1

1

2

0

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2

|Real | ≤ 1

∑ Sn ∫ dΠn |ℳinelastic
l |2 ≤ 1

Often used

Often forgotten



Unitarity constraints on inelastic channels

∞

∑
n=2

1
n! ∫ dΠn |ℳ(GG → hn) |2 =

∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ≲ 𝒪(1)

Unitarity (strong coupling) constraint on inelastic multi-Higgs production 

Volume of phase space 
 in the massless limit: Vn( s) = ∫ dΠn =

sn−2

2(n − 1)!(n − 2)!(4π)2n−3
∼

sn−2

(n!)2(4π)2n

In a fundamental theory,  
2 → n amplitude must decay as 1/sn/2-1  

in order to maintain unitarity up to arbitrary high scales   

Process Unitarity limit
2 → 2 1
2 → 3 1/s1/2

2 → 4 1/s
… …



Unitarity constraints on HEFT

Λ ≲ (4πv)log1/2 ( 4πv
mh |Δ3 |1/2 )

In model with deformed Higgs cubic, multi-Higgs amplitude do not decay with energy 
leading to unitarity loss at a finite value of energy 

ℳ(GG → h…h
⏟

n

) ∼ Δ3
n!m2

h

vn

𝒪(1) ≳
∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ∼
∞

∑
n=2

1
n!

sn−2

(n!)2(4π)2n
Δ2

3
(n!)2m4

h

v2n
∼

Δ2
3m4

h

s2
exp[ s

(4πv)2 ]

∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ≲ 𝒪(1)Unitarity equation

Our amplitude

Unless Δ3 is unobservably small, unitarity loss happens at the scale 4 π v ~ 3 TeV  ! 



Perspective on HEFT

Example of UV model leading to non-analytic terms in low-energy effective theory 

ℒUV = ℒSM −
κ
2

|Φ |4 + μ2(Φ†H + h . c.)

Eqs of motion: Φ = ( μ2

κH†H )
1/3

H

Effective Lagrangian: ℒEFT ≈ ℒSM +
3μ8/3

2κ1/3 (H†H)2/3

Non-analyticity appears because of integrating out particle 
that would be massless in the absence of EW symmetry breaking



More familiar example is integrating out 4th chiral generation at one loop, 
which  produces Log|H|2  terms in the Coleman-Weinberg potential

Perspective on HEFT

 Below a similar example with scalar instead of fermion: Cohen et al 
arXiv:2008.08597

+
1

4�S

�
m2

+ |H|
2
�2

�
1

8

2

�Sm2

�
@|H|

2
�2

+O (dim-8) , (6.17)

which is a SMEFT expansion. In addition, we also see that the decoupling limit
m2

! 1 is well behaved, i.e., the curvature R(h) ! 0, see Eq. (6.15).

m2 = 0: Matching Onto HEFT is Required

When m2
= 0, the singlet s gets all of its mass from the vev of H, see Eq. (6.6).

Therefore, we expect the effective Lagrangian to be non-analytic at H = 0, and as
such it cannot be mapped onto SMEFT. This is reflected by the divergence of the
scalar curvature at h⇤ = �v:

R|m2=0 =
N'(N' � 1)

(� 2�S)(v + h)2
����!
h!h⇤

1 . (6.18)

Our LO Criteria imply that the effective Lagrangian with m2
= 0 can only be

matched onto HEFT.

6.2 Integrating Out a Singlet Scalar at Loop Level

Now that we have seen how our LO Criteria work in the context of a concrete example
at tree-level, we will turn to the same Z2 singlet model in the regime where S does not
get a vev, so that the leading Wilson coefficients are generated at one-loop order. We
note that matching coefficients up to one-loop and dimension-6 for the more general
parameter space of the singlet scalar model have been previously computed [53–55].
The novel result derived here will be the all-orders form factors F (h) and K(h).

We set the singlet quartic coupling to zero for simplicity, such that the La-
grangian is

LUV = |@H|
2
+ µ2

H
|H|

2
� �H |H|

4
+

1

2
S
�
�@2

�m2
� |H|

2�S , (6.19)

Our goal is to integrate out S to obtain the effective Lagrangian for H, and then apply
our LO Criteria to determine under what conditions one can match onto SMEFT.
The field-dependent mass of S is

m2
S
[H] = m2

+ |H|
2 , (6.20)

and similarly, we expect to be able to match onto SMEFT when m2
6= 0. If m2

= 0,
the mass of S is purely from electroweak symmetry breaking, and we expect to be
forced to match onto HEFT. In what follows, we will see that this expectation is
consistent with our LO Criteria.
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Effective Lagrangian

Starting with the Lagrangian in Eq. (6.19), it is straightforward to derive the tree-
level equation of motion for S:

�
�@2

�m2
� |H|

2�S = 0 =) Sc = 0 . (6.21)

Since Sc vanishes at tree level, the new physics contribution to the effective La-
grangian for H begins at one loop. As is well known, the effective Lagrangian can
be computed from a functional determinant:

LEff, tree(H) = |@H|
2
+ µ2

H
|H|

2
� �H |H|

4 , (6.22a)
Z

d
4xLEff, 1-loop(H) =

i

2
log detS

�
@2

+m2
+ |H|

2� . (6.22b)

No techniques exist to evaluate the functional determinant in Eq. (6.22b) to all
orders. However, we can make progress by organizing the effective Lagrangian as a
derivative expansion:

LEff = L
(0)
Eff

+ L
(2)
Eff

+O
�
@4
�
, (6.23)

where L
(k)
EFT

contains all the terms with k derivatives, we are dropping the “1-loop”
subscript for brevity, and terms with odd-powers of derivatives do not contribute
since we only consider operators with bosonic fields.

In App. D, we work out a new formalism that allows one to calculate the two
derivative contribution to the effective Lagrangian to all orders in the fields, by
evaluating the functional determinant directly from the path integral. Here, we are
interested in the potential V = �L

(0)
EFT

, and the form factors K(h) and F (h) that
multiply the two-derivative terms L

(2)
EFT

. Then we can apply Eq. (D.21) with the
identification M2

= m2 and U = |H|
2, such that the terms of O([U, @µU ]) = 0

identically since |H|
2 is a singlet and has a vanishing commutator.18 The resulting

effective Lagrangian is thus

L
(0)
Eff

= µ2
H
|H|

2
� �H |H|

4
+

1

64⇡2

�
m2

+ |H|
2�2

✓
ln

µ2

m2 + |H|
2 +

3

2

◆
(6.24a)

L
(2)
Eff

= |@H|
2
+

1

384⇡2

2

m2 + |H|
2

�
@|H|

2�2 . (6.24b)

In this basis, it is already clear by inspection that when m2
6= 0, this Lagrangian can

be expanded in 1/m2 and matched onto SMEFT, while when m2
= 0 one encoun-

ters non-analytic behavior about H = 0. We will see this intuition play out more

18In the next section, we will present a model where this commutator does not vanish, leading to
more involved expressions for the form factors.
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6= 0, this Lagrangian can

be expanded in 1/m2 and matched onto SMEFT, while when m2
= 0 one encoun-

ters non-analytic behavior about H = 0. We will see this intuition play out more

18In the next section, we will present a model where this commutator does not vanish, leading to
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Integrating out the scalar S  at one produces the CW potential: 

Effective Lagrangian at zero and two derivative levels:  

For  we can expand in powers if , which leads to analytic SMEFT Lagrangian 
For   we cannot expand, and effective Lagrangian is non-analytic, which corresponds to HEFT

m2 ≫ κv2 1/m2

m2 ≪ κv2



• EFT with non-linearly realized electroweak symmetry (aka HEFT) is 
equivalent to EFT with linearly realized electroweak symmetry but 
whose Lagrangian is a non-polynomial function of the Higgs field that 
is non-analytic at H=0 


• This non-analyticity leads to explosion of multi-Higgs amplitudes at 
the scale 4 π v . For this reason, the validity regime of HEFT is limited 
below the scale of order  4 π v ~ 3 TeV 


• HEFT is useful to approximate BSM theories where new particles’ 
masses vanish in the limit v → 0, e.g. SM + a 4th generation of chiral 
fermions or when most of the new particle mass comes from EW 
symmetry breaking


• On the other hand, an EFT with linearly realized electroweak symmetry 
and the Lagrangian polynomial in the Higgs field (aka SMEFT) is useful 
to approximate BSM theories where new particles’ masses  do not 
vanish in the limit v → 0, and are parametrically larger than the 
electroweak scale, e.g. SM + vector-like fermions

Linear vs non-linear summary



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

This is a very reasonable assumption,

given we haven't seen non-SM particles

around the EW scale 

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



SMEFT

SU(3)C SU(2)W U(1)Y Spin

Q = (uL,dL) 3 2 1/6 1/2

uR 3 1 2/3 1/2

dR 3 1 -1/3 1/2

L = (νL,eL) 1 2 -1/2 1/2

eR 1 1 -1 1/2

H 1 2 1/2 0

Ga
μ Wk

μ Bμ 1

But are these assumptions true? 

In assumptions #2 and #3 are related 

#3 means that the mass gap is such that 

Λ ≳ 4πv ∼ 3 TeV

1. Unitarity, locality, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field



Bases of SMEFT

Part 4 



Bases of EFT 

• Quantum field theories formulated in terms of fields and Lagrangians have an important 
redundancy, in addition to the gauge symmetry redundancy


• The point is that quantum fields are not physical observables, but merely tools in our 
computations, akin to integration variables under the integral


• Continuing with this analogy, changing variables, that is field redefinitions, do not 
change the physical content of the theory. However they do change the Lagrangian!


• Therefore Lagrangian parameters are "measurable" only after (redundant) operators in 
the same equivalence classes are eliminated. This can be done in practice by 
eliminating certain terms using equations of motion for the EFT fields, as this is 
equivalent to using field redefinitions.  


• Since the elimination of redundant operators can be performed in many different 
manners, a single EFT corresponds to  an infinite number of Lagrangians that lead to 
equivalent results. For a given canonical dimension, these different Lagrangians are 
called bases. 


• Thus, the SMEFT has an infinite number of equivalent bases, at each canonical 
dimension. They are multi-dimensional, e.g. at dimension 6 each basis has 3045 
different interaction terms


•  To illustrate the concept of the basis, let us first consider a simpler toy example, where 
the dimension-6 basis has one element



Toy model EFT Lagrangian

Consider an EFT of a single real scalar field  with Z2 symmetry 

By general arguments, the EFT Lagrangian  must have the following form 

ϕ ϕ → − ϕ

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

Λ2

ϕ6

6!
+ 𝒪(Λ−4)

In this discussion we truncate the Lagrangian at order ,  
ignoring all operators with dimension higher than six  

Λ−4

Operators with odd dimensions do not appear in this EFT 
because of the Z2 symmetry

Ô6 ≡ (□ϕ)2, Õ6 ≡ ϕ □ ϕ3, Õ′ 6 ≡ ϕ2 □ ϕ2, Õ′ ′ 6 ≡ ϕ2∂μϕ∂μϕ, …

What about other dimension-6 operators, e.g. 

