Constraining the SMEFT top sector through searches in $t\bar{t}Z$ and tZj with Machine Learning

Rahool Barman Oklahoma State University

In Collaboration with:

Dr. Ahmed Ismail (Oklahoma State Univ.)

(in preparation)

IMFPNP 2022

IOP Bhubaneswar

February 7 - 12, 2022

The SMEFT framework

- Implications from Heavy BSM physics on lower scales can be parameterized through higher dimensional effective operators.
- Provides a model-independent way of parameterizing the deviations from the SM,

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{\mathcal{C}_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \mathcal{O}\left(\Lambda^{-4}\right).$$

- C_i free parameters by definition and are constrained by experimental measurements.
- Typically, a dim-6 operator $\{\mathcal{O}_i^{(6)}\}$ results in the following modifications to any measured observable \mathcal{X} ,

$$\mathcal{X} = \mathcal{X}_{SM} + \sum_{i} \mathcal{X}_{i}' \frac{\mathcal{C}_{i}^{(6)}}{\Lambda^{2}} + \sum_{i,j} \mathcal{X}_{i}'' \frac{\mathcal{C}_{i}^{(6)} \mathcal{C}_{j}^{(6)}}{\Lambda^{4}},$$

SMEFT in top sector

[Ellis, Madigan, Mimasu, Sanz, You (2020)]

- Operators that directly modify the coupling of top-quark with SM fields:
 - {4 heavy quark} operators \rightarrow constrained by $t\bar{t}t\bar{t}$, $t\bar{t}b\bar{b}$.
 - {2 heavy 2 light quark} operators \rightarrow constrained by $t\bar{t}$ and $t\bar{t}V$.
 - {2 heavy quarks and bosonic fields, including H }
 - \rightarrow constrained by t, tV, $t\bar{t}V$).

SMEFT in top sector

[Ellis, Madigan, Mimasu, Sanz, You (2020)]

- Operators that directly modify the coupling of top-quark with SM fields:
 - {4 heavy quark} operators \rightarrow constrained by $t\bar{t}t\bar{t}$, $t\bar{t}b\bar{b}$.
 - {2 heavy 2 light quark} operators
 → constrained by tt̄ and tt̄V.
 - {2 heavy quarks and bosonic fields, including *H* }
 - \rightarrow constrained by t, tV, $t\bar{t}V$).

\mathcal{O}_{tZ} and \mathcal{O}_{tW}

- $\mathcal{O}_{tW} = (\bar{Q}_3 \sigma^{\mu\nu} U_3) \tau^a \tilde{H} W^a_{\mu\nu}$ Constrained mainly by:
 - W helicity fraction measurements in tt data.
 - single top and tV measurements.
- $O_{tB} = (\bar{Q}_3 \sigma^{\mu\nu} U_3) \tilde{H} B_{\mu\nu}$ $\rightarrow \mathcal{O}_{t7} = -\sin\theta_W \mathcal{O}_{tB} + \cos\theta_W \mathcal{O}_{tW}$ Constrained by:
 - $t\bar{t}Z$ and $t\bar{t}\gamma$ measurements.
 - tV measurements.

[CMS; arXiv: 1907.11270]

- → considerable deviations in the tail of diff. distributions
- [Degrande, Maltoni, Mimasu, Vryonidou, Zhang (2018)] → inclusion of differential measurements might lead to
- improvement in sensitivity.
- With improved statistics, HL-LHC would be an ideal testbed for such measurements.

With shape information at our disposal, how well can we constrain \mathcal{O}_{tZ} and \mathcal{O}_{tW} at the HL-LHC?

Global-fit: \mathcal{O}_{tW} : [-0.241,0.086], \mathcal{O}_{t7} : [-1.129,0.856]

Rahool Barman (OSU)

[Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang (2021)]

The goal of this work: evaluate the projected capability of the HL-LHC in probing \mathcal{O}_{tW} and \mathcal{O}_{tZ} through searches in $t\bar{t}Z$ and tZj channels, while including kinematic information.