These are all redundant, that is to say,  
they can be expressed by the operators already present in  by using  

equations of motion, fields redefinitions, and integration by parts 
ℒEFT



O6 ≡ ϕ6, Ô6 ≡ (□ϕ)2, Õ6 ≡ ϕ3 □ ϕ, Õ′ 6 ≡ ϕ2 □ ϕ2, Õ′ ′ 6 ≡ ϕ2∂μϕ∂μϕ, …

Redundant operators

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

Λ2

ϕ6

6!
+ 𝒪(Λ−4)

ϕ2∂μϕ∂μϕ = − 2ϕ∂μϕ∂μϕϕ − ϕ3 □ ϕ ⇒ Õ′ ′ 6 = −
1
3

ϕ3 □ ϕ = −
1
3

Õ6

ϕ2 □ ϕ2 = 2ϕ2∂μ(ϕ∂μϕ) = 2ϕ3 □ ϕ + 2ϕ2(∂μϕ)2 ⇒ Õ′ 6 = 2Õ6 + 2Õ′ ′ 6 =
4
3

Õ6

Use Leibniz rule + integration by parts: 

Use equations of motion: □ ϕ = − m2ϕ −
C4

6
ϕ3 + 𝒪(Λ−2)

This is relevant only if  
we want to keep track 

of dimension-8 operators Õ6 ≡ ϕ3 □ ϕ = − m2ϕ4 −
C4

6
ϕ6 = − m2O4 −

C4

6
O6

O2 ≡ ϕ2

O4 ≡ ϕ4
Ô6 ≡ (□ϕ)2 = m4ϕ2 +

m2C4

3
ϕ4 +

C2
4

36
ϕ6 = m4O2 +

m2C4

3
O4 +

C2
4

36
O6



Bases of operators

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

Λ2

ϕ6

6!
+ 𝒪(Λ−4)

We can equivalently use an EFT Lagrangian where O6 is absent,  
and replaced by another equivalent operator

Õ6 ≡ ϕ3 □ ϕ = − m2O4 −
C4

6
O6 ⇒ O6 = −

6
C4

ϕ3 □ ϕ −
6m2

C4
O4

“Unbox basis”

O2 ≡ ϕ2

O4 ≡ ϕ4

O6 ≡ ϕ6

ℒEFT =
1
2 [(∂μϕ)2 − m̃2ϕ2] − C̃4

ϕ4

4!
−

C̃6

Λ2

ϕ3 □ ϕ
4!

+ 𝒪(Λ−4)

“Box basis”

Map between  
the Wilson coefficients  

in the two bases: 

C̃6 = −
C6

5C4

C̃4 = C4 −
m2

Λ2

C6

5C4
m̃ = m



Bases of operators

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

Λ2

ϕ6

6!
+ 𝒪(Λ−4)

We can equivalently use an EFT Lagrangian where O6 is absent,  
and replaced by another equivalent operators

“Unbox basis”

O2 ≡ ϕ2

O4 ≡ ϕ4

O6 ≡ ϕ6

ℒEFT =
1
2 [(∂μϕ)2 − m̂2ϕ2] − Ĉ4

ϕ4

4!
−

Ĉ6

Λ2

(□ϕ)2

2
+ 𝒪(Λ−4)

“Double-Box basis”

Map between the Wilson coefficients 
in the two bases 

Ĉ6 = −
C6

10C2
4

Ĉ4 = C4 −
m2

Λ2

2C6

5C4

m̂2 = m2 −
m4

Λ2

C6

30C2
4

Ô6 ≡ (□ϕ)2 = m4ϕ2 +
m2C4

3
ϕ4 +

C2
4

36
ϕ6 ⇒ O6 =

36
C2

4
Ô6 − 12

m2

C4
O4 +

36m4

C2
4

O2



Bases of operators

Unbox 
basis

Box 
Basis Double- 

Box 
Basis

…. ….

Every EFT has an infinite number of equivalent bases 

In our toy example, a basis of dimension-6 operators is one dimensional

(to be compared e.g. with the -dimensional basis of dimension-6 operators in the SMEFT) 

Physics is independent of which basis we use,  
but the Lagrangian and intermediate calculations look different in different bases!



Bases of operators

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

Λ2

ϕ6

6!
+ 𝒪(Λ−4)“Unbox basis”

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C̃4

ϕ4

4!
−

C̃6

Λ2

ϕ3 □ ϕ
4!

+ 𝒪(Λ−4)“Box basis”

C̃6 = −
C6

5C4

C̃4 = C4 −
m2

M2

C6

5C4

Consider 2-to-2 scattering in the box and unbox bases

Map

ℳunbox
EFT = −C4 + 𝒪(Λ−4)

ℳbox
EFT = −C̃4 +

C̃6

4Λ2 (p2
1 + p2

2 + p2
3 + p2

4) + 𝒪(Λ−4)

= −C̃4 + C̃6
m2

Λ2
+ 𝒪(Λ−4)

ℳunbox
EFT = ℳbox

EFT + 𝒪(Λ−4)

on-shell



SMEFT at dimension-6

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h
= 2µ2

H
= 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH

]IJ H†Hec
I
H†`J

[O†
uH

]IJ H†Huc
I
eH†qJ

[O†
dH

]IJ H†Hdc
I
H†qJ

Vertex

[O(1)
H`

]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`

]IJ i¯̀I�i�̄µ`JH†�i
 !
DµH

[OHe]IJ iec
I
�µēcJH

† !DµH

[O(1)
Hq

]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq

]IJ iq̄I�i�̄µqJH†�i
 !
DµH

[OHu]IJ iuc
I
�µūcJH

† !DµH

[OHd]IJ idc
I
�µd̄cJH

† !DµH

[OHud]IJ iuc
I
�µd̄cJH̃

†DµH

Dipole

[O†
eW

]IJ ec
I
�µ⌫H†�i`JW i

µ⌫

[O†
eB

]IJ ec
I
�µ⌫H†`JBµ⌫

[O†
uG

]IJ uc
I
�µ⌫T a eH†qJ Ga

µ⌫

[O†
uW

]IJ uc
I
�µ⌫ eH†�iqJ W i

µ⌫

[O†
uB

]IJ uc
I
�µ⌫ eH†qJ Bµ⌫

[O†
dG

]IJ dc
I
�µ⌫T aH†qJ Ga

µ⌫

[O†
dW

]IJ dc
I
�µ⌫H̄†�iqJ W i

µ⌫

[O†
dB

]IJ dc
I
�µ⌫H†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud

(uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu

(q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd

(q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq

⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q

(¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd

(ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ

(ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Warsaw basis of  B-conserving dimension-6 operators

Grzadkowski et al 
arXiv:1008.4884 



SM equations of motion

Each fermion field is a 3-component vector in the generation space. The covariant

derivatives are defined as

Dµf =
�
@µ � igsG

a

µ
T a

f
� igLW

i

µ
T i

f
� igY YfBµ

�
f. (2.6)

Here T a

f
= (�a,��a, 0) for f in the triplet/anti-triplet/singlet representation of SU(3),

where �a are Gell-Mann matrices; T i

f
= (�i/2, 0) for f in the doublet/singlet repre-

sentation of SU(2); Yf is the U(1) hypercharge. The electric charge is given by

Qf = T 3
f
+ Yf .

The third term in Eq. (2.2) contains Yukawa interactions between the Higgs field

and the fermions:

L
SM
Y = �H̃†ucyuq �H†dcydq �H†ecye`+ h.c., (2.7)

where yf are 3⇥ 3 matrices in the generation space.

The last term in Eq. (2.2) are the Higgs kinetic and potential terms:

L
SM
H = DµH

†DµH + µ2
H
H†H � �(H†H)2, (2.8)

where the covariant derivative acting on the Higgs field is

DµH =

✓
@µ �

i

2
gLW

i

µ
�i
�

i

2
gYBµ

◆
H. (2.9)

For a future use, I write here the equations of motion for the SM gauge bosons:

@⌫B⌫µ = �
igY
2

H† !DµH � gY j
Y

µ
,

�
@⌫W

i

⌫µ
+ ✏ijkgLW

j

⌫
W k

⌫µ

�
= D⌫W

i

⌫µ
= �

i

2
gLH

†�i
 !
DµH � gLj

i

µ
,

D⌫G
a

⌫µ
= �gsj

a

µ
, (2.10)

10

why it’s not in Warsaw basis? 

Integration by parts

SM

SMEFT at dimension-6
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`
]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`

]ij
i

v2
¯̀
i�k�µ`jH†�k

 !
DµH

[OHe]ij
i

v2 ēi�µējH† !DµH

[OHq]ij
i

v2 q̄i�µqjH† !DµH

[O0
Hq

]ij
i

v2 q̄i�k�µqjH†�k
 !
DµH

[OHu]ij
i

v2 ūi�µujH† !DµH

[OHd]ij
i

v2 d̄i�µdjH† !DµH

[OHud]ij
i

v2 ūi�µdjH̃†DµH

Yukawa and Dipole

[Oe]ij

p
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

p
2mui

muj

v3 H†Hq̄i
eHuj

[Od]ij

p
2mdi

mdj

v3 H†Hq̄iHdj

[OeW ]ij
g

m
2

W

p
2mei

mej

v

¯̀
i�kH�µ⌫ejW k

µ⌫

[OeB ]ij
g

0

m
2

W

p
2mei

mej

v

¯̀
iH�µ⌫ejBµ⌫

[OuG]ij
gs

m
2

W

p
2mui

muj

v
q̄iH̃�µ⌫T aujGa

µ⌫

[OuW ]ij
g

m
2

W

p
2mui

muj

v
q̄i�kH̃�µ⌫ujW k

µ⌫

[OuB ]ij
g

0

m
2

W

p
2mui

muj

v
q̄iH̃�µ⌫ujBµ⌫

[OdG]ij
gs

m
2

W

p
2mdi

mdj

v
q̄iH�µ⌫T adjGa

µ⌫

[OdW ]ij
g

m
2

W

p
2mdi

mdj

v
q̄i�kH�µ⌫djW k

µ⌫

[OdB ]ij
g

0

m
2

W

p
2mdi

mdj

v
q̄iH�µ⌫djBµ⌫

II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1
p

2v2
, ↵ =

g2g02

4⇡(g2 + g02)
, mZ =

p
g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥
@µ(H†H)

⇤2

OT
1

2v2

⇣
H† !DµH

⌘2

O6 �
�

v2 (H†H)3

Og

g
2

s

m
2

W

H†H Ga

µ⌫
Ga

µ⌫

O�
g

02

m
2

W

H†H Bµ⌫Bµ⌫

OW
ig

2m
2

W

⇣
H†�i

 !
DµH

⌘
D⌫W i

µ⌫

OB
ig

0

2m
2

W

⇣
H† !DµH

⌘
@⌫Bµ⌫

OHW
ig

m
2

W

�
DµH†�iD⌫H

�
W i

µ⌫

OHB
ig

0

m
2

W

�
DµH†D⌫H

�
Bµ⌫

O2W
1

m
2

W

DµW i

µ⌫
D⇢W i

⇢⌫

O2B
1

m
2

W

@µBµ⌫@⇢B⇢⌫

O2G
1

m
2

W

DµGa

µ⌫
D⇢Ga

⇢⌫

O3W
g
3

m
2

W

✏ijkW i

µ⌫
W j

⌫⇢
W k

⇢µ

O3G

g
3

s

m
2

W

fabcGa

µ⌫
Gb

⌫⇢
Gc

⇢µ

Bosonic CP-odd

eOg

g
2

s

m
2

W

H†H eGa

µ⌫
Ga

µ⌫

eO�
g

02

m
2

W

H†H eBµ⌫Bµ⌫

eOHW
ig

m
2

W

�
DµH†�iD⌫H

� fW i

µ⌫

eOHB
ig

m
2

W

�
DµH†D⌫H

� eBµ⌫

eO3W
g
3

m
2

W

✏ijkfW i

µ⌫
W j

⌫⇢
W k

⇢µ

eO3G

g
3

s

m
2

W

fabc eGa

µ⌫
Gb

⌫⇢
Gc

⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.

SMEFT at dimension-6

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SILH basis of  B-conserving dimension-6 operators
Giudice et al  hep-ph/0703164


Contino et al 1303.3876 
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Table 99: Four-fermion operators in the SILH basis. They are the same as in the Warsaw basis [614], except that
the operators [O``]1221, [O``]1122, [Ouu]3333 are absent by definition. In this table, e, u, d are always right-handed
fermions, while ` and q are left-handed. A flavour index is implicit for each fermion field. For complex operators
the complex conjugate operator is implicit.

(L̄L)(L̄L) and (L̄R)(L̄R)

O``
1
v2 (¯̀�µ`)(¯̀�µ`)

Oqq
1
v2 (q̄�µq)(q̄�µq)

O0
qq

1
v2 (q̄�µ�iq)(q̄�µ�iq)

O`q
1
v2 (¯̀�µ`)(q̄�µq)

O0
`q

1
v2 (¯̀�µ�i`)(q̄�µ�iq)

Oquqd
1
v2 (q̄ju)✏jk(q̄kd)

O0
quqd

1
v2 (q̄jT au)✏jk(q̄kT ad)

O`equ
1
v2 (¯̀je)✏jk(q̄ku)

O0
`equ

1
v2 (¯̀j�µ⌫e)✏jk(q̄k�µ⌫u)

O`edq
1
v2 (¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee
1
v2 (ē�µe)(ē�µe)

Ouu
1
v2 (ū�µu)(ū�µu)

Odd
1
v2 (d̄�µd)(d̄�µd)

Oeu
1
v2 (ē�µe)(ū�µu)

Oed
1
v2 (ē�µe)(d̄�µd)

Oud
1
v2 (ū�µu)(d̄�µd)

O0
ud

1
v2 (ū�µT au)(d̄�µT ad)

(L̄L)(R̄R)

O`e
1
v2 (¯̀�µ`)(ē�µe)

O`u
1
v2 (¯̀�µ`)(ū�µu)

O`d
1
v2 (¯̀�µ`)(d̄�µd)

Oeq
1
v2 (q̄�µq)(ē�µe)

Oqu
1
v2 (q̄�µq)(ū�µu)

O0
qu

1
v2 (q̄�µT aq)(ū�µT au)

Oqd
1
v2 (q̄�µq)(d̄�µd)

O0
qd

1
v2 (q̄�µT aq)(d̄�µT ad)

v ! v(1 + �v), gs ! gs(1 + �gs), g ! g(1 + �g), g0
! g0(1 + �g0),

� ! �(1 + ��), h ! (1 + �1)h + �2h
2/v + �3h

3/v2, (II.2.5)

where the free parameters �i are O(⇤�2) in the EFT expansion. Note that the non-linear transformation
of the Higgs boson field does not generate any new interaction terms at O(⇤�2) in the effective La-
grangian that cannot be generated by D=6 operators.II.5 In addition, one is free to add to the Lagrangian
a total derivative and/or interactions terms that vanish by equations of motion. These redefinitions of
course do not change the physical predictions or symmetries of the theory. However, they allow one to
bring the theory to a more convenient form to perform practical calculations.II.6 We will use this freedom
to demand that the mass eigenstate Lagrangian has the following features:

#1 All kinetic and mass terms are diagonal and canonically normalized. In particular, higher-derivative
kinetic terms are absent.

#2 The non-derivative photon and gluon interactions with fermions are the same as in the SM.
#3 Tree-level relations between the electroweak parameters and input observables are the same as the

SM ones in Eq. (II.2.4).
#4 Two-derivative self-interactions of the Higgs boson (e.g. h@µh@µh) are absent.
#5 In the Higgs boson interactions with gauge bosons, the derivative does not act on the Higgs (e.g.,

there is no @µhV⌫Vµ⌫ terms).
#6 For each fermion pair, the coefficient of the vertex-like Higgs interaction terms

⇣
2h

v + h2

v2

⌘
Vµf̄�µf

is equal to the vertex correction to the respective Vµf̄�µf interaction.

II.5For example, applied to the h4 self-interaction term in the SM Lagrangian, it generates h5 and h6 self-interactions at
O(⇤

�2
), which are also generated by the O6 operator in the SILH basis. Rather than applying the non-linear transformation,

one can equivalently use the equations of motion for the Higgs boson field.
II.6Editor footnote: Another point of view is expressed in Section II.2.3, where it is argued that this kind of transformations

make one-loop calculations harder to develop.

http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/arXiv:1303.3876
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Back to toy model example 

In this EFT, there is a single diagram  
contributing to  mass at one loop  ϕ

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

Λ2

ϕ6

6!

δMEFT
2 = −

C4

2 ∫
ddk

(2π)d

i
k2 − m2

= C4
m2

32π2

1
ϵ̄

+ log ( μ2

m2 ) + 1
1/ϵ̄ ≡ 1/ϵ + γE + log(4π)

Note that we use dimensional regularization, which is very convenient in the EFT context, 
as it does not introduce new mass scale, so it does not mess up the EFT power counting

The physical  mass in the EFT at one loop:ϕ

Furthermore, we will use the MSbar renormalization, simply dropping all   poles
1
ϵ̄

m2
phys = m2 − C4

m2

32π2
log ( μ2

m2 ) + 1



Running of the mass parameter

The physical mass is an observable in this model,  
therefore it cannot depend on the arbitrary parameter μ

dm2
phys

d log μ
= 0

This means that the Lagrangian mass parameter, up to higher-loop corrections,  must satisfy 

dm2

d log μ
= C4

m2

16π2

We can interpret μ as the renormalization group scale

m2(μ) = m2(Λ)( μ
Λ )

C4
16π2

The solution is 

This also shows that naive scaling of EFT parameters with  is modified by loop effects 
therefore the exponent is called the anomalous dimension

Λ

Note that,  within the EFT, there is no hierarchy problem, that is to say,  
if  then   at all scalesm2(Λ) ≪ Λ2 m2(μ) ≪ Λ2



ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

Λ2

ϕ6

6!

We move to one-loop matching of the quartic coupling

EFT calculation

MEFT
4 = −C4 +

C2
4

32π2 [f(s, m) + f(t, m) + f(u, m)]

+
3C2

4

32π2

1
ϵ̄

+ log ( μ2

m2 ) + 2 +
C6m2

32π2Λ2

1
ϵ̄

+ log ( μ2

m2 ) + 1

Answer

φ

f (s, m) ≡ 1 −
4m2

s
log

2m2 − s + s(s − m2)

2m2

Running of the quartic coupling



Running of the EFT quartic coupling

The observable  is 

This means that the Lagrangian parameters, up to higher-loop corrections,  must satisfy 

dC4

d log μ
=

3C2
4

16π2
+

C6m2

16π2Λ2

Therefore  cannot depend on the arbitrary parameter μ:MEFT
4

dMEFT
4

d log μ
= 0

SEFT
4 ≡

MEFT
4

(1 + δϕ)2
where   is wave 

function renormalization 
δϕ

One can show that  at one loop in the unbox basisδϕ = 0

  can be related to the cross section, so it must not depend on μSEFT
4

MEFT
4 = −C4 +

C2
4

32π2 [f(s, m) + f(t, m) + f(u, m)] +
3C2

4

32π2
log ( μ2

m2 ) + 2 +
C6m2

32π2Λ2
log ( μ2

m2 ) + 1

Note that higher-order Wilson coefficients affect the running of lower-order Wilson 
coefficients, but not vice versa



Running in EFT

MEFT
4 = −C4(m) +

C2
4

32π2 [f(s, m) + f(t, m) + f(u, m) + 6] +
C6m2

32π2Λ2

No large logarithms in the EFT if we use  
the couplings evolve down to the characteristic mass scale     

The potentially problematic  terms are all hidden (resummed)  
in the running Wilson coefficient C4(m)  

log(μ/Λ)

MEFT
4 = −C4(μ) +

C2
4

32π2 [f(s, m) + f(t, m) + f(u, m)] +
3C2

4

32π2
log ( μ2

m2 ) + 2 +
C6m2

32π2Λ2
log ( μ2

m2 ) + 1

dC4

d log μ
=

3C2
4

16π2
+

C6m2

16π2Λ2
C4(μ) ≈ C4(m) +

3C2
4

16π2
log( μ

m ) +
C6m2

16π2Λ2
log( μ

m )

f (s, m) ≡ 1 −
4m2

s
log

2m2 − s + s(s − m2)

2m2



Running in SMEFT
Running of dimension-6 Wilson coefficients

Jenkins et al 
arXiv: 1308.2627, 1310.4838,1312.2014 

dCk

d log μ
= [γ]klCl

 is a vector of all dimension-6 Wilson coefficients in a given basis  
 is the matrix of  anomalous dimensions