- We focus on:
 - $t\bar{t}Z \rightarrow 3\ell + 2b + > 2i$
 - $tZj \to 3\ell + 1b + 1/2 j$
- Both channels allow the testing of top-quark NC which are not accessible through top decay.
- NP effect in both production and decay are considered.
 - $ightarrow \mathcal{O}_{tZ}$ can affect only production
 - $\rightarrow \mathcal{O}_{tW}$ can affect both production and decay.
- Each channel is analyzed with :
 - 1 Conventional cut-and-count approach.
 - 2 Multivariate analysis with Deep Neural Network.
 - 3 likelihood-free inference using MadMiner.

p p o t ar t Z channel

• We focus on:

$$t \overline{t} Z o (t o \ell
u b) (\overline{t} o j j \overline{b}) (Z o \ell \ell)$$

- Backgrounds: SM $t\bar{t}Z$, WZ + jets, tWZ, $t\bar{t}\gamma$, $t\bar{t}h$, VVV.
- NP modifications in tWZ are also taken into account.

Event selection

- Final state: $3 \ell + 2 b$ jets $+ \ge 2 j$
- SFOS- ℓ pair with $m_{\ell\ell}=m_Z\pm 10$ GeV.

- p_z computed by constraining $m_{\ell_W \nu} = m_W$.
- top reconstructed by minimizing: $(m_{jjb} m_t)^2 + (m_{\ell\nu b} m_t)^2$.

Reconstructed observables:

$$\begin{split} \rho_{T,\alpha}, \eta_{\alpha}, \phi_{\alpha} \{ \alpha = \alpha_{Z}, \alpha_{t_{\ell}}, \alpha_{t_{h}}, t_{\ell}, t_{h}, Z \}, \{ \alpha_{Z} = \ell_{1}, \ell_{2}; \ \alpha_{t_{\ell}} = \ell_{W}, \nu_{t}, b_{t_{\ell}}; \ \alpha_{t_{h}} = j_{1t}, j_{2t}, b_{t_{h}} \} \\ \Delta \phi_{\beta \epsilon}, \Delta \eta_{\beta \epsilon} \{ \beta, \epsilon = \alpha_{Z}, \alpha_{t_{\ell}}, \alpha_{t_{h}}, t_{\ell}, t_{h}, Z; \beta \neq \epsilon \}, \theta_{\alpha Z}^{\star t\bar{t}Z}, \theta_{t_{\ell}}^{\star t\bar{t}Z}, \theta_{t_{\ell}}^{\star t\bar{t}Z}, \theta_{t_{\ell}}^{\star t\bar{t}}, \theta_{t_{\ell}}$$

Cut-based optimization

 \mathcal{O}_{tZ} : Cut-and-count analysis performed at $\{\mathcal{O}_{tZ}=\pm 0.5, \pm 1.0, \pm 1.5, \pm 2.0\}$.

	$C_{tZ} = 1$	2.0		$C_{tZ} = -0.5$						
Event rates	$m_{t_h Z}$ >	$H_T >$	$\Delta R_{\ell\ell}^{\min} <$	m_{t_0Z} >	$H_T >$	$\Delta R_{\ell\ell}^{\min} <$	$\Delta \phi_{\ell_W t_\ell} <$			
@ HL-LHC	250 GeV	300 GeV	2.75	350 GeV	650 GeV	2	0.4			
SMEFT ttZ	2664	2611	2609	1489	419	411	215			
SMEFT tWZ	151	149	148	103	38.1	37.1	17.5			
tτZ	1853	1800	1796	1442	392	381	185			
tWZ	118	115	115	101.8	36.5	35.7	16.9			
WZ	153	147	147	150	32.7	32.7	21.8			
tīh	14.1	12.8	12.8	8.4	0.82	0.81	0.26			
$t\bar{t}\gamma$	19.7	18.9	18.9	15.1	3.7	3.6	1.6			
Significance	18.17	18.47	18.51	1.16	1.32	1.47	2.04			

 $\sigma_s^{NP} = (S_{SMEFT} - S_{SM})/\sqrt{S_{SM}}$

 \mathcal{O}_{tW} : Cut-and-count analysis performed at $\{\mathcal{O}_{tW}=\pm 0.24, \pm 0.48, \pm 0.72\}$.