Ck
[γ]

For Warsaw basis complete matrix   
written down in series of papers: 

[γ]

For results in the SILH basis see
Elias-Miro et al 

1308.1879



Running in SMEFT

Example: running of SILH operators most relevant for Higgs physics: Elias-Miro et al 
1308.1879

5.1 Anomalous dimensions of operators relevant for Higgs physics

We present here the anomalous dimensions for the Wilson coe�cients in Eq. (51), the ones

expected to dominate deviations in Higgs physics, including the e↵ects from the Wilson

coe�cients in Eq. (53). These are given by

16⇡2�cH =


4Ncy

2
t
+ 24��

3

2
(3g2 + 2g02)

�
cH + 12Ncy

2
t
c(3)
L

, (54)

16⇡2��c6 = 6


Ncy

2
t
+ 18��

3

4
(3g2 + g02)

�
�c6 + 2(40�� 3g2)�cH

�16Nc�y
2
t
c(3)
L

+ 8Ncy
2
t
(�� y2

t
)cyt , (55)

16⇡2�cyt =


(4Nc + 9)y2

t
+ 24��

3

2
(3g2 + g02)

�
cyt +

✓
3y2

t
+ 2��

3

2
g2
◆
cH

+(2y2
t
+ 4�� 3g2 � g02)cR � 2(y2

t
+ 2�+ 2g02)cL

+4(�Ncy
2
t
+ 3�+ g02)c(3)

L
+ 8(y2

t
� �)

h
cLR + CF c

(8)
LR

i
, (56)

16⇡2�cy
b

=


2(Nc + 1)y2

t
+ 24��

3

2
(3g2 + g02)

�
cyb +

✓
2��

3

2
g2
◆
cH + (2Nc � 1)y2

t
cyt

+2(2�+ g02)cL + 2
h
(3� 2Nc)y

2
t
+ 6�+ g02

i
c(3)
L

� 4
y2
t

g2⇤

✓
y2
t
+ 2��

3

2
g2
◆
ctb
R

+2
y2
t

g2⇤
(�� y2

t
)
⇥
(2Nc + 1) cytyb + CF c

(8)
ytyb

⇤
, (57)

16⇡2�cy⌧ =


2Ncy

2
t
+ 24��

3

2
(3g2 + g02)

�
cy⌧ +

✓
2��

3

2
g2
◆
cH + 2Ncy

2
t
[cyt � 2c(3)

L
]

�2
y2
t

g2⇤
Nc(�� y2

t
)
�
2cyty⌧ + c0

yty⌧

�
, (58)

where Nc = 3 is the number of colors and CF = (N2
c
� 1)/(2Nc). Parametrically one has

�ci ⇠ g2
j
cj/16⇡2 and we only keep g2

j
= {y2

t
, g2

s
, g2, g02,�}, dropping g2

j
= {y2

b
, y2

⌧
, ...}. We

remark that, to calculate these anomalous dimensions, one has to take into account that

redundant operators removed from our operator basis are nevertheless generated through

renormalization at the one-loop level. For details about how to deal with this e↵ect, see

Appendices A and B. The need to care about such e↵ect also means that the RGEs depend

on the choice of redundant operators (i.e. on the basis).

Let us make a quantitative analysis of the size of these radiative e↵ects. Working at

one-loop leading log order,

ci(Mt) ' ci(⇤)� �ci log
⇤

Mt

, (59)

which is enough if we take ⇤ ⇠ 2 TeV as UV scale and Mt as electroweak scale, we obtain

19

OH = 1
2(@

µ
|H|

2)2

OT = 1
2

⇣
H†

$
DµH

⌘2

O6 = �|H|
6

OW = ig

2

⇣
H†�a

$
DµH

⌘
D⌫W a

µ⌫

OB = ig
0

2

⇣
H†

$
DµH

⌘
@⌫Bµ⌫

O2W = �
1
2(D

µW a

µ⌫
)2

O2B = �
1
2(@

µBµ⌫)2

O2G = �
1
2(D

µGA

µ⌫
)2

OBB = g02|H|
2Bµ⌫Bµ⌫

OGG = g2
s
|H|

2GA

µ⌫
GAµ⌫

OHW = ig(DµH)†�a(D⌫H)W a

µ⌫

OHB = ig0(DµH)†(D⌫H)Bµ⌫

O3W = 1
3!g✏abcW

a ⌫

µ
W b

⌫⇢
W c ⇢µ

O3G = 1
3!gsfABCGA ⌫

µ
GB

⌫⇢
GC ⇢µ

Table 1: 14 CP-even operators made of SM bosons. The operators are grouped in 3 di↵erent

boxes corresponding to the 3 classes of operators defined in Eq. (2). Dashed lines separate

operators of di↵erent structure within a given class. There are, in addition, the 6 CP-odd

operators given in Eqs. (9)-(11).

where Y f

L,R
are the fermion hypercharges and YH the Higgs hypercharge. In particular, we

could trade OB and OW with other operators:

cBOB $ cB
g0 2

g2⇤

"
�
1

2
OT +

1

2

X

f

⇣
Y f

L
O

f

L
+ Y f

R
O

f

R

⌘#
,

cWOW $ cW
g2

g2⇤

"
�
3

2
OH + 2O6 +

1

2
(Oyu

+Oyd
+Oye

+ h.c.) +
1

4

X

f

O
(3) f
L

#
, (21)

where, in the last expression, we have eliminated Or using Eq. (19).

For one family of fermions the set of operators that we use is collected in Tables 1 and 2.

We keep all operators of Eqs. (4)-(11), since they are the relevant ones for a well-motivated

class of BSM scenarios such as universal theories, with the exception of Or, that we eliminate

of our basis using Eq. (19). In Tables 1 and 2 there are 58 operators; adding the 6 bosonic CP-

odd ones in Eqs. (9)-(11) leads to a total of 64 operators. We still have 5 redundant operators

that once eliminated leave a total of 59 independent operators, in agreement with [9]. We

leave free the choice of which 5 operators to eliminate: e.g., the operators of Eq. (5) could be

eliminated by using Eq. (20) or, alternatively, we could trade 5 operators that contain fermions

by the operators in Eq. (5). We will use later this freedom in di↵erent ways depending on the

physics process studied. Other redundant operators are discussed in Appendix A.

7



Running in SMEFT

Example: running of SILH operators most relevant for Higgs physics: Elias-Miro et al 
1308.1879

Oyu
= yu|H|

2Q̄L
eHuR Oyd

= yd|H|
2Q̄LHdR Oye

= ye|H|
2L̄LHeR

O
u

R
= (iH†

$
DµH)(ūR�µuR) O

d

R
= (iH†

$
DµH)(d̄R�µdR) O

e

R
= (iH†

$
DµH)(ēR�µeR)

O
q

L
= (iH†

$
DµH)(Q̄L�µQL) O

l

L
= (iH†

$
DµH)(L̄L�µLL)

O
(3) q
L

= (iH†�a
$
DµH)(Q̄L�µ�aQL) O

(3) l
L

= (iH†�a
$
DµH)(L̄L�µ�aLL)

O
u

LR
= (Q̄L�µQL)(ūR�µuR) O

d

LR
= (Q̄L�µQL)(d̄R�µdR) O

e

LR
= (L̄L�µLL)(ēR�µeR)

O
(8)u
LR

= (Q̄L�µTAQL)(ūR�µTAuR) O
(8) d
LR

= (Q̄L�µTAQL)(d̄R�µTAdR)

O
u

RR
= (ūR�µuR)(ūR�µuR) O

d

RR
= (d̄R�µdR)(d̄R�µdR) O

e

RR
= (ēR�µeR)(ēR�µeR)

O
q

LL
= (Q̄L�µQL)(Q̄L�µQL) O

l

LL
= (L̄L�µLL)(L̄L�µLL)

O
(8) q
LL

= (Q̄L�µTAQL)(Q̄L�µTAQL)

O
ql

LL
= (Q̄L�µQL)(L̄L�µLL)

O
(3) ql
LL

= (Q̄L�µ�aQL)(L̄L�µ�aLL)

O
qe

LR
= (Q̄L�µQL)(ēR�µeR)

O
lu

LR
= (L̄L�µLL)(ūR�µuR) O

ld

LR
= (L̄L�µLL)(d̄R�µdR)

O
ud

RR
= (ūR�µuR)(d̄R�µdR)

O
(8)ud
RR

= (ūR�µTAuR)(d̄R�µTAdR)

O
ue

RR
= (ūR�µuR)(ēR�µeR) O

de

RR
= (d̄R�µdR)(ēR�µeR)

O
ud

R
= y†

u
yd(i eH†

$
DµH)(ūR�µdR)

Oyuyd
= yuyd(Q̄r

L
uR)✏rs(Q̄s

L
dR)

O
(8)
yuyd = yuyd(Q̄r

L
TAuR)✏rs(Q̄s

L
TAdR)

Oyuye
= yuye(Q̄r

L
uR)✏rs(L̄s

L
eR)

O
0
yuye

= yuye(Q̄r ↵

L
eR)✏rs(L̄s

L
u↵

R
)

Oyeyd
= yey

†
d
(L̄LeR)(d̄RQL)

O
u

DB
= yuQ̄L�µ⌫uR

eHg0Bµ⌫ O
d

DB
= ydQ̄L�µ⌫dR Hg0Bµ⌫ O

e

DB
= yeL̄L�µ⌫eR Hg0Bµ⌫

O
u

DW
= yuQ̄L�µ⌫uR �a eHgW a

µ⌫
O

d

DW
= ydQ̄L�µ⌫dR �aHgW a

µ⌫
O

e

DW
= yeL̄L�µ⌫eR �aHgW a

µ⌫

O
u

DG
= yuQ̄L�µ⌫TAuR

eHgsGA

µ⌫
O

d

DG
= ydQ̄L�µ⌫TAdR HgsGA

µ⌫

T
ab
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Excerpts from 
SMEFT phenomenology

Part 6 



From operators to observables

Two main kinds of effects

of higher-dimensional


SMEFT operators

New interactions

not present in 

SM Lagrangian

Corrections to 

coupling strength of 


SM interactions



New interactions

e . g .
1

Λ2
|H |6 →

h6

8Λ2
+

3vh5

4Λ2
+ …

h

h

h

h

h

h

 1. New "harder" vertices

or
1

Λ2
|H |2 Ga

μνGa
μν →

h2

2Λ2
Ga

μνGa
μν +

vh
Λ2

Ga
μνGa

μν + …

Diagrams borrowed from 
R. Harlander's web page

h

These examples do not lead to new processes compared to the SM,  
but they introduce "harder" contributions to amplitudes,  

leading to different energy/pT dependence 

hh



New interactions

e . g .
1

Λ2
|H |2 BμνBμν →

2v sin2 θW

Λ2
hZμνZμν + …

2. New Lorentz structures

in addition to 
h
v

m2
ZZμZμ present in the SM

μ

h
Z

Z
ν

hZZ vertex 2i
v [m2

Zημν −
cHBv2

Λ2 (pμ
1 pν

2 + pν
1 pμ

2 − 2p1p2ημν)]

The presence of the new structure affects e.g. the CM energy depends of Zh productions 
But most cleanly it can be extracted from angular distributions in  decays h → ZZ* → ℓ+ℓ−ℓ+ℓ−

6.5 Constraints on HVV couplings within SU(2)⇥ U(1) symmetry 43

1− 0.8− 0.6− 0.4− 0.2−
0

5

10

68% CL95% CL

0.02− 0 0.02

a3f

68% CL95% CL

0.2 0.4 0.6 0.8 1

68% CL

95% CL

210
Observed, fix others 

Expected, fix others 

Observed, float others 

Expected, float others 

137 fb-1 (13 TeV)CMS

 ln
 L

Δ
-2

1− 0.8− 0.6− 0.4− 0.2−
0

5

10

68% CL

95% CL

0.02− 0 0.02

a2f

68% CL95% CL

0.2 0.4 0.6 0.8 1

68% CL95% CL

210
Observed, fix others 

Expected, fix others 

Observed, float others 

Expected, float others 

137 fb-1 (13 TeV)CMS

 ln
 L

Δ
-2

1− 0.8− 0.6− 0.4− 0.2−
0

5

10

68% CL95% CL

0.02− 0 0.02

1Λf

68% CL95% CL

0.2 0.4 0.6 0.8 1

68% CL

95% CL

210
Observed, fix others 

Expected, fix others 

Observed, float others 

Expected, float others 

137 fb-1 (13 TeV)CMS

 ln
 L

Δ
-2

Figure 20: Observed (solid) and expected (dashed) likelihood scans of fa3 (upper left), fa2 (up-
per right), and fL1 (lower) in Approach 2 within SMEFT with the symmetry relationship of
couplings set in Eqs. (3–7). The results are shown for each coupling separately with the other
anomalous coupling fractions either set to zero or left unconstrained in the fit. In all cases, the
signal strength parameters have been left unconstrained. The dashed horizontal lines show
the 68 and 95% CL regions. For better visibility of all features, the x and y axes are presented
with variable scales. On the linear-scale x axis, an enlargement is applied in the range �0.03 to
0.03. The y axis is shown in linear or logarithmic scale for values of �2 lnL below or above 11,
respectively.

CMS 
2104.12152



New interactions

3. Violation of accidental symmetries of the SM

Lepton number violation, e.g.   -> neutrino oscillations probing  GeV  

Baryon number violation, e.g.  -> proton decay probing  GeV 

 

Individual lepton number violation, e.g.  ->  decay probing  GeV

1
Λ

(HL)(HL) Λ ∼ 1015

1
Λ2

ucdcucec Λ ∼ 1015

1
Λ2

ec
1σμνH†L2Bμν μ → eγ Λ ∼ 108

The characteristic feature of these processes is that they probe scales  
far above TeV, sometime even close to the GUT scale



New interactions

4. Violation of approximate symmetries of the SM

These often probe   far above TeV as wellΛ

Flavour changing neutral currents, e.g.  probes  TeV 

  

CP violation, e.g.  with complex Wilson coefficient probes  TeV

1
Λ2

(s̄γαb)(μ̄γαμ) Λ ∼ 30

1
Λ2

ēRσμνHLFμν Λ ∼ 106



From operators to observables

Two main kinds of effects

of higher-dimensional


SMEFT operators

New interactions

not present in 

SM Lagrangian

Corrections to 

coupling strength of 


SM interactions



Modified interaction strength

There are 3 ways higher-dimensional operators may modify SM interaction strength 

1. Directly: after electroweak symmetry breaking, an operator contributes to a 
gauge or Yukawa interaction already present in the SM 

2. Indirectly: after electroweak symmetry breaking, an operator contributes to the 
kinetic term of a SM field, thus effectively shifting the strength of all 
interactions of that field 

3. Stealthily: after electroweak symmetry breaking, an operator contributes to an 
experimental observable from which some SM parameter is extracted



Modified interaction strength: directly

Example:
i

Λ2
ēRγμeR(H†DμH − DμH†H)

After electroweak symmetry breaking i(H†DμH − DμH†H) → −
v2

2
g2

L + g2
YZμ + …

icHe

Λ2
ēRγμeR(H†DμH − DμH†H) → − cHe

v2 g2
L + g2

Y

2Λ2
ēRγμeRZμ

This adds up to the  
weak interaction in the SM g2

L + g2
Y(T3

f − sin2 θWQf + δgZf)f̄γμ fZμ

δgZe
R = − cHe

v2

2Λ2
Thus cHe can be constrained, e.g.,  

form LEP-1 Z-pole data



Table 1: Z pole observables. The experimental errors of the observables not separated
by horizontal lines are correlated, which is taken into account in the fit. The first Ae and
A⌧ values come from the combination of leptonic polarization and left-right asymmetry
measurements at SLD, while the second values come from the LEP-1 measurements of the
polarization of the final leptons.

Observable Experimental value SM prediction Definition
�Z [GeV] 2.4955± 0.0023 [4, 28] 2.4941

P
f
�(Z ! ff̄)

�had [nb] 41.4802± 0.0325 [4, 28] 41.4842 12⇡
m

2
Z

�(Z!e
+
e
�)�(Z!qq̄)
�2
Z

Re 20.804± 0.050 [4] 20.734
P

q �(Z!qq̄)

�(Z!e+e�)

Rµ 20.785± 0.033 [4] 20.734
P

q �(Z!qq̄)

�(Z!µ+µ�)

R⌧ 20.764± 0.045 [4] 20.781
P

q �(Z!qq̄)

�(Z!⌧+⌧�)

A0,e
FB 0.0145± 0.0025 [4] 0.0162 3

4A
2
e

A0,µ
FB 0.0169± 0.0013 [4] 0.0162 3

4AeAµ

A0,⌧
FB 0.0188± 0.0017 [4] 0.0162 3

4AeA⌧

Rb 0.21629± 0.00066 [4] 0.21581 �(Z!bb̄)P
q �(Z!qq̄)

Rc 0.1721± 0.0030 [4] 0.17222 �(Z!cc̄)P
q �(Z!qq̄)

AFB
b

0.0996± 0.0016 [4, 29] 0.1032 3
4AeAb

AFB
c 0.0707± 0.0035 [4] 0.0736 3

4AeAc

Ae 0.1516± 0.0021 [4] 0.1470
�(Z!e

+
Le

�
L )��(Z!e

+
Re

�
R)

�(Z!e+e�)

Aµ 0.142± 0.015 [4] 0.1470
�(Z!µ

+
Lµ

�
L )��(Z!µ

+
Rµ

�
R)

�(Z!µ+µ�)

A⌧ 0.136± 0.015 [4] 0.1470
�(Z!⌧

+
L ⌧

�
L )��(Z!⌧

+
R ⌧

�
R )

�(Z!⌧+⌧�)

Ae 0.1498± 0.0049 [4] 0.1470
�(Z!e

+
Le

�
L )��(Z!e

+
Re

�
R)

�(Z!e+e�)

A⌧ 0.1439± 0.0043 [4] 0.1470
�(Z!⌧

+
L ⌧

�
L )��(Z!⌧

+
R ⌧

�
R )

�(Z!⌧+⌧�)

Ab 0.923± 0.020 [4] 0.935 �(Z!bLb̄L)��(Z!bRb̄R)
�(Z!bb̄)

Ac 0.670± 0.027 [4] 0.668 �(Z!cLc̄L)��(Z!cRc̄R)
�(Z!cc̄)

As 0.895± 0.091 [30] 0.936 �(Z!sLs̄L)��(Z!sRs̄R)
�(Z!ss̄)

Ruc 0.166± 0.009 [9] 0.1722 �(Z!uū)+�(Z!cc̄)
2
P

q �(Z!qq̄)

[�gWe

L ]ii =

0

B@
�1.3± 3.2

�2.8± 2.6

1.5± 4.0

1

CA⇥ 10�3, (3.3)

[�gZe

L ]ii =

0

B@
�0.19± 0.28

0.1± 1.2

�0.09± 0.59

1

CA⇥ 10�3, [�gZe

R ]ii =

0

B@
�0.43± 0.27

0.0± 1.4

0.62± 0.62

1

CA⇥ 10�3 . (3.4)
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Modified interaction strength: directly

δgZe
R = − cHe

v2

2Λ2 B. Complete results and correlation matrix

The marginalized constraints on all 20 independent parameters in our fit read
0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�gWe

L

�gWµ

L

�gW ⌧

L

�gZe

L

�gZµ

L

�gZ⌧

L

�gZe

R

�gZµ

R

�gZ⌧

R

�gZu

L

�gZu

R

�gZd

L

�gZd

R

�gZs

L

�gZs

R

�gZc

L

�gZc

R

�gZb

L

�gZb

R

�mw

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�1.2± 3.2

�2.7± 2.6

1.5± 4.0

�0.20± 0.28

0.1± 1.2

�0.09± 0.59

�0.43± 0.27

0.0± 1.4

0.62± 0.62

�12± 23

�4± 31

�19± 36

�30± 130

11± 28

32± 48

�1.5± 3.6

�3.3± 5.3

3.1± 1.7

21.9± 8.8

0.29± 0.16

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⇥ 10�3. (B.1)