	$C_{tW} =$	0.48	$C_{tW} = -0.48$				
Optimized	H_T	$\Delta R_{\ell b}^{\min} <$	$\theta_{\ell_2}^{*ttZ}$	$H_T >$	$\Delta R_{\ell b}^{\min} <$		
cuts	> 250 GeV	2.75	[0.2:2.94]	250	2.5		
SMEFT ttZ	2210	2201	1616	1613	1593		
SMEFT tWZ	131	129	125	124	121		
ttZ	1889	1881	1852	1849	1828		
tWZ	122	121	119	119	115		
WZ	150	136	142	139	125		
tīh	14.6	14.6	14.6	14.4	14.4		
tŧγ	19.8	19.8	19.4	19.3	19.1		
Significance	7.04	7.06	4.97	4.98	5.01		

DNN setup

Why Deep Neural Network?

- Cut-based approach is relatively ineffective in exploring correlations among observables.
- becomes progressively cumbersome as the dimensionality of observables is increased.
- ightarrow We construct a fully connected neural network using Keras with 150 observables.

Training dataset:

Signal: $t\bar{t}Z$ and tWZ events with at least one EFT vertex at production level.

Background: SM $t\bar{t}Z$, tWZ, WZ + jets

Test dataset:

SM(+)EFT $t\bar{t}Z$ and tWZ events with NP at production and decay, and SM $t\bar{t}Z$, tWZ, WZ + jets, $t\bar{t}\gamma$, $t\bar{t}h$.

Rahool Barman (OSU) IMEPNP 2022 February 7 - 12, 2022

	DNN with 150 observables										
C_{tZ}	SMI	SMEFT Background							σ_s^{NP}		
CtZ	tτZ	tWZ	tτZ	tWZ	WZ	tīh	$t\bar{t}\gamma$	α	US		
2.0	1557	84.5	942	58.6	73.6	1.9	7.7	0.60	19.23		
1.5	979	56.9	673	44.5	51.8	0.9	5.9	0.64	11.22		
-0.5	1038	63.7	963	61.8	81.8	7.0	9.8	0.56	2.3		
-2.0	2016	111	1258	82.9	114.5	4.3	11.8	0.55	20.18		

- Overall, DNN for \mathcal{O}_{tZ} showcases \sim 5-10% improvement over cut-based.
- DNN for O_{tW} leads to a projected sensitivity that is comparable to that from cut-based.

Most-sensitive observables are identified through permutation feature importance scores.

35 most important observables:

- Invariant masses: m_{tℓ th}, m_{tℓ /h}Z, m_{tℓ th}Z,
- Transverse momentum: H_T , p_T , $\ell_{1/2}$, p_T , ℓ_W , p_T , b_h , p_T , z, p_T , $t_{\ell/h}$, p_T , $t_{\ell/h}$, p_T , $t_{\ell/h}$,
- ΔR : $\Delta R_{\ell\ell}^{\min/\max}$, $\Delta R_{\ell b}^{\min}$,
- Azimuthal angles: ϕ_{ℓ_W} , ϕ_{t_ℓ} , $\Delta \phi_{\ell_W t_\ell}$, $\Delta \phi_{\ell_W \ell_1}$, $\Delta \phi_{\nu_{\ell_1}}$, $\Delta \phi_{\nu_{b_2}}$, $\Delta \phi_{b_\ell \ell_1/\ell_2}$, $\Delta \phi_{j_2 \ell_1}$, $\Delta \phi_{b_h \ell_2}$, $\Delta \phi_{\ell_1 t_\ell}$,
- $\begin{array}{ll} \bullet & \mathsf{Pseudorapidities:} & \eta_{\ell_1}, \ \Delta \eta_{\mathsf{t}_\ell \mathsf{Z}}, \ \Delta \eta_{\nu \mathsf{Z}}, \ \Delta \eta_{\ell_W \ell_2}, \\ & \Delta \eta_{b_\ell \ell_2}, \ \Delta \eta_{\ell_2 \mathsf{Z}}. \end{array}$
- DNN with these 35 observables leads to comparable sensitivity.