The correlation matrix is
0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0.2 �0.59 �0.22 �0.09 0.01 0.16 �0.13 �0.08 �0.04 �0.06 �0.03 �0.06 �0.02 �0.04 �0.01 0.01 0.04 0.01 0.
� 1 �0.39 �0.27 �0.11 0.01 0.2 �0.16 �0.1 �0.04 �0.06 �0.03 �0.07 �0.03 �0.04 �0.01 0.01 0.05 0.01 0.
� � 1 �0.18 �0.07 0.01 0.13 �0.11 �0.07 0. 0. 0. 0. 0. 0. �0.01 0. 0.04 0.01 0.
� � � 1 �0.09 �0.07 0.16 �0.04 0.04 0.04 0.06 0.03 0.06 0.03 0.04 0.07 0.08 �0.36 �0.35 0.
� � � � 1 0.06 �0.04 0.91 �0.04 0. 0.01 0.01 0.01 0.01 0.01 �0.02 �0.01 0.06 0.04 0.
� � � � � 1 0.02 �0.03 0.41 �0.01 �0.01 �0.01 �0.02 0. �0.01 �0.02 0.01 0.07 0.01 0.
� � � � � � 1 �0.07 �0.04 �0.02 �0.03 �0.02 �0.03 �0.01 �0.02 0.06 0.11 �0.34 �0.38 0.
� � � � � � � 1 0.04 0.02 0.03 0.02 0.03 0.01 0.02 0. �0.01 0.01 0.03 0.
� � � � � � � � 1 0.02 0.03 0.01 0.03 0.01 0.02 0.01 �0.01 �0.04 0. 0.
� � � � � � � � � 1 0.5 0.68 0.69 0.07 �0.29 �0.05 0.09 �0.02 �0.01 0.
� � � � � � � � � � 1 0.55 0.94 �0.11 �0.39 0.07 0.07 �0.03 �0.02 0.
� � � � � � � � � � � 1 0.54 �0.64 �0.08 �0.02 0.05 �0.01 0. 0.
� � � � � � � � � � � � 1 0.07 �0.46 0.05 0.09 �0.03 �0.02 0.
� � � � � � � � � � � � � 1 �0.01 0.1 0.03 �0.02 �0.01 0.
� � � � � � � � � � � � � � 1 0.04 0.05 �0.02 �0.01 0.
� � � � � � � � � � � � � � � 1 0.32 �0.11 �0.15 0.
� � � � � � � � � � � � � � � � 1 �0.17 �0.14 0.
� � � � � � � � � � � � � � � � � 1 0.9 0.
� � � � � � � � � � � � � � � � � � 1 0.
� � � � � � � � � � � � � � � � � � � 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Despite appearances, the W mass corrections �mw is not completely uncorrelated with
the vertex correction, but the correlation coefficients are of order 0.001, and are approxi-
mated as zero above.

The results in Eq. (B.1) and Eq. (B.2) are enough to reproduce the full Gaussian
likelihood function for our parameters.5 Using the map in Eq. (A.1), it can be translated

5
This likelihood function is also available on request as a Mathematica notebook.

– 21 –

Breso-Pla et al 
2103.12074 

Λ
|cHe |1/2 ≳ 5.6 TeVIt follows



Modified interaction strength: indirectly

Example: (H†H) □ (H†H)
This contributes to the kinetic term of the Higgs boson

cH□

Λ2
(H†H) □ (H†H) → −

cH□v2

Λ2
(∂μh)2

Together with the SM kinetic term:

ℒSMEFT ⊃
1
2

(∂μh)2(1 −
2cH□v2

Λ2 )
To restore canonical normalization, we need to rescale the Higgs boson field:

h → h(1 +
cH□v2

Λ2 )
This restore canonical normalization of the Higgs boson field,  

up to terms of order 1/Λ4, which we ignore here



h → h(1 +
cH□v2

Λ2 )
Modified interaction strength: indirectly

After this rescaling, the dimension-6 contribution  
vanishes from the Higgs boson kinetic term

However, it resurfaces in all Higgs boson couplings present in the SM !

h
v [2m2

WW+
μ W−

μ + m2
ZZμZμ] →

h
v (1 +

cH□v2

Λ2 )[2m2
WW+

μ W−
μ + m2

ZZμZμ]
h
v

mf f̄ f →
h
v (1 +

cH□v2

Λ2 )mf f̄ f

Hence, the Higgs boson interaction strength predicted by the SM is universally shifted

LHC measurements of the Higgs signal strength provide a bound on the Wilson coefficient

cH□v2

Λ2
= 0.09 ± 0.11

or, equivalently
cH□

Λ2
=

1
(820GeV)2

± 1
(740GeV)2

Higgs measurements only probe new physics scale of order a TeV



Modified interaction strength: stealthily

cHD

Λ2
|H†DμH |2 →

cHDv2

2Λ2

(g2
L + g2

Y)v2

8
ZμZμ + …

|H†DμH |2Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the  Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
cHDv2

2Λ2 )
We have this very precise O(10-4) measurement of the Z boson mass 

mZ = (91.1876 ± 0.0021) GeV

From which we find the very stringent constraint

|cHD |
Λ2

≤
1

(26 TeV)2



|cHD |
Λ2

≤
1

(26 TeV)2

Modified interaction strength: stealthily

cHD

Λ2
|H†DμH |2 →

cHDv2

2Λ2

(g2
L + g2

Y)v2

8
ZμZμ + …

|H†DμH |2Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the  Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
cHDv2

2Λ2 )
We have this very precise O(10-4) measurement of the Z boson mass 

mZ = (91.1876 ± 0.0021) GeV

From which we find the very stringent constraintNo!

Non!
Nein! Nie!

Нет!

Ni!



Modified interaction strength: stealthily

cHD

Λ2
|H†DμH |2 →

cHDv2

2Λ2

(g2
L + g2

Y)v2

8
ZμZμ + …

|H†DμH |2Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
cHDv2

2Λ2 )
We cannot use the Z-boson mass measurement to constrain new physics  

because, it is one of the  inputs to determine the electroweak parameters of the SM 

In the SM: GF =
1

2v2

α =
g2

Lg2
Y

4π(g2
L + g2

Y)

m2
Z =

(g2
L + g2

Y)v2

4

gL = 0.6485
gY = 0.3580
v = 246.22 GeV
with very small errors



Modified interaction strength: stealthily

|H†DμH |2 In the presence of our dimension-6 operators, the relation between 
electroweak couplings and observables is disrupted

GF =
1

2v2

α =
g̃2

Lg̃2
Y

4π(g̃2
L + g̃2

Y)

m2
Z =

(g̃2
L + g̃2

Y)v2

4

g̃L = 0.6485
g̃Y = 0.3580
v = 246.22 GeV

same as in the SM

GF =
1

2v2
α =

g2
Lg2

Y

4π(g2
L + g2

Y)
m2

Z =
(g2

L + g2
Y)v2

4 (1 +
cHDv2

2Λ2 )

A useful trick is to get rid of the dimension-6 pollution in the input equations 
by redefining the SM electroweak parameters 

gL → g̃L(1 −
cHDg2

Lv2

4(g2
L − g2

Y)Λ2 ) gY → g̃Y(1 +
cHDg2

Yv2

4(g2
L − g2

Y)Λ2 )

Now we cannot assign numerical values to the electroweak parameters, because they depend on cHD 

For the twiddle electroweak parameter, we can now assign numerical values



Z mass cannot be used to constrain new physics, because it was already used to set  
numerical values  for the twiddle electroweak  parameter

Modified interaction strength: stealthily

But new physics emerges now in other observables, e.g. in the W mass

mW =
gLv
2

=
g̃Lv
2 (1 −

cHDg2
Lv2

4(g2
L − g2

Y)Λ2 ) =
g̃Lv
2 (1 −

cHDg̃2
Lv2

4(g̃2
L − g̃2

Y)Λ2 )
We can now use the experimental measurement of  the W mass

mW = (80.379 ± 0.012) GeV

to constrain the Wilson coefficients

−
1

(7 TeV)2
≤

cHD

Λ2
≤ −

1
(12 TeV)2 at 1 sigma

Numerically very different constraint than what one would (incorrectly) obtain from Z mass!



Modified interaction strength: stealthily

Flavor observables are another class of experiments that depends on  
a priori unknown parameters 

ℒSMEFT ⊃ Vukdl
ūkγμPLdl + h . c .

etc., while the translation from weak to mass eigenstate flavour indices for the left-handed down

quarks is given by the V matrix:

dL,i = Vix dL,x = Vid dL + Vis sL + Vib bL , i = 1, 2, 3 . (2.5)

Formally, Vix has a weak index i = {1, 2, 3} and a mass-eigenstate index x = {d, s, b} [22]. Since in

our convention the weak and mass bases for up-type quarks are the same, it holds that V1x = Vux,

V2x = Vcx and V3x = Vtx, and from now on we can use Vrx with both mass-eigenstates indices

r = u, c, t and x = d, s, b. In this article we use the Wolfenstein parameterization for V :

V =

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA (2.6)

=

0

B@
1� 1

2�
2
�

1
8�

4
� A�

3(1 + 1
2�

2)(⇢̄� i⌘̄)

��+A
2
�
5(12 � ⇢̄� i⌘̄) 1� 1

2�
2
�

1
8�

4(1 + 4A2) A�
2

A�
3(1� ⇢̄� i⌘̄) �A�

2 +A�
4(12 � ⇢̄� i⌘̄) 1� 1

2A
2
�
4

1

CA+O(�6) .

We refer to the unitary matrix V as the CKM matrix. Its definition is a↵ected by the presence

of certain dimension-six operators, cf. Eq. (2.3). Moreover, and contrary to the SM, the flavour

structure of charged currents is not uniquely determined by the CKM matrix, but is also a↵ected

by the presence of dimension-six operators with generic flavour structure.2 In the following we

discuss the consistent extraction of V from flavour observables within the general context of the

SMEFT.

2.2 E↵ective theory below the EW scale

While it is possible that, in the future, precision high-energy measurements at the EW scale might

be used to extract the parameters of the CKM matrix (see e.g. [23]), low-energy flavour-violating

observables remain currently the best window to CKM physics. These observables are calculated

in an e↵ective theory where particles with EW-scale masses have been integrated out [22, 24–26].

Low-energy flavour observables probe directly the Wilson coe�cients of the operators in this Low-

energy EFT (LEFT) at the appropriate hadronic scale, which can be related to the SMEFT through

RGE together with a matching at the EW scale.

In this article we will use the LEFT basis and notation of Ref. [22]:

LLEFT = LQED+QCD +
X

i

Li O
(5,6)
i

+ · · · , (2.7)

where we have kept lepton- and baryon-number conserving operators of dimension five and six,

O
(5,6)
i

, with Li denoting the respective Wilson coe�cients. For B physics, this EFT includes all

2A tacit assumption throughout this article is that the numerical values of the Wolfenstein parameters in the

SMEFT are not far from the ones determined in the SM context; in particular that � is small enough to serve as

an expansion parameter in Eq. (2.6).

5

CKM matrix: 

The 4 Wolfenstein parameters need to be taken from experiment

12 12. CKM Quark-Mixing Matrix

A complication is that the ratio of the interfering amplitudes is very small, rDfi = A(B0 æ
D

+
fi

≠)/A(B0 æ D
+

fi
≠) = O(0.01) (and similarly for rDúfi and rDfl), and therefore it has not

been possible to measure it. To obtain 2— + “, SU(3) flavor symmetry and dynamical assump-
tions have been used to relate A(B0 æ D

≠
fi

+) to A(B0 æ D
≠
s fi

+), so this measurement is not
model independent at present. Combining the D

±
fi

û, D
ú±

fi
û and D

±
fl

û measurements [126] gives
sin(2— + “) > 0.68 at 68% CL [112], consistent with the previously discussed results for — and “.

12.4 Global fit in the Standard Model
Using the independently measured CKM elements mentioned in the previous sections, the uni-

tarity of the CKM matrix can be checked. We obtain |Vud|2 + |Vus|2 + |Vub|2 = 0.9985 ± 0.0005 (1st
row), |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.025 ± 0.022 (2nd row), |Vud|2 + |Vcd|2 + |Vtd|2 = 0.9970 ± 0.0018 (1st
column), and |Vus|2+|Vcs|2+|Vts|2 = 1.026±0.022 (2nd column), respectively. Due to the recent re-
duction of the value of |Vud|, there is a 3‡ tension with unitarity in the 1st row, leading also to poor
consistency of the SM fit below. The uncertainties in the second row and column are dominated by
that of |Vcs|. For the second row, another check is obtained from the measurement of

q
u,c,d,s,b |Vij |2

in Sec. 12.2.4, minus the sum in the first row above: |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.002 ± 0.027. These
provide strong tests of the unitarity of the CKM matrix. With the significantly improved direct
determination of |Vtb|, the unitarity checks for the third row and column have also become fairly
precise, leaving decreasing room for mixing with other states. The sum of the three angles of the
unitarity triangle, – + — + “ =

!
179+7

≠6
"¶, is also consistent with the SM expectation.

The CKM matrix elements can be most precisely determined using a global fit to all available
measurements and imposing the SM constraints (i.e., three generation unitarity). The fit must also
use theory predictions for hadronic matrix elements, which sometimes have significant uncertainties.
There are several approaches to combining the experimental data. CKMfitter [6,112] and Ref. [127]
(which develops [128,129] further) use frequentist statistics, while UTfit [113,130] uses a Bayesian
approach. These approaches provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix significantly
reduce the allowed range of some of the CKM elements. The fit for the Wolfenstein parameters
defined in Eq. (12.4) gives

⁄ = 0.22650 ± 0.00048 , A = 0.790+0.017
≠0.012 ,

fl̄ = 0.141+0.016
≠0.017 , ÷̄ = 0.357 ± 0.011 . (12.26)

These values are obtained using the method of Refs. [6,112]. Using the prescription of Refs. [113,130]
gives ⁄ = 0.22658 ± 0.00044, A = 0.818 ± 0.012, fl̄ = 0.139 ± 0.014, ÷̄ = 0.356 ± 0.010 [131]. The fit
results for the magnitudes of all nine CKM elements are

VCKM =

Q

ca
0.97401 ± 0.00011 0.22650 ± 0.00048 0.00361+0.00011

≠0.00009
0.22636 ± 0.00048 0.97320 ± 0.00011 0.04053+0.00083

≠0.00061
0.00854+0.00023

≠0.00016 0.03978+0.00082
≠0.00060 0.999172+0.000024

≠0.000035

R

db , (12.27)

and the Jarlskog invariant is J =
!
3.00+0.15

≠0.09
"

◊ 10≠5. The parameters in Eq. (12.3) are

sin ◊12 = 0.22650 ± 0.00048 , sin ◊13 = 0.00361+0.00011
≠0.00009 ,

sin ◊23 = 0.04053+0.00083
≠0.00061 , ” = 1.196+0.045

≠0.043 . (12.28)

Fig. 12.2 illustrates the constraints on the fl̄, ÷̄ plane from various measurements, and the global
fit result. The CL of each of the shaded regions was increased from 95% to 99% for this edition,
because the reduction in |Vud| discussed above leads to poor consistency between the fit result (for
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PDG says: 

But you cannot use it in the SMEFT !

Measurements from which Wolfenstein parameters are normally extracted depend on the CKM parameters,  
and at the same time on many Wilson coefficients of dimension-6 operators
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Modified interaction strength: stealthily

Much as for electroweak parameters,  
in the SMEFT one needs and input scheme for the CKM parameters 

Once the tilde Wolfenstein parameters have been determined, it is convenient to introduce the

tilde CKM matrix eV . Given the SM expression V (�, A, ⇢̄, ⌘̄) in Eq. (2.6), we define eV by

eV ⌘ V (�̃, Ã, ⇢̃, ⌘̃). (3.16)

The elements of this matrix can be used to calculate the numerical SM predictions for observables

depending on the CKM parameters. The NP e↵ects included in them should be taken into account

through the method described above. The eV matrix defined above is unitary by construction.

This does not entail any loss of generality, because we do not define the nine elements of eV as

the elements extracted from nine di↵erent measurements (such matrix would not be unitary in the

SMEFT). Unitarity is a key and necessary ingredient, since we only have four independent CKM

parameters to fix, and thus we only need to “lose” four measurements (and not nine) to fix them.

Any additional observable becomes in this way a NP probe, as it should be.

A last comment is in order concerning the choice of the hadronic inputs related to these observ-

ables. Lattice QCD provides a self-consistent theoretical framework to compute these inputs in

global CKM analysis, but it still requires phenomenological inputs to determine the values of the

parameters of the Lagrangian: the quark masses and the strong coupling constant (i.e. the lattice

scale in physical units). However, as discussed above for fK , the “experimental” value of f⇡ from

⇡ ! µ⌫ is often used to set the scale in the lattice QCD calculations. This reintroduces an SM

assumption (i.e., the pion leptonic decay is completely dominated by SM contributions), which will

propagate in all dimensionful lattice QCD inputs and which is thus not appropriate for a general

analysis in the SMEFT setup. From this point of view it is thus better to use determinations of

the scale where an observable dominated by strong dynamics is used to set the scale (for instance

the masses of hadrons, or the quark-antiquark potential).

4 Analysis and Results

4.1 K ! µ⌫̄µ, ⇡ ! µ⌫̄µ and B ! ⌧ ⌫̄⌧

We start with the leptonic decay rates �(P+
! `

+
⌫`), with P = {⇡, K,B}, and ` = {µ, ⌧}. For an

exhaustive study of Vus from K ! µ⌫̄µ along the lines of the present article, we refer to Ref. [11].

The decay rate for the process P�
! `

�
⌫̄` can be written as

�(P�
! `

�
⌫̄`) = |Vuq|

2f
2
P
mPm

2
`

16⇡ṽ4

✓
1�

m
2
`

m2
P

◆2

(1 + �P `) (1 +�P `2) , (4.1)

where fP is the decay constant defined by h0|q̄�µ
�5u|P

+(k)i = ik
µ
fP , and the quantity �P ` accounts

for all electromagnetic corrections in the SM (see e.g. [39]), 6 as well as isospin-breaking corrections

6Factoring out the SM corrections induces (tiny) NP ⇥ QED corrections, which may not be the correct ones but

which are beyond the current theoretical precision.

13

Example, extracting the Cabibbo angle   from pseudoscalar decaysλ

True CKM element

Decay constant Known radiative corrections

SMEFT corrections 
depending on dimension-6 Wilson coefficient

Γ(K → μν)
Γ(π → μν)

=
λ2

1 − λ2

f 2
K

f 2
π

mK

mπ

(1 − m2
μ /m2

K)2

(1 − m2
μ /m2

π)2 (1 + δKℓ − δπℓ)(1 + ΔKℓ2 − Δπℓ2)
Introduce polluted Cabibbo angle  defined byλ̃

λ2

1 − λ2 (1 + ΔKℓ2 − Δπℓ2) =
λ̃2

1 − λ̃2

Γ(K → μν)
Γ(π → μν)

=
λ̃2

1 − λ̃2

f 2
K

f 2
π

mK

mπ

(1 − m2
μ /m2

K)2

(1 − m2
μ /m2

π)2 (1 + δKℓ − δπℓ)
λ = λ̃(1 + Δλ)

Everything in this equation is known (experimentally or theoretically) except for   
thus we can use it to assign a numerical value to  

λ̃
λ̃



Let us now discuss some classes of the observables from the CKM fit in the SM in Section 3.1

in more detail. Observables from non-leptonic decays in Eq. (3.3) involve a limited set of hadronic

matrix elements in the SM, which can be determined or eliminated thanks to additional observables

and symmetries. Beyond the SM, however, these observables involve a much wider set of hadronic

matrix elements that are currently not known and, in a general SMEFT context, cannot be related

to other hadronic quantities through flavour symmetries. A similar issue a↵ects ✏K , which can be

extracted from K ! ⇡⇡ decays only under specific assumptions about the weak amplitudes.

Concerning the semileptonic decays such as K ! ⇡`⌫, D ! K`⌫, or B ! ⇡`⌫, the rates

depend on form factors whose momentum dependence is usually extracted from the measurement

of the di↵erential distributions, which are themselves modified by BSM e↵ects. Thus in order to

use this information, a new BSM analysis of both di↵erential distribution and rate is required (see

e.g. Ref. [11]). This is in contrast to the leptonic decays, whose hadronic input is limited to decay

constants, well known from lattice QCD. In addition, semileptonic decays are often sensitive to a

larger set of BSM operators than leptonic decays, disfavouring semileptonic decays on the basis of

condition #3. Overall these arguments favor using leptonic as opposed to semileptonic decays as

our input observables.

We can now determine the most appropriate observables for the determination of the CKM

parameters. Concerning observables sensitive (only) to �, condition #2 suggests to disfavour D

and Ds meson decays compared to K decays. The latter are measured with a better accuracy

and thus exhibit better sensitivity to �. One technical complication, however, arises due to the

dependence of the leptonic K decays on the decay constant fK+ , as its most recent determinations

rely on the “experimental” value of f⇡ from ⇡ ! µ⌫ to set the reference scale in the lattice

QCD calculations [38]. This reintroduces an SM assumption (i.e., that the pion leptonic decay is

completely dominated by SM contributions) that is not appropriate for a general analysis in the

SMEFT setup [11]. To avoid this complication, we take the ratio �(K ! µ⌫̄) to �(⇡ ! µ⌫̄) as

our input observable, as the lattice determinations of fK+/f⇡+ are free from this problem (and

known with higher accuracy). Concerning the parameter A, we may consider observables sensitive

to Vub, Vcb, Vtd, or Vts, while the highest sensitivity to ⇢̄ and ⌘̄ comes from Vub and Vtd. All in all,

the remaining observables satisfying our criteria and sensitive to these three CKM parameters are

B ! ⌧⌫ (for Vub), �Md (for Vtd), and �Ms (for Vts).