DNN with 150 observables											
C_{tZ}	SMEFT Background								σ_s^{NP}		
CtZ	t₹Z	tWZ	t₹Z	tWZ	WZ	tīh	t₹γ	α	US		
2.0	1557	84.5	942	58.6	73.6	1.9	7.7	0.60	19.23		
1.5	979	56.9	673	44.5	51.8	0.9	5.9	0.64	11.22		
-0.5	1038	63.7	963	61.8	81.8	7.0	9.8	0.56	2.3		
-2.0	2016	111	1258	82.9	114.5	4.3	11.8	0.55	20.18		

- Overall, DNN for \mathcal{O}_{tZ} showcases \sim 5-10% improvement over cut-based.
- DNN for O_{tW} leads to a projected sensitivity that is comparable to that from cut-based.

Most-sensitive observables are identified through permutation feature importance scores.

35 most important observables:

- Invariant masses: m_{tℓth}, m_{tℓ/h}Z, m_{tℓth}Z,
- Transverse momentum: H_T , $p_{T,\ell_{1/2}}$, p_{T,ℓ_W} , p_{T,b_h} , $p_{T,Z}$, $p_{T,t_{\ell/h}}$, $p_{T,t_{\ell/h}}$, $p_{T,t_{\ell/h}}$, $p_{T,t_{\ell/h}}$
- ΔR : $\Delta R_{\ell\ell}^{\min/\max}$, $\Delta R_{\ell b}^{\min}$,
- $$\begin{split} \bullet \quad & \text{Azimuthal angles: } \phi_{\ell_W}, \ \phi_{\mathfrak{t}_{\ell}}, \ \Delta\phi_{\ell_W} \mathfrak{t}_{\ell}, \\ & \Delta\phi_{\ell_W} \ell_1, \ \Delta\phi_{\nu\ell_1}, \ \Delta\phi_{\nu b_2}, \ \Delta\phi_{b_{\ell}\ell_1/\ell_2}, \ \Delta\phi_{j_2\ell_1}, \\ & \Delta\phi_{b_{k}\ell_2}, \ \Delta\phi_{\ell_1\mathfrak{t}_{\ell}}, \end{split}$$
- $\begin{array}{ll} \bullet & \mathsf{Pseudorapidities:} & \eta_{\ell_1}, \ \Delta \eta_{\mathsf{t}_\ell \mathsf{Z}}, \ \Delta \eta_{\nu \mathsf{Z}}, \ \Delta \eta_{\ell_W \ell_2}, \\ & \Delta \eta_{b_\ell \ell_2}, \ \Delta \eta_{\ell_2 \mathsf{Z}}. \end{array}$
- DNN with these 35 observables leads to comparable sensitivity.

	DNN with 150 observables										
C_{tZ}	SMI		α	σ_c^{NP}							
CtZ	tŧΖ	tWZ	tτZ	tWZ	WZ	tīh	tŧγ	ι α	05		
2.0	1557	84.5	942	58.6	73.6	1.9	7.7	0.60	19.23		
1.5	979	56.9	673	44.5	51.8	0.9	5.9	0.64	11.22		
-0.5	1038	63.7	963	61.8	81.8	7.0	9.8	0.56	2.3		
-2.0	2016	111	1258	82.9	114.5	4.3	11.8	0.55	20.18		

- Overall, DNN for \mathcal{O}_{tZ} showcases \sim 5-10% improvement over cut-based.
- DNN for Other leads to a projected sensitivity that is comparable to that from cut-based.

Most-sensitive observables are identified through permutation feature importance scores.

35 most important observables:

- Invariant masses: m_{tℓ th}, m_{tℓ /hZ}, m_{tℓ thZ},
- Transverse momentum: H_T, p_{T,ℓ1/2}, p_{T,ℓW},
 p_T,b_h, p_T,z, p_T,t_{ℓ/h}, p_T,t_{ℓ/h}z, p_T,t_ℓt_h,
- ΔR : $\Delta R_{\ell\ell}^{\min/\max}$, $\Delta R_{\ell\hbar}^{\min}$,
- Azimuthal angles: ϕ_{ℓ_W} , ϕ_{t_ℓ} , $\Delta \phi_{\ell_W t_\ell}$, $\Delta \phi_{\ell_W t_\ell}$, $\Delta \phi_{\nu \ell_1}$, $\Delta \phi_{\nu \ell_1}$, $\Delta \phi_{\nu b_2}$, $\Delta \phi_{b_\ell \ell_1} / \ell_2$, $\Delta \phi_{j_2 \ell_1}$, $\Delta \phi_{b_k \ell_2}$, $\Delta \phi_{\ell_1 t_\ell}$,
- $\begin{array}{l} \bullet \quad \text{Pseudorapidities:} \ \, \eta_{\ell_1}, \ \Delta \eta_{\mathsf{t}_\ell \mathsf{Z}}, \ \Delta \eta_{\nu \mathsf{Z}}, \ \Delta \eta_{\ell_W \ell_2}, \\ \Delta \eta_{b_\ell \ell_2}, \ \Delta \eta_{\ell_2 \mathsf{Z}}. \end{array}$
- DNN with these 35 observables leads to comparable sensitivity.

- Disparity between training and test dataset in DNN:
 - training data has no NP in top decay.
 - test dataset includes NP at production as well as decay.
- For consistency check, we also estimate projected sensitivities using MadMiner.

- Overall, DNN for \mathcal{O}_{tZ} showcases \sim 5-10% improvement over cut-based.
- DNN for O_{tW} leads to a projected sensitivity that is comparable to that from cut-based.

MadMiner

- A likelihood-based approach is followed to interpret the results \rightarrow likelihood ratio $r(x|\theta,\theta_{SM})$ has been known as an excellent test statistic to discriminate NP effects parameterized by $\theta = (C_{tZ}, C_{tW})$ from SM $\theta_{SM} = (0,0).$
- At detector level, $r(x|\theta,\theta_{SM})$ cannot be computed directly, however, can be estimated through simulations.
- MadMiner resolves this intractability by employing ML based inference techniques. [Brehmer, Kling, Espejo, Cranner (2019)]

MadMiner

- Interpolates matrix element (ME) information from MC simulated events as a function of θ .
- reconstructed observables x + ME information are used to train neural networks
- → accounts for parton shower, hadronization and detector effects.
- The joint likelihood ratio, $r(x,z|\theta_0,\theta_1) = p(x,z|\theta_0)/p(x,z|\theta_1)$, and joint score $t(x,z|\theta_0) = \nabla_\theta \log (p(x,z|\theta))\Big|_{\theta_0}$ can be computed for every event. [Brehmer, Kling, Espejo, Cranner (2019)]
- Uses loss functions that depend on $r(x, z|\theta_0, \theta_1)$ and $t(x, z|\theta_0)$, whose minimizing function is $r(x|\theta_0, \theta_1)$. [Brehmer, Louppe, Pavez, Cranmer (2018)]
- Projected sensitivities are then extracted through likelihood ratio tests.

Network architecture:

- 150 observables are used to describe the signal and background in the multivariate analysis.
- Fully connected NN with 3 hidden layers (100 \times 100 \times 100) is trained.

Rahool Barman (OSU) IMEPNP 2022 February 7 - 12, 2022

Projected sensitivity

pp o tZj channel

• We focus on:

$$pp
ightarrow tZj
ightarrow (t
ightarrow \ell \nu b)(Z
ightarrow \ell \ell)j$$
 $ightarrow$ recent measurement of tZj cross-section at LHC at 4.2σ .

- Backgrounds: SM tZj, $t\bar{t}Z$, WZ + jets, tWZ, $t\bar{t}\gamma$, $t\bar{t}h$, VVV.
- NP modifications in $t\bar{t}Z$ and tWZ are also taken into account.