This leaves us with the following set of input observables that we consider optimal:

�(K ! µ⌫µ)/�(⇡ ! µ⌫µ), �(B ! ⌧⌫⌧ ), �Md, �Ms. (3.10)

These four observables indeed obey the criteria listed above. In Section 4 we will show that they

provide an accurate determination of the four Wolfenstein parameters fWj in the generic SMEFT

case, with only a moderate loss of accuracy compared the SM case. One should stress that our

choice is not set in stone, and some variations on the input observables are of course possible,

similarly to di↵erent input schemes used in EW precision physics. Furthermore, we emphasise that

the “optimal choice” may vary over time. For example, if the inclusive-vs-exclusive tensions for

b ! c or b ! u transitions disappear, or (theoretical or experimental) progress is achieved in some
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Modified interaction strength: stealthily

Continuing this procedure, polluted Wolfenstein parameters can be extracted 
e.g. from the following 4 observables 

CKMfitter (SM) [14] UTfit (SM) [15] This work (SMEFT)

� = 0.224747+0.000254
�0.000059 � = 0.2250± 0.0005 �̃ = 0.22537± 0.00046

A = 0.8403+0.0056
�0.0201 A = 0.826± 0.012 Ã = 0.828± 0.021

⇢̄ = 0.1577+0.0096
�0.0074 ⇢̄ = 0.148± 0.013 ⇢̃ = 0.194± 0.024

⌘̄ = 0.3493+0.0095
�0.0071 ⌘̄ = 0.348± 0.010 ⌘̃ = 0.391± 0.048

Table 3: Results for the Wolfenstein parameters fWi extracted here compared to the Wolfenstein

parameters extracted from the canonical SM fits.

At leading order in the EFT expansion the NP shifts to the Wolfenstein parameters �Wj

correspond to the following combinations of NP Wilson coe�cients:
0

BBB@

��

�A

�⇢̄

�⌘̄

1

CCCA
= M(�̃, Ã, ⇢̃, ⌘̃)

0

BBB@

�K/⇡

�B⌧2

��Md

��Ms

1

CCCA
, (4.17)

where �K/⇡,�B⌧2,��Md
, and ��Ms are the (linearized) NP contributions to the four chosen

observables, which can be found in Eqs. (4.2), (4.7), and (4.11), and the matrix M is given by

M =

0

BBB@

1
2 �̃�

1
2 �̃

3 0 0 0

�Ã+ Ã�̃
2 + c Ã �̃

4
�c e Ã b e Ã

1
2Ã� a e Ã

a� b�̃
2 + c (5�4⇢̃)

2 �̃
4

c(1� 2a e) �b(1� 2a e) a(1� 2a e)

�
d

2⌘̃ +
b ⇢̃

⌘̃
�̃
2
�

c (2d+3(⇢̃�1))
2⌘̃ �̃

4 c

⌘̃
(1� ⇢̃+ d e) b

⌘̃
(⇢̃� d e) �

d

2⌘̃ (1� 2a e)

1

CCCA
+O(�̃6) ,

(4.18)

with

a ⌘
1� 2⇢̃

2
, b ⌘

⌘̃
2 + (1� ⇢̃)2

2
, c ⌘

⌘̃
2 + ⇢̃

2

2
, d ⌘ ⌘̃

2
� ⇢̃

2 + ⇢̃ , e ⌘ �̃
2(1� a�̃

2) . (4.19)

The numerical value of M is given by

M(�̃, Ã, ⇢̃, ⌘̃) =

0

BBB@

0.1070(2) 0 0 0

�0.786(20) �0.0040(9) 0.0167(6) 0.402(10)

0.286(24) 0.094(22) �0.390(10) 0.296(23)

�0.385(18) 0.200(19) 0.184(10) �0.384(19)

1

CCCA
. (4.20)

Eqs. (4.16)-(4.20) represent the main results of this work.

Table 3 summarises our results for the Wolfenstein parameters in the presence of NP, and

compares them to the results of the canonical SM fits. As could be expected, our procedure
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All other flavor observables can then be use for constraining dimension-6 SMEFT operators 
after replacing: 

λ
A
ρ̄
η̄

→

λ̃(1 + Δλ)
Ã(1 + ΔA)
ρ̃(1 + Δρ)
η̃(1 + Δη)

where  are know linear combinations 
of SMEFT Wilson coefficients

Δx



Exercise in 
UV matching of SMEFT

Part 7 



Predicted by technicolor and composite Higgs models


Nice simple model leading to higher-derivative Higgs 
boson couplings at tree level 

Example: Vector Triplet Resonance
Why vector triplet?

Matching new physics to D=6 Lagrangian



A new SU(2) triplet of heavy vector bosons,  
coupled to SM SU(2) Higgs and fermionic currents:

For, simplicity, couplings to fermions assumed universal.

Thus, model has 3 free parameters: mV, κH, and κF. 


This time we identify mV with EFT expansion parameter Λ. 
 Solving equations of motions to leading order in 1/Λ:

Effective Lagrangian

Vector Triplet Resonance



Effective Lagrangian can also be obtained another way by 1st shifting:

Note that the new vector field does not couple to fermions anymore. 
 Solving equations of motions to leading order in 1/Λ, and plugging back, 


we obtain the effective Lagrangian:

As compared to

Which one is right? Answer: both!  

The equivalence  can be proven by using the SM equations of motion:

Vector Triplet Resonance



The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h
= 2µ2

H
= 2�v2. (2.19)

2.2 Dimension-6 operators
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OHG H†H Ga
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OHW H†HW i
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µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k
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OG fabcGa
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⌫⇢G
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j
⌫⇢W k
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O eG fabc eGa
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b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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Matching:

+ 4 fermion operators
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scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
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H
= 2�v2. (2.19)
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We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH

]IJ H†Hec
I
H†`J

[O†
uH

]IJ H†Huc
I
eH†qJ

[O†
dH

]IJ H†Hdc
I
H†qJ

Vertex

[O(1)
H`

]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`

]IJ i¯̀I�i�̄µ`JH†�i
 !
DµH

[OHe]IJ iec
I
�µēcJH

† !DµH

[O(1)
Hq

]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq

]IJ iq̄I�i�̄µqJH†�i
 !
DµH

[OHu]IJ iuc
I
�µūcJH

† !DµH

[OHd]IJ idc
I
�µd̄cJH

† !DµH

[OHud]IJ iuc
I
�µd̄cJH̃

†DµH

Dipole

[O†
eW

]IJ ec
I
�µ⌫H†�i`JW i

µ⌫

[O†
eB

]IJ ec
I
�µ⌫H†`JBµ⌫

[O†
uG

]IJ uc
I
�µ⌫T a eH†qJ Ga

µ⌫

[O†
uW

]IJ uc
I
�µ⌫ eH†�iqJ W i

µ⌫

[O†
uB

]IJ uc
I
�µ⌫ eH†qJ Bµ⌫

[O†
dG

]IJ dc
I
�µ⌫T aH†qJ Ga

µ⌫

[O†
dW

]IJ dc
I
�µ⌫H̄†�iqJ W i

µ⌫

[O†
dB

]IJ dc
I
�µ⌫H†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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Chapter II.2. EFT Formalism 287

The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1
p

2v2
, ↵ =

g2g02

4⇡(g2 + g02)
, mZ =

p
g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥
@µ(H†H)

⇤2

OT
1

2v2

⇣
H† !DµH

⌘2

O6 �
�

v2 (H†H)3

Og

g
2

s

m
2

W

H†H Ga

µ⌫
Ga

µ⌫

O�
g

02

m
2

W

H†H Bµ⌫Bµ⌫

OW
ig

2m
2

W

⇣
H†�i

 !
DµH

⌘
D⌫W i

µ⌫

OB
ig

0

2m
2

W

⇣
H† !DµH

⌘
@⌫Bµ⌫

OHW
ig

m
2

W

�
DµH†�iD⌫H

�
W i

µ⌫

OHB
ig

0

m
2

W

�
DµH†D⌫H

�
Bµ⌫

O2W
1

m
2

W

DµW i

µ⌫
D⇢W i

⇢⌫

O2B
1

m
2

W

@µBµ⌫@⇢B⇢⌫

O2G
1

m
2

W

DµGa

µ⌫
D⇢Ga

⇢⌫

O3W
g
3

m
2

W

✏ijkW i

µ⌫
W j

⌫⇢
W k

⇢µ

O3G

g
3

s

m
2

W

fabcGa

µ⌫
Gb

⌫⇢
Gc

⇢µ

Bosonic CP-odd

eOg

g
2

s

m
2

W

H†H eGa

µ⌫
Ga

µ⌫

eO�
g

02

m
2

W

H†H eBµ⌫Bµ⌫

eOHW
ig

m
2

W

�
DµH†�iD⌫H

� fW i

µ⌫

eOHB
ig

m
2

W

�
DµH†D⌫H

� eBµ⌫

eO3W
g
3

m
2

W

✏ijkfW i

µ⌫
W j

⌫⇢
W k

⇢µ

eO3G

g
3

s

m
2

W

fabc eGa

µ⌫
Gb

⌫⇢
Gc

⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.

SILH Basis

Exercise: find Wilson coefficients in the SILH basis

This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH

]IJ H†Hec
I
H†`J

[O†
uH

]IJ H†Huc
I
eH†qJ

[O†
dH

]IJ H†Hdc
I
H†qJ

Vertex

[O(1)
H`

]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`

]IJ i¯̀I�i�̄µ`JH†�i
 !
DµH

[OHe]IJ iec
I
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† !DµH
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Hq
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[OHd]IJ idc
I
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I
�µd̄cJH̃

†DµH

Dipole

[O†
eW

]IJ ec
I
�µ⌫H†�i`JW i
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[O†
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]IJ ec
I
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Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h
= 2µ2

H
= 2�v2. (2.19)
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Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

Vector Triplet Resonance



This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the
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linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called
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Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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A subset of all possible dimension-6 operators appear in the low-energy EFT 
for vector triplet model at tree-level  


But different models would give different subset of operators


Therefore, to be model independent, one should simultaneously constrain *all* 
dimension-6 operators 


Matching to dimension-6 operators to UV theory is not always trivial. One 
needs to use equations of motion and other trick to reduce to operator set in 
given basis


However,  SM EFT approach is basis independent - results can always be 
transformed from one basis to another, provided all independent operators 
are taken into account. Predictions for physical observable do not depend on 
which bases you use  

Lessons learned:

Vector Triplet Resonance



Thank You