Event selection

- Final state: $3 \ell + 1 b$ jets + 1/2 j.
- SFOS- ℓ pair with $m_{\ell\ell}=m_Z\pm 10$ GeV.
- Highest p_T jet associated with recoil jet.

- p_{τ} computed by constraining $m_{\ell_W \nu} = m_W$.
- top reconstructed by minimizing: $(m_{l_t\nu b} m_t)^2 + (m_{l_t\nu} m_W)^2$.

Reconstructed observables:

$$\begin{split} \theta_{\alpha}^{\star W} \{\alpha = \ell_{W}, \nu\}, \theta_{\beta}^{\star t} \{\beta = \ell_{W}, \nu, b\}, \theta_{\epsilon}^{\star tzj_{reco}} \{\epsilon = \ell_{1}, \ell_{2}, \ell_{W}, \nu, b, j_{reco}, t\}, \\ p_{T,\zeta}, \eta_{\zeta}, \phi_{\zeta}, E_{\zeta} \ \{\zeta = \epsilon, Z, tZ, tZj_{reco}\}, m_{k} \ \{k = Z, t, tZ, tZj_{reco}\}, m_{\ell_{1}\ell_{2}\ell_{W}}, m_{jj}^{\max}, \\ \Delta \phi_{\xi\rho} \ \{\xi = \ell_{1}, \ell_{2}, Z; \rho = \ell_{W}, b, j_{reco}\}, \Delta \phi_{\ell_{W}j_{reco}}, \Delta \phi_{\ell_{W}Z}^{tZj_{reco}}, \Delta \phi_{\ell_{\ell}}^{\max} \ \{\ell = \ell_{1}, \ell_{2}, \ell_{W}\}, \Delta R_{\ell b}^{\min}, \\ m_{T,l_{W}}, m_{T,tZ}, p_{T,ij}^{\max}, p_{T,ijb}, p_{T,bi_{reco}}, H_{T} \end{split}$$

Cut-based optimization

Several combinations of $\{H_T, m_{tZ}, p_{T,Z}, p_{T,W}, \Delta R_{t\ell}^{\min}, m_{jj}^{\max}, m_{tZ}, \Delta \eta_{Zb}, \Delta \eta_{bj_r}\}$ are tried.

 \mathcal{O}_{tZ} : Cut-and-count analysis performed at $\{\mathcal{O}_{tZ}=\pm 0.5, \pm 1.0, \pm 1.5, \pm 2.0\}$.

	$C_{-7} = 1.0$		$C_{rz} = -1.0$					
H _T >		$\Delta R_{*c}^{min} <$						
450 GeV	250 GeV	2.75	350 GeV	200 GeV	$\Delta \eta_{bj_r} < 4.75$			
613	165	158	1260	313	289			
921	455	436	1696	774	771			
118	45.3	43.3	207	80.6	80.1			
584	139	132	1205	274	251			
783	348	331	1519	653	648			
108	38.4	36.4	197	69.8	69.2			
1497	367	337	2776	727	704			
4.0	1.5	1.4	8.9	3.0	2.9			
3.24	4.68	5.00	3.20	4.11	4.20			
	450 GeV 613 921 118 584 783 108 1497 4.0	450 GeV 250 GeV 613 165 921 455 118 45.3 584 139 783 348 108 38.4 1497 367 4.0 1.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$			

 \mathcal{O}_{tW} : Cut-and-count analysis performed at $\{\mathcal{O}_{tW}=\pm 0.24, \pm 0.48, \pm 0.72\}$.

Event	C_{tW}	= 0.48	$C_{tW} = -0.48$			
rates	$H_T >$	$\Delta R_{t\ell}^{\min} <$	pr.z >	$\Delta R_{t\ell}^{\min} <$		
@ HL-LHC	200 GeV	3.25	200 GeV	5.1		
SMEFT tZj	3352	3275	2979	2770		
SMEFT ttZ	3414	3367	2499	2492		
SMEFT tWZ	393	386	380	379		
tZj	3038	2964	3159	2951		
tīZ	2881	2836	2887	2878		
tWZ	368	362	370	368		
WZ	6202	6022	6208	6036		
$t\bar{t}\gamma$	20.1	19.8	20.8	20.7		
Significance	7.80	7.84	4.96	5.03		

Two distinct NN's are trained:

- NN_{tZj} : Trained on EFT tZj and SM $t\bar{t}Z$, tZj, WZ + jets.
- $NN_{t\bar{t}Z}$: Trained on EFT $t\bar{t}Z$ and SM $t\bar{t}Z$, tZj, WZ + jets.

	C_{tZ}	NN	$S_{SMEFT}^{\star}(\alpha)$					α'	σ_S^{NP*}			
		/*/*	tΖj	t₹Z	tWZ	tZj	t₹Z	tWZ	WZ	t₹γ	α	US
	2.0	NN_{tZj}	287	140	16.0	177	65.8	9.9	244	0.4	0.63	18.3
	2.0	$NN_{t\bar{t}Z}$	143	1557	153	97.8	926	107.6	838	5.1	0.46	10.5
	1.0	NN_{tZi}	184	79.0	9.5	156	56.9	8.7	220	0.33	0.65	5.12
	1.0	$NN_{t\bar{t}Z}$	86.1	892	92.1	72.6	733	85.3	678	3.8	0.49	5.12
	-0.5	NN_{tZi}	619	214	27.5	601	202	26.7	819	1.3	0.47	1.44
	-0.5	$NN_{t\bar{t}Z}$	280	1770	209	274	1700	208	1907	9.9	0.37	1.44
	-1.5	NN_{tZi}	282	153	17.2	203	94.7	12.1	255	0.5	0.59	11.21
	-1.5	$NN_{t\bar{t}Z}$	152	1272	130	119	906	103	884	4.1	0.45	11.21

Two distinct NN's are trained:

- NN_{tZj} : Trained on EFT tZj and SM $t\bar{t}Z$, tZj, WZ + jets.
- NN_{ttZ}: Trained on EFT ttZ and SM ttZ, tZj, WZ + jets.

CtZ	C+z NN	$S_{SMEFT}^{\star}(\alpha)$					α'	σ_S^{NP*}			
CtZ	/*/*	tΖj	t₹Z	tWZ	tZj	t₹Z	tWZ	WZ	t₹γ	· ·	US
2.0	NN_{tZ_i}	287	140	16.0	177	65.8	9.9	244	0.4	0.63	18.3
2.0	$NN_{t\bar{t}Z}$	143	1557	153	97.8	926	107.6	838	5.1	0.46	10.5
1.0	NN_{tZi}	184	79.0	9.5	156	56.9	8.7	220	0.33	0.65	5.12
1.0	$NN_{t\bar{t}Z}$	86.1	892	92.1	72.6	733	85.3	678	3.8	0.49	3.12
-0.5	NN_{tZi}	619	214	27.5	601	202	26.7	819	1.3	0.47	1.44
-0.5	$NN_{t\bar{t}Z}$	280	1770	209	274	1700	208	1907	9.9	0.37	1.44
-1.5	NN_{tZj}	282	153	17.2	203	94.7	12.1	255	0.5	0.59	11.21
-1.5	$NN_{t\bar{t}Z}$	152	1272	130	119	906	103	884	4.1	0.45	11.21

MadMiner

1-d profiling

Summary of projected sensitivity

Projected 2σ sensitivity

Summary and outlook

- The upcoming high luminosity runs of LHC offer an exciting testbed to probe the rare top-quark production processes like tZj and $t\bar{t}Z$ with improved statistics.
- Opens up the possibility of measuring differential distributions of various kinematic observables.
- Complementing cross-section measurements with kinematic distributions can enhance the projected sensitivity for NP operators in tZj and $t\bar{t}Z$ processes.
- The inclusion of such differential measurements might also benefit the global-fit results.

Thank you for your attention!